Федеральное государственное бюджетное научное учреждение Уфимский федеральный исследовательский центр Российской академии наук (УФИЦ РАН) Институт нефтехимии и катализа – обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук (ИНК УФИЦ РАН)

На правах рукописи

Артемьева Анна Сергеевна

СИНТЕЗ ХИНОЛИНОВ В ПРИСУТСТВИИ ГРАНУЛИРОВАННЫХ ЦЕОЛИТОВ FAU И MFI С ИЕРАРХИЧЕСКОЙ ПОРИСТОЙ СТРУКТУРОЙ

1.4.14. Кинетика и катализ

Диссертация на соискание ученой степени кандидата химических наук

> Научный руководитель: доктор химических наук, доцент Григорьева Нелля Геннадьевна

оглавление

ВВЕДЕНИЕ
ГЛАВА 1 ЛИТЕРАТУРНЫЙ ОБЗОР11
1.1 Области использования хинолинов11
1.2 Способы получения хинолинов13
1.2.1 Промышленное получение хинолинов13
1.2.2 Синтетические способы получения хинолинов 14
1.3 Цеолиты в синтезе хинолинов 24
1.3.1 Синтез хинолинов с участием карбонильных соединений 24
1.3.2 Синтез хинолинов с участием прекурсоров карбонильных соединений. 27
1.4 Заключение по главе 1 34
ГЛАВА 2 ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦЕОЛИТОВ 36
2.1 Цеолиты H-ZSM-5 Зе
2.2 Цеолиты Ү 41
2.2.1 Цеолиты Ү в Н-форме 41
2.2.2 Модифицированные иерархические цеолиты Na-Y _h
2.3 Заключение по главе 2 49
ГЛАВА 3 КАТАЛИТИЧЕСКИЕ СВОЙСТВА ЦЕОЛИТОВ 50
3.1 Каталитические свойства цеолитов в реакции анилина с глицерином 51
3.1.1 Влияние пористой структуры и морфологии кристаллов 51
3.1.2 Стабильность образцов 56
3.2 Каталитические свойства цеолитов в реакциях анилинов с 1,2-диолами 60
3.2.1 Влияние пористой структуры и топологии каркаса цеолитов 60
3.2.2 Влияние типа растворителя на конверсию анилина и селективность по
продуктам
3.2.3 Влияние типа реакционной системы на конверсию анилина и
селективность по продуктам 65
3.2.4 Влияние структуры реагентов на их конверсию и селективность по
продуктам

3.2.5 Влияние условий реакции на конверсию анилина и селективность по
продуктам в синтезе N-гетероциклов71
3.2.6 Обсуждение маршрутов реакции 77
3.2.7 Сравнение каталитических свойств гранулированных иерархических
цеолитов в реакциях анилина с альдегидами и со спиртами 79
3.3 Каталитические свойства цеолитов в реакциях анилина с одноатомными
спиртами
3.3.1 Влияние кислотности цеолитов и природы нанесенного металла на
конверсию анилина и селективность по продуктам
3.3.2 Влияние условий реакции на конверсию анилина и селективность по
продуктам
3.3.3 Влияние структуры реагентов на их конверсию и селективность по
продуктам
3.4 Заключение по главе 390
ГЛАВА 4 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
4.1 Реагенты и катализаторы
4.2 Характеристика катализаторов 94
4.3 Разработанные способы получения N-гетероциклов
4.4 Заключение по главе 4 108
ЗАКЛЮЧЕНИЕ 109
ВЫВОДЫ 111
Список литературы 113
Приложение А 134
Приложение Б135
Приложение В 138

введение

<u>Актуальность темы исследования.</u> Соединения на основе хинолинового остова широко используются для создания жизненно важных лекарств, ингибиторов коррозии, гербицидов, присадок к маслам, красителей, органических светодиодов (OLED).

Существующая за рубежом промышленная технология получения хинолинов основана на их выделении из каменноугольной смолы. Технология характеризуется высокими затратами на выделение целевых продуктов в связи с содержанием в смоле (до 0,7%), использованием опасных их низким растворителей, наличием кислых и солевых стоков, низким качеством продуктов и другими недостатками. Производство и технологии получения хинолинов в РФ данный момент отсутствуют, потребность в указанных соединениях на практически полностью покрывается за счет импорта.

Синтетические способы получения хинолинов основаны на реакциях карбонильных соединений с ароматическими аминами, катализируемых кислотами или основаниями. Использование гомогенных катализаторов приводит к многостадийности процесса, трудности отделения продуктов от катализатора, появлению вредных стоков, а нестабильность карбонильных соединений создает ряд сложностей при их хранении и использовании. Поэтому перспективными методами получения синтетических хинолиновых оснований в настоящее время считаются однореакторные синтезы с использованием доступных, дешевых и стабильных спиртов и гетерогенных катализаторов, в том числе цеолитных. Однако применение описанных в литературе традиционных цеолитов в синтезе хинолинов может быть затруднено из-за блокировки микропор объемными молекулами целевых продуктов, что приводит к быстрой дезактивации катализатора. Кроме микропористая структура того, может затруднять образование объемных молекул хинолинов.

Таким образом, несовершенство зарубежных технологий получения промышленно значимых хинолиновых оснований, отсутствие их производства в России, высокая потребность в указанных соединениях, в том числе для получения жизненно важных лекарственных средств; небольшое количество информации об эффективных гетерогенных катализаторах получения хинолинов обуславливают актуальность и научную значимость работы.

Работа выполнена в рамках государственного задания Института нефтехимии и катализа УФИЦ РАН (тема № FMRS-2022-0080).

<u>Степень разработанности темы.</u> Использование гетерогенных катализаторов, в том числе цеолитных, в синтезе хинолинов описано в незначительном количестве работ. Большая часть исследований выполнена в присутствии микропористых цеолитов. Каталитические системы на основе гранулированных цеолитов с иерархической пористой структурой для синтеза хинолинов реакциями анилинов со спиртами на момент начала наших исследований не были известны.

Цель исследования разработка эффективных гетерогеннокаталитических способов получения хинолинов реакциями спиртов с анилином и систем его производными В присутствии каталитических на основе гранулированных цеолитов с иерархической пористой структурой FAU (Y_h) и MFI $(ZSM-5_h)$.

Для достижения поставленной цели решались следующие задачи:

1. Изучение каталитических свойств микропористых и иерархических цеолитов Y и ZSM-5 в реакциях спиртов (одноатомных и полиолов) с анилином и его производными;

2. Исследование влияния химического состава, природы, концентрации и силы активных центров, характеристик пористой структуры и морфологии цеолитов на их каталитические свойства в указанных реакциях;

3. В присутствии наиболее активных и селективных образцов катализаторов изучение влияния условий проведения реакций на состав и выход образующихся продуктов.

Научная новизна. Впервые исследованы каталитические свойства гранулированных цеолитов с иерархической пористой структурой Y_h, ZSM-5_h в реакциях анилина и его производных с одноатомными и многоатомными образованием спиртами, проходящих с хинолина, алкилхинолинов, алкилтетрагидрохинолинаминов, 3,4-диметил-1-фенил-1Н-пиррола, 2-метил-3-нпропил-1Н-индола. Хинолины и алкилтетрагидрохинолинамины получены с выходом до 78 %, 4-диметил-1-фенил-1Н-пиррол и 2-метил-3-н-пропил-1Н-индол - до 54 %.

Установлено, что иерархические цеолиты проявляют более высокую активность, селективность и стабильность по сравнению с микропористыми цеолитами того же структурного типа, что обусловлено присутствием мезо- и макропор, обеспечивающих диффузию реагентов к активным центрам внутри пор цеолитов и продуктов реакции из пор в реакционный объем, а также создающих условия для образования объемных молекул хинолинов.

Установлено влияние состава исходных гранул цеолита H-ZSM-5_h на их каталитические свойства в реакции анилина с глицерином: максимальной активностью и селективностью в синтезе хинолина обладает катализатор, синтезированный из гранул, содержащих 60 % микропористого цеолита H-ZSM-5 и 40 % аморфного алюмосиликата. Это обусловлено наличием наноразмерных кристаллов и наибольшим объемом мезопор в образце.

Впервые показано, что в реакции анилина с 1,2-пропандиолом максимальную конверсию (K = 99 %) и селективность по 3-метил-2-этилхинолину (S = 60 %) проявляет цеолит H-ZSM-5_h (автоклав, 260 °C, анилин: 1,2-пропандиол = 1:3 моль/моль; массовая доля катализатора 10 %, хлорбензол, 9 ч).

Выявлено, что активность и селективность модифицированных цеолитов $Me_xO_y/Na-Y_h$ (Me = Co, Ni, Cu, Zn) в синтезе хинолинов реакцией анилина с *н*-пропанолом зависит от природы введенного оксида металла и силы/концентрации кислотных центров катализатора. Максимальная селективность по хинолинам (S = 63 % при конверсии анилина K = 49 %) достигнута на образце,

промотированном ZnO и обладающем низкой концентрацией слабых кислотных центров (ZnO/Na-Y_h).

Впервые осуществлен синтез алкил-N-фенил-1,2,3,4-тетрагидрохинолин-4аминов, 2-метил-3-*н*-пропил-1Н-индола и 3,4-диметил-1-фенил-1Н-пиррола реакцией анилина с 1,2-диолами. Обнаружено влияние структурного типа цеолита и условий реакции на направление реакции анилина с 1,2-пропандиолом. На цеолите H-ZSM-5_h образуется преимущественно 3-метил-2-этилхинолин (S до 60%), на цеолите H-Y_h – 2-метил-3-*н*-пропил-1Н-индол (S до 55%). Выявлено, что растворитель оказывает влияние на селективность образования продуктов в циклоконденсации анилина с 1,2-пропандиолом под действием цеолита H-ZSM-5_h: в бензоле образуется 3,4-диметил-1-фенил-1Н-пиррол (S до 58%), при проведении реакции в среде хлорбензола – 3-метил-2-этилхинолин (S до 60%). Показано, что при замене автоклава на проточную установку со стационарным слоем катализатора основным продуктом реакции анилина с 1,2-пропандиолом является 3-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амин (S до 85%).

<u>Теоретическая и практическая значимость работы.</u> Теоретическое значение работы состоит в разработке нового подхода к синтезу ряда промышленно важных азогетероциклических соединений, основанного на применении в качестве катализаторов гранулированных цеолитов с иерархической пористой структурой Y_h и ZSM-5_h. Разработаны способы управления активностью и селективностью каталитических систем в синтезе хинолинов и других N-гетероциклов реакциями спиртов с анилинами.

Практическая значимость работы заключается в том, что разработаны перспективные гетерогенно-каталитические способы получения практически значимых хинолина, алкилхинолинов, алкилтетрагидрохинолинаминов, 4диметил-1-фенил-1Н-пиррола и 2-метил-3-*н*-пропил-1Н-индола реакциями анилина с многоатомными спиртами в присутствии гранулированных цеолитов H-Y_h, H-ZSM-5_h с иерархической пористой структурой, обеспечивающие выходы целевых продуктов до 78 %. Способы защищены патентами РФ №№ 2697876, 2786740, 2797946, 2803740, 2808560, 2830162, 2831365.

Методология и методы исследования. Методология работы построена на использовании новых каталитических систем. созданных на основе гранулированных цеолитов с иерархической пористой структурой, в реакциях спиртов с анилинами для синтеза хинолинов. Анализ и идентификация полученных продуктов каталитических превращений выполнены С использованием высокоэффективной жидкостной хроматографии, хромато-массспектрометрии, одномерной и двумерной ЯМР ¹Н и ¹³С- спектроскопии.

Исследования физико-химических свойств катализаторов проводились с использованием следующих методов: рентгенофлуоресцентный анализ, рентгенофазовый и рентгеноструктурный анализы, спектрофотометрия в УФ и видимой областях, низкотемпературная адсорбция-десорбция азота, ртутная порометрия, сканирующая электронная микроскопия, ИК-спектроскопия адсорбированного пиридина.

Положения, выносимые на защиту:

– физико-химические свойства новых катализаторов на основе гранулированных цеолитов с иерархической пористой структурой Y_h, ZSM-5_h;

 – каталитические свойства гранулированных цеолитов с иерархической пористой структурой в синтезе хинолинов реакциями спиртов с анилином и его производными;

– зависимость каталитических свойств цеолитов Y_h, ZSM-5_h от их физикохимических характеристик (химического состава; природы, концентрации и силы активных центров; характеристик пористой структуры; морфологии) в реакциях анилина со спиртами;

– условия синтеза хинолинов и других N-гетероциклов, позволяющие получать целевые продукты с максимальным выходом.

<u>Степень достоверности результатов и апробация работы.</u> Представленные в работе результаты и выводы не противоречат современным научным представлениям, являются достоверными и обоснованными, что подтверждено использованием современных физико-химических методов

исследования, воспроизводимостью экспериментальных данных, полученных с использованием сертифицированных реактивов и материалов, публикацией результатов работы в ведущих рецензируемых изданиях.

Результаты исследований представлены на Международных конференциях молодых ученых «Актуальные проблемы науки и техники» (Уфа, 2021-2023); Международных конференциях «Химия нефти и газа» (Томск, 2022, 2024); ХХІV Международной научно-практической конференции студентов и молодых ученых «Химия и химическая технология в ХХІ веке» (Томск, 2023); IV Российском конгрессе по катализу «РОСКАТАЛИЗ» (Казань, 2021); Всероссийских цеолитных конференциях «Цеолиты и мезопористые материалы: достижения и перспективы» (Грозный, 2021; Москва, 2024); Всероссийских молодежных конференциях «Проблемы и достижения химии кислород- и азотсодержащих биологически активных соединений» (Уфа, 2021-2023 гг.) и др.

Публикации. По результатам диссертационной работы опубликовано 6 статей в журналах, рекомендованных ВАК и индексируемых в базах данных Web of Science, Scopus и РИНЦ, 25 тезисов докладов конференций, получено 7 патентов на изобретения.

<u>Соответствие паспорту заявленной специальности</u>. Содержание диссертации соответствует паспорту специальности 1.4.14. Кинетика и катализ ВАК РФ, а именно следующим пунктам: п.3 (поиск и разработка новых катализаторов и каталитических композиций, усовершенствование существующих катализаторов для проведения новых химических реакций, ускорения известных реакций и повышения их селективности), п.5 (строение и физико-химические свойства катализаторов).

<u>Личный вклад автора</u> состоит в анализе научной литературы по теме исследования, проведении экспериментальных исследований, анализе, обобщении и интерпретации полученных результатов, их апробации на конференциях, активном участии в оформлении публикаций по теме работы.

<u>Структура и объем диссертационной работы.</u> Диссертационная работа состоит из введения, четырех глав, заключения, выводов, списка литературы и

трех приложений. Общий объем работы 140 страниц, включая список литературы (161 наименование), 23 рисунка, 35 схем и 15 таблиц.

Благодарности

Автор выражает глубокую признательность научному руководителю д.х.н. Григорьевой Н.Г. за помощь при постановке цели и задач исследования, интерпретации полученных результатов; зав. лабораторией, д.х.н., профессору Кутепову Б.И. за полезные советы, помощь и поддержку на всех этапах научной работы. Автор благодарна всему коллективу лаборатории приготовления катализаторов ИНК УФИЦ РАН за плодотворное сотрудничество, помощь и поддержку; сотрудникам лабораторий структурной химии и хроматографии за проведение физико-химических исследований синтезированных соединений.

ГЛАВА 1 ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Области использования хинолинов

Хинолин представляет собой гетероциклическую систему, состоящую из шестичленного бензольного кольца, конденсированного с пиридином. С химической точки зрения хинолин – слабое основание, которое может образовывать соли с кислотами и вступать в реакции как электрофильного, так и нуклеофильного замещения. Кроме того, координация атома азота с различными металлами позволяет хинолиновому фрагменту образовывать стабильные комплексы. Благодаря этим свойствам, соединения на основе хинолинового остова широко применяются в медицинской химии, в металлургии, полимерной промышленности, в качестве ингибиторов коррозии, аналитических реагентов, агрохимикатов. Функционализированные хинолины являются фоточувствительными материалами и применяются для анализа, производства красителей, органических электролюминесцентных устройств и оптических носителей записи [1-5].

На основе хинолина синтезированы лекарственные средства с противомалярийной, противовоспалительной, противогрибковой, противораковой и другими активностями [5].

Известными препаратами против малярии на основе хинолиновых производных являются мепакрин, мефлохин, примахин, тафенохин и др. [6, 7]. В качестве антибактериальных и антимикробных препаратов применяют монтелукаст, тилброхинол, хлорхинальдол, хиниофон и хинолоны [8, 9].

Противораковой активностью обладают препараты топотекан, нератиниб, амсакрин, иринотекан, кабозантиниб и др. [6, 10]. Широкое клиническое применение имеют противовоспалительные препараты на основе производных хинолина [11].

Способность хинолинов к образованию солей используется при получении циановых красителей, применяемых в фото-, полиграфической, текстильной

промышленности [4]. Указанные красители применяются в качестве лигандов для приготовления фосфоресцентных комплексов, используемых в органических светодиодах [12]. На основе хинальдина получают красители хинолиновый желтый, красный, синий и др. [13].

Способность создавать защитную смазочную пленку на поверхности металла за счет адсорбции позволяет использовать хинолины в качестве присадок к маслам [14].

Производные хинолина, содержащие полярные заместители, такие как гидроксил-, метокси-, амино-, нитро- и т. д., эффективно образуют высокостабильные хелатные комплексы с поверхностными атомами металлов. Благодаря этим свойствам, производные хинолина используются в качестве эффективных ингибиторов коррозии для мягких и углеродистых сталей, железа [2].

Такие гербициды на основе хинолина, как хинозол (бис (8гидроксихинолин) сульфат), квинмерак (7-хлор-3-метил-8-хинолинкарбоновая кислота), квинклорак (3,7-дихлорхинолин-8-карбоновая) широко используются в агропромышленности [15].

Комплексы производных хинолинов с соединениями Rh, Ir, Co, Fe катализируют реакции гидрирования/дегидрирования, дегидратации, этерификации, полимеризации [16].

Хемосенсоры с хинолиновой структурой обладают высокой селективностью к токсичным ионам в атмосфере, водоемах, организме человека [3]. С их помощью детектируют катионы металлов (Ag^+ , Al^{3+} , Cd^{2+} , Hg^{2+} , Fe^{3+} и др.) и анионы (Ac^- , CN^- и др.).

1.2 Способы получения хинолинов

1.2.1 Промышленное получение хинолинов

В промышленности хинолины получают выделением из каменноугольной смолы: промывают нафталиновую (или другую) фракцию серной кислотой для получения раствора сульфата хинолина, обрабатывают водяным паром для примесей, затем разлагают После удаления щелочью или аммиаком. обезвоживания выделенного хинолина-сырца и его гомологов их подвергают ректификации и выделяют фракцию с температурой кипения 237,5 - 239,5 °С с получением хинолина-сырца, содержащего 83 % хинолина и 15 % изохинолина. Неочищенный хинолин обрабатывают 60 %-ным водным раствором фосфорной кислоты, охлаждают и фильтруют, получая кристаллы хинолинфосфата. После разложения щелочью чистота продукта составляет 90-92 %. Повторяют обработку фосфорной кислотой и перекристаллизацию до получения хинолина чистотой 98-99 % [17].

Высокий расход кислот и щелочей в указанном способе приводит к появлению кислых стоков, а затраты на высокоэффективную ректификацию и малое содержание хинолинов в смоле (до 0,7 % [18]) делают способ рентабельным только в случае значительной мощности установки ПО каменноугольной смоле. В связи с этим, основное промышленное производство хинолинов сосредоточено в Китае [19] благодаря лидирующей позиции по переработке каменного угля (436 млн т/год, 2019 г. [20]). К компаниям, производящим хинолины, относятся: Jinan Realong Chemical Co.(10 тыс. т/год); Jining Qicai Chemical Industry Co.(3 тыс. т/год); Shanghai Qian Kun Chemical Technology Co. (2 тыс. т/год); Jinan Finer Chemical Co. (0,5 тыс. т/год); Hebei Sinochem Xinbao Chemical Technology Co.; SINOPEC; Ensince Industry Co. B России производство хинолинов отсутствует, до 2010 г. хинолиновую фракцию выделяли из смолы на Нижнетагильском металлургическом заводе [21].

1.2.2 Синтетические способы получения хинолинов

Существует множество методов синтеза синтетических хинолинов – Скраупа, Дебнера-Миллера, Фридлендера, Конрада-Лимпаха и др. – с использованием в качестве катализаторов кислот или оснований [22].

Синтез взаимодействием ароматических хинолинов аминов С карбонильными соединениями. Синтез Фридлендера протекает через взаимодействие о-аминозамещенного ароматического альдегида, кетона или их кетонами, альдегидами производных С замещенными или другими карбонильными соединениями, имеющими активную α-метиленовую группу [23] (Схема 1.1).

Схема 1.1 – Синтез хинолинов реакцией Фридлендера

В качестве катализаторов используют минеральные или органические кислоты (H_2SO_4 , HCl [24], п-толуолсульфокислота [25], $ZnCl_2$ и I_2 [26]; кислоты на носителе (H_2SO_4 / SiO_2[27], H_2SO_4 / PEG[28]), сульфокислоты, связанные с полимером [29], монтмориллонит K10 [30], $Ag_3PW_{12}O_{40}$, CuFe₂O₄[31]) или основания (KOH, NaOH).

В зависимости от типа используемого катализатора получают различные производные хинолина [24]. Так, в присутствии уксусной кислоты из фенил(аминофенил)кетона и метилэтилкетона образуется 2,3-диметил-4-фенилхинолин (2), а под действием КОН реакция проходит с образованием 2этил-4-фенилхинолина (3) (Схема 1.2).

Схема 1.2 – Влияние природы катализатора на структуру продуктов реакции Фридлендера

<u>Реакцией Конрада – Лимпаха</u> получают 4-хинолоны (**4**) из β-кетоэфиров и замещенных анилинов [32] (Схема 1.3).

Схема 1.3 – Синтез 4-хинолонов реакцией Конрада-Лимпаха

Реакция анилина или замещенных анилинов с этилацетоацетатом дает 4замещенные хинолины, но, если получать аминоакриловый эфир при 140 °C, образуются 2-хинолоны (5). Такой метод известен как <u>модификация Кнорра</u> (Схема 1.4) [33].

Схема 1.4 – Синтез 4-хинолонов реакцией Конрада-Лимпаха-Кнорра

<u>Синтез Комба</u> заключается в конденсации ариламинов с 1,3дикарбонильными соединениями. Образующиеся при этом интермедиаты циклизуются в присутствии кислоты (H_2SO_4 , 92 %) с получением замещенного хинолина (**6**) (Схема 1.5) [34].

Схема 1.5 – Синтез хинолинов реакцией Комба

К <u>синтезу Поварова</u> традиционно относят реакции взаимодействия ароматических иминов и алкенов [35]. В свою очередь, имины являются продуктом взаимодействия производных аминов и альдегидов, поэтому традиционно в синтезе хинолинов реакцией Поварова используют 3 реагента – производные анилина, альдегид и алкен. Например, группой авторов [36] синтезированы бромопроизводные арилхинолины с выходом 67-96 % под действием каликс[4]арена *n*-сульфоновой кислоты и микроволнового излучения (Схема 1.6).

Схема 1.6 – Синтез хинолинов реакцией Поварова

Кроме указанной каталитической системы, синтез Поварова был осуществлен под действием фторспиртов [37], I₂ [38], (CH₃)₃SiCl [39], Sc(OTf)₃[40], галогенидов меди [41], оксида графена [42].

Кроме алкенов, в реакции Поварова могут быть использованы алкины [43]. В качестве катализаторов в указанной модификации исследованы хлориды железа (III) [44, 45] и меди (I) [46], полиоксометаллат K_5 Co $W_{12}O_{40}$ · 3H₂O [47], Yb(OTf)₃ в ионной жидкости ([bmim]BF₄) [48], монтмориллонит K10 (Схема 1.7) [49].

Схема 1.7 – Синтез 2,4-дифенилхинолина из бензальдегида, анилина и фенилацетилена

Одним из наиболее удобных способов получения хинолинов является реакция анилинов с α,β-ненасыщенными альдегидами – *реакция Дебнера-Миллера* [50].

В качестве катализатора применяют кислоты (соляную, уксусную, борную), хлорид цинка (II) [51] (Схема 1.8). Для ускорения реакции и увеличения выхода продукта используют оксиды тория, ванадия или железа.

Схема 1.8 – Синтез хинолинов реакцией Дебнера-Миллера

Один из современных вариантов осуществления реакции Дебнера-Миллера предусматривает использование насыщенных альдегидов вместо ненасыщенных [52-54].

Например, в работе [55] описана реакция анилина с бутаналем на катализаторе AlCl₃ с участием перекиси водорода в качестве окислительного агента (Схема 1.9). Максимальный выход 2-пропил-3-этилхинолина (**10**) составил 82 %.

Схема 1.9 – Синтез хинолинов взаимодействием анилина с бутаналем

Активными и селективными в этой реакции показали себя рутениевые катализаторы (RuCl₂[PPh₃]) [56, 57] (200 °C, 6 ч, растворитель бензол). В их присутствии селективность по диалкилхинолину составила 79-85 %. При осуществлении процесса с использованием лантансодержащих катализаторов (LnCl₃ · xH₂O · y(iso-Bu₂Al)₂O) [58] соединение (**10**) получено с выходом до 82 % (80 °C, 4 ч, ДМФА). Аналогичный выход (82 %) достигнут в реакции, катализируемой родиевыми катализаторами ([Rh(норборнадиен)Cl]₂) [59] при 180 °C.

Указанной выше реакцией можно получить тетрагидрохинолинамины (**11**) (Схема 1.10), которые образуются с выходом до 42 % в присутствии ледяной уксусной кислоты [60].

Схема 1.10 – Синтез тетрагидрохинолинаминов

Использование кетонов и сложных эфиров в реакции с анилинами также приводит к образованию соответствующих производных хинолина.

Например, в работе [61] описан синтез хинолинов реакцией анилинов с алкилвинилкетонами на поверхности силикагеля, пропитанного хлоридом индия (III) (Схема 1.10). Максимальный выход (87 %) наблюдается при получении 4-метил-7-хлорхинолина (**12**).

Схема 1.11 - Синтез хинолинов из анилинов и алкилвинилкетонов

Синтез хинолинов взаимодействием анилина с одно- и многоатомными спиртами. Большинство традиционных методов синтеза хинолинов [62] основано на реакции циклоконденсации анилина или его производных с карбонильными соединениями (альдегидами или кетонами). Нестабильность и летучесть карбонильных соединений создают сложности при их хранении и использовании. Поэтому в последние годы возрос интерес к реакциям получения хинолинов, в которых вместо альдегидов/кетонов используют доступные, дешевые и стабильные спирты, производимые не только из нефтехимического, но и из возобновляемого сырья, например, путем ферментации биомассы (кукуруза, сахарный тростник и целлюлоза) [63].

К наиболее известному традиционному способу получения хинолинов с использованием спиртов относится *реакция Скраупа* – взаимодействие анилина или его производных с глицерином в присутствии кислотного катализатора (Схема 1.12).

Схема 1.12 - Синтез хинолинов методом Скраупа

В настоящее время интерес к этой реакции возрос, что обусловлено получением избытка глицерина в качестве побочного продукта при синтезе биодизельного топлива [64].

В качестве гомогенных катализаторов реакции Скраупа используются кислоты H_2SO_4 [65], CH_3COOH [66], ионные жидкости [67], As_2O_5 [68]. В традиционном синтезе Скраупа требуется окислитель, в качестве которого используют нитробензол, *м*-нитробензолсульфонат натрия, I_2 [69]. Выход хинолина (**13**) варьируется от 18 [66] до 89 % [70]. Реакцию традиционно осуществляют при температуре 100-200 °C в условиях перемешивания.

Схема синтеза хинолина (13) методом Скраупа включает в себя следующие стадии (Схема 1.13):

1) дегидратация глицерина в акролеин (реакция А);

2) реакция циклоконденсации с образованием 1,2-дигидрохинолина (реакция В);

3) окисление 1,2-дигидрохинолина с получением хинолина (реакция С) [23].

Таким образом, глицерин в реакции Скраупа выполняет роль прекурсора реакционноспособного акролеина, с которым взаимодействует анилин.

В качестве гетерогенных катализаторов в реакции Скраупа изучены оксиды металлов (CuO-ZnO и NiO-MoO₃) на носителе (Al₂O₃), которые позволили получить хинолин (**13**) с выходом 65 % [71]. С более высоким выходом получены замещенные хинолины (79-94 %) в присутствии мезопористого материала KIT-6 с привитой вольфрамовой кислотой [70].

Кроме глицерина, применение других многоатомных спиртов в синтезе хинолинов практически не исследовано. *Конденсацией анилина с 1,2-диолами* в присутствии оксидных катализаторов [74-78] преимущественно получают индолы [77, 78].

Схема 1.13 – Схема синтеза хинолина (16) методом Скраупа

Синтез алкилхинолинов реакцией анилина с 1,2-диолами упоминается двух работах. Авторами [79] разработан способ получения только В алкилхинолинов в присутствии гексагидрата хлорида железа FeCl₃·6H₂O и четыреххлористого углерода CCl₄. Выход алкилхинолинов достигает 97 % (2метилинолин). При использовании кислой глины К-10 исследователям [80] удалось синтезировать 2-метил-8-этилхинолин (14) из 2-этиланилина и этандиола с выходом 41 % (Схема 1.14). Как и в случае реакции с глицерином, хинолин (14) образуется результате циклоконденсации производного В анилина С ацетальдегидом, полученным при дегидратации спирта.

Схема 1.14 - Синтез 2-метил-8-этилхинолина

В случае синтеза хинолинов с вовлечением одноатомных спиртов для превращения последних в альдегиды требуются дегидрирующие агенты. В

качестве такого соединения исследователями [81] предложен четыреххлористый углерод совместно с никельсодержащим катализатором Ni(OAc)₂·4H₂O-Et₃N (Схема 1.15, реакция А). Использование указанной системы позволило получить 2,3-замещенные хинолины с выходами хинолинов (**15а-с**) 68-86 % (Схема 1.15, реакция В).

Схема 1.15 – Синтез хинолинов реакцией анилина с алифатическими спиртами

Другие исследователи предложили синтезировать альдегиды ИЗ одноатомных спиртов in situ с использованием окислителей, например, кислорода воздуха [82]. Его применение совместно С каталитической системой Pd(OAc)₂/2,4,6-коллидин/CF₃CO₂H в реакции анилина с этанолом позволило получить хинолины (**15а-f**) с выходом до 93 % (Схема 1.16).

Схема 1.16 – Синтез алкилхинолинов реакцией анилина со спиртами

Кроме кислорода воздуха, в качестве окислителей изучены неорганические соединения. Например, авторами [83, 84] осуществлен синтез алкилзамещенных хинолинов (**15а-d**) под действием железосодержащих катализаторов.

Превращение алифатических спиртов (C_2-C_5) в альдегиды проводили фотоиндуцированным окислением в присутствии NaOCl. Синтез осуществляли в 2 этапа – превращение спирта в альдегид облучением в течение 4 часов, затем взаимодействие альдегида с анилином в течение 5 минут. Выход замещенных алкилхинолинов при проведении реакции в присутствии катализатора FeCl₃· 6H₂O составил 11-94 %.

Использование гетерогенного катализатора $Fe(CrO_2)_2$ позволило осуществить фотоактивированное окисление алифатических спиртов (C₂-C₅) водным раствором H_2O_2 до соответствующих альдегидов (9 ч) [85]. После добавления к реакционной смеси анилина за 5 мин реакции получены хинолины с выходами 91-97 %.

2-Алкилхинолины (**16**) получены с выходом до 59 % в работе [86] под действием диоксида титана TiO₂ (Схема 1.17). При введении в диоксид титана золота (Au/TiO₂) авторам [87] удалось увеличить выход хинолинов до 88 % (6этоксихинальдин).

Схема 1.17 – Синтез 2,3-алкилхинолинов

1.3 Цеолиты в синтезе хинолинов

Традиционные методы получения хинолинов имеют ряд недостатков: использование кислотных катализаторов, зачастую в больших количествах; проведение реакций в среде органических растворителей; использование дорогих или малодоступных реагентов; сложное отделение продуктов от катализаторов. Большой интерес представляют разработки, выполненные с использованием гетерогенных катализаторов. Такие способы получения хинолинов обладают многочисленными достоинствами – непрерывное осуществление процесса, упрощенное извлечение продукта, регенерируемость катализатора и отсутствие Одними наиболее гетерогенных солевых отходов. ИЗ перспективных катализаторов являются цеолиты. Это синтетические ИЛИ природные кристаллические алюмосиликаты [88], которые обладают такими уникальными свойствами, как наличие сильных кислотных центров, определенная структура каркаса и регулярная геометрия каналов и полостей, термическая стабильность и прочие, благодаря которым они активно используются в катализе.

В мировой литературе описаны способы синтеза хинолинов в присутствии каталитических систем на основе цеолитов FAU, MFI, BEA и MOR, которые отличаются характеристиками пористой структуры и кислотностью [89-101]. В зависимости от используемых реагентов – карбонильных соединений или их прекурсоров (спирты, карбоксильные соединения, ацетали и другие) – исследователями установлено различное влияние физико-химических характеристик цеолитных катализаторов на выход хинолинов.

1.3.1 Синтез хинолинов с участием карбонильных соединений

Известно, что цеолиты структурных типов FAU, MFI, BEA и MOR обладают различной геометрией каналов/полостей и диаметром пор (0,51 – 0,74 нм) [102], близким к размеру молекулы хинолина (0,67 х 0,51 нм), поэтому

топология их каркаса будет оказывать существенное влияние на маршруты протекания целевых и побочных реакций.

Например, авторами установлено [91], что в реакции анилина с масляным альдегидом (Схема 1.18) в присутствии широкопористых цеолитов H-Y и H-Beta образуется 2-пропил-3-этилхинолин (**15c**) с выходами 25 и 33 % соответственно. Среднепористый цеолит H-ZSM-5 в указанной реакции в исследованных условиях активность не проявил.

Схема 1.18 – Синтез хинолинов реакцией анилина с бутаналем

В другой работе [103], выполненной группой авторов из лаборатории приготовления катализаторов ИНК УФИЦ РАН, показано преимущество широкопористых цеолитов над среднепористым для реакции анилина с пропионовым альдегидом. Установлено, что конверсия анилина на цеолитах H-MOR, H-Beta, H-Y и H-ZSM-5 была высокой (90-99 %), селективность по 3-метил-2-этилхинолину (15b) уменьшается в ряду: H-Y (64 %) > H-Beta (46 %) > H-ZSM-5 (39 %) > H-MOR (32 %). Полученные зависимости авторы обуславливают разницей в структурных характеристиках кристаллической решетки цеолитов: «цеолит H-MOR имеет одномерную канальную структуру, а не 3-мерную, как остальные исследованные катализаторы. Эта особенность цеолита H-MOR, также как и наличие узких извилистых каналов в решетке цеолита H-ZSM-5, может привести к затруднению диффузии молекул реагентов и продуктов реакции внутри цеолитного кристаллического каркаса» [103].

При вовлечении в реакцию более объемных молекул – 2-аминоацетофенона и этилацетоацетата (реакция Фридлендера) [100] – наблюдается следующая зависимость выхода хинолина (17) от типа цеолита (Схема 1.19, реакция 1): H-BEA (73 %) > H-FAU (59 %) > H-MFI (17 %). Кроме целевой реакции, образец H-

MFI катализирует гидратацию этилацетоацетата, продукты которой в результате дают гидроксихинолин (**18**) с выходом 18 % (Схема 1.19, реакция 2). На цеолите H-MOR протекает преимущественно реакция 2 (выход соединения **18** – 46 %).

Схема 1.19 – Синтез производных хинолина реакцией Фридлендера

В работе других авторов [97] применение цеолита H-ZSM-5 в реакции Фридлендера обеспечило выход соединения (17) на уровне 81 %.

Влияние пористой структуры цеолитов на выход хинолинов изучено в работе [98]. Авторы сравнили каталитические свойства цеолитов ZSM-5 с микропористой и микро-, мезо-, макропористой структурами в синтезе хинолинов (**18,19**) реакцией 2-аминоацетофенона с дикетонами (Схема 1.20).

в присутствии цеолитов H-ZSM-5

Показано, что создание вторичной пористости в структуре цеолита приводит к увеличению конверсии 2-аминоацетофенона от 45 до 55 %, росту селективности образования продукта (**18**) от 88 до 98 % и стабильности работы катализатора.

Аналогичные зависимости получены авторами [103] для реакции анилина с пропионовым альдегидом в присутствии цеолитов Н-Ү с микропористой и микро-, мезо-, макропористой структурами.

Влияние кислотности цеолитов на их каталитические свойства в реакции анилина с пропионовым альдегидом показано на примере образцов гранулированного цеолита Y с иерархической пористой структурой с разной степенью декатионирования [103]. Выявлено, что с увеличением степенью обмена ионов Na⁺ на H⁺ конверсия анилина практически не меняется (93-95 %), а селективность образования 3-метил-2-этилхинолина (**15b**) увеличивается от 25 до 59 %. Таким образом, для синтеза хинолинов указанной реакцией требуется катализатор с высокой концентрацией кислотных центров.

1.3.2 Синтез хинолинов с участием прекурсоров карбонильных соединений

В работе [99], выполненной в лаборатории приготовления катализаторов ИНК УФИЦ РАН, показано *влияние топологии каркаса* на примере цеолитов Y, ZSM-5, Beta, MOR на конверсию анилина и селективность образования хинолинов в реакции Скраупа (Схема 1.21).

Схема 1.21 – Синтез хинолинов реакцией Скраупа на цеолитах

Установлено [99], что максимальную активность показывает цеолит H-ZSM-5, в присутствии которого конверсия анилина составляет 100 % за 2 ч проведения реакции.

Высокую начальную конверсию анилина (88 %) наблюдали на цеолите H-Beta [99]. Образцы цеолитов H-MOR и H-Y были менее активны (71 и 68 % соответственно). Выход хинолинов в реакции Скраупа уменьшается в ряду: H-ZSM-5 (74 %) > H-Beta (65 %) > H-MOR (41 %) > H-Y(40 %).

Авторы предположили [99], что низкая активность морденита объясняется структурными особенностями его кристаллической решетки, образованной одномерной системой каналов, а не трехмерной, как у остальных цеолитов. В одномерной канальной структуре диффузия реагентов и продуктов затруднена и блокировка каналов может произойти гораздо быстрее, чем в трехмерной системе. Кроме того, одномерная канальная структура морденита способствует образованию на нем только хинолина (13), в то время как на остальных цеолитных катализаторах образуется как хинолин (13), так и метилхинолины (15а,g).

Авторы работы [96] вовлекли в реакцию с анилином молочную кислоту (Схема 1.22). Основные продукты реакции – 2- и 4-метилхинолины (**15а,g**) и хинолин (**13**). При полной конверсии молочной кислоты суммарный выход хинолинов снижается в ряду: H-Beta (68 %) > H-ZSM-5 (44 %) > H-Y (14 %). Низкий выход хинолинов на цеолите H-Y авторы объясняют наличием крупных α-полостей размером 1,2 нм, в которых преобладают процессы глубокой конденсации реакционноспособных интермедиатов.

Схема 1.22 – Синтез хинолинов взаимодействием анилина и молочной кислоты

¹ Условия реакции: анилин : молочная кислота (40 %-ый водный раствор) = 1 : 1, 440 °С, 0,5 ч⁻¹

Более низкий выход хинолинов на цеолите H-ZSM-5 обусловлен, повидимому, особенностями структуры цеолита H-ZSM-5 (диаметр входных окон, форма каналов), которые создают пространственные ограничения для образования объемных молекул хинолинов.

Влияние пористой структуры цеолитов на выход хинолинов в реакциях с участием прекурсоров карбонильных соединений до начала нашей работы практически не изучалось. В единственной работе [101] показано, что при получении хинолинов методом Скраупа увеличение доли мезопор в цеолите H-Beta от 62,5 % до 78,4 % после десилилирования приводит к незначительному увеличению выхода хинолинов от 50,6 до 55,6 %². Поскольку исходный цеолит обладал значительным объемом мезопор, а изменение выхода хинолинов при постобработке катализатора происходило в пределах погрешности, нельзя однозначно сказать, что к этому привело именно создание дополнительных мезопор.

Известно, что концентрация, сила и природа активных центров оказывают значительное влияние на конверсию реагентов и селективность взаимодействии образования хинолинов при прекурсоров карбонильных соединений (преимущественно спиртов) с анилинами. Согласно информации, приведенной в разделе 1.2, в указанных реакциях на первой стадии происходит превращение прекурсоров в реакционноспособные карбонильные соединения (преимущественно альдегиды), при этом протекают реакции гидролиза, дегидратации, дегидрирования (Схема 1.30, реакции A-D). Далее альдегиды при взаимодействии с анилином дают целевые хинолины. Но, в зависимости от типа активных центров, их силы и концентрации в катализаторе, могут протекать как вышеописанные целевые реакции, так и побочные, приводящие к индолам (Схема 1.23, реакция F) или олефинам (Схема 1.23, реакция E).

² Условия реакции: 470 °С, глицерин : анилин = 4 : 1 моль/моль, 20 %-й раствор глицерина в воде, 2 ч

Схема 1.23 – Синтез хинолинов с участием прекурсоров карбонильных соединений на цеолитах

В большинстве информационных источников влияние кислотности цеолитов на их активность и селективность изучено на примере реакции Скраупа (Схема 1.23, реакция В) или ее модификаций, где используются прекурсоры акролеина, в присутствии цеолита H-Beta.

Так, в работе [101] синтез хинолинов (хинолин 13, 2-,4-метилхинолины 15а,g) осуществляли реакцией анилина с глицерином³ в присутствии цеолита H-Beta, модифицированного никелем с помощью ионного обмена. Введение Ni в катализатор привело к значительному увеличению концентрации кислотных центров (от 1,02 до 1,32 ммоль $\cdot r^{-1}$). Авторы указывают, что катионы Ni блокируют сильные кислотные центры Бренстеда (БКЦ) и образуют кислотные центры Льюиса (ЛКЦ), а также слабые БКЦ при координации никеля с молекулами воды.

По мнению исследователей, БКЦ (слабые / умеренные) способствуют дегидратации глицерина в акролеин (Схема 1.23, реакция В), тогда как сильные БКЦ легко приводят к полимеризации акролеина. ЛКЦ могут катализировать дегидратацию глицерина с образованием гидроксиацетона, взаимодействие которого с анилином приводит к образованию 3-метилиндола (Схема 1.23,

³ Условия реакции: 470 °C, анилин : глицерин (20 % мас. водный раствор) = 1 : 4 моль/моль, 0,13 ч⁻¹(анилин), 2 ч

реакция F). Но поскольку модифицирование катализатора никелем привело к увеличению выхода хинолинов (13, 15а, g) от 50,6 до 61,2 %, авторы полагают, что ЛКЦ способствуют их образованию благодаря синергетическому эффекту с БКЦ.

При взаимодействии анилина с глицерином в других условиях реакции⁴ авторам [104] удалось получить 3-метилиндол с выходом 40%. Синтез осуществляли в присутствии цеолита У в Na-форме, модифицированного медью с помощью метода пропитки. Исследователи указывают, что приготовленный катализатор обладает активностью в синтезе 3-метилиндола благодаря наличию большей доли слабых кислотных центров (~68%).

Авторами [89] предложена модификация реакции Скраупа, а именно использование в синтезе хинолина (13) диэтилацеталя акролеина, гидролиз которого в присутствии катализатора дает акролеин и этанол (Схема 1.23, реакция А). Реакцию осуществляли в присутствии цеолита Zn-H-Beta, полученного ионным обменом с исходным цеолитом H-Beta. При обмене катионов H^+ на Zn^{2+} в цеолите снизилось суммарное количество кислотных центров (от 1,58 до 1,29 ммоль/г), в т.ч. сильных (от 0,35 до 0,07 ммоль/г). Кроме катионов цинка, образец Zn-H-Beta, по данным рентгеновской фотоэлектронной спектроскопии, содержит кластеры ZnO, которые проявляют активность в реакциях дегидрирования.

Введение в цеолит цинка позволило увеличить выход хинолина (13) от 28 до 51 %⁵. Модифицирование другими металлами привело к более низкому выходу хинолина, который снижается в ряду: Zn (51 %) > Fe (48 %) > Cu (45 %) > Mn (41 %) > Ni (40 %) > Cr (38 %). По мнению авторов, более высокая эффективность цеолита Zn-H-Beta по сравнению с исходным объясняется: 1) снижением концентрации сильных кислотных центров, которые могут катализировать побочные реакции, такие как полимеризация акролеина; 2) ускорением реакции дегидрирования гидрохинолинов в хинолин (13) под действием ZnO (пункт 1.2.2, Схема 1.13, реакция С).

⁴ Условия реакции: 220 °C, анилин : глицерин = 3 : 1 моль/моль, 0,4 ч⁻¹, H₂, 2 ч ⁵ Условия реакции: 440 °C, анилин : ацеталь = 3 : 1 моль/моль, 1 ч⁻¹(сырья), 1 ч⁻¹(вода), 1 ч

В другой своей работе [94] авторы показывают, что введение металлов методом пропитки в цеолит Веta промотирует реакцию гидролиза ацеталя до акролеина. На исходном цеолите конверсия диэтилацеталя акролеина составляла 25,4 %, выход хинолина (13) – 8,2 %⁶. В присутствии металлсодержащих образцов Me/Beta (Me = Zn, Fe, Cu, Mn, Ni) конверсия ацеталя увеличилась до 77,6-100 % с выходами хинолина (13) Mn (28,6 %) < Cu (35,4 %) < Zn (52,8 %) < Fe (64,8 %) < Ni (83,1 %).

В качестве прекурсоров насыщенных альдегидов в реакциях с анилином (Схема 1.23, реакции С, D) изучены молочная кислота [96] и одноатомные спирты [90].

Реакция анилина с молочной кислотой (Схема 1.23, реакция С) [96], в ходе которой кислота превращается в ацетальдегид, протекает с образованием 2-, 4метилхинолинов (**15а,g**) с примесью хинолина **13**⁷. В присутствии цеолита H-Beta указанные хинолины синтезированы с высоким суммарным выходом (67,6%) и количественной конверсией кислоты. Соотношение 2- и 4-изомеров (**15а,g**) составляет 2 : 1. В присутствии образца Fe/H-Beta, полученного пропиткой цеолита H-Beta, выход хинолинов снижается (57,3%), но конверсия молочной кислоты остается количественной, а соотношение 2- и 4-метилхинолинов (**15а,g**) становится эквимольным. Авторы указывают, что образец H-Beta, благодаря высокой концентрации сильных кислотных центров Бренстеда, позволяет синтезировать селективно 2- и 4-метилхинолины (**15а,g**). Введение в цеолит железа приводит к увеличению Льюисовской кислотности, что позволяет более селективно получать 4-метилхинолин (**15g**).

Рассмотренные выше реакции включают стадии гидратации/дегидратации прекурсора карбонильных соединений, для протекания которых необходимы кислотные катализаторы. В случае синтеза хинолинов с вовлечением одноатомных спиртов для превращения последних в альдегиды требуются дегидрирующие центры. Такие реакции осуществляются через стратегию

⁶ Условия реакции: анилин : диэтилацеталь акролеина = 4 : 1 моль/моль, 5 мин, МW

⁷ Условия реакции: анилин : молочная кислота (40 %-й водный раствор) = 1: 1, 440 °C, 0,5 ч⁻¹

безакцепторного дегидрирования (acceptorless dehydrogenation coupling reactions), которая весьма активно используется в настоящее время для получения Nгетероциклов и других продуктов (Схема 1.24) [105-108]. В синтезе хинолинов в присутствии цеолитов ее использовали только в работе [90].

Схема 1.24 – Синтез хинолинов с использованием стратегии безакцепторного дегидрирования

Авторами [90] изучено влияние природы кислотных центров цеолитов на выход хинолинов в реакции анилина с *н*-пропанолом (Схема 1.23, реакция D). В качестве катализатора авторы использовали ультрастабилизированный цеолит Y (USY). Сначала его подвергали ионному обмену в растворе Ni(NO₃)₂ (Ni-USY), затем пропитке хлоридом цинка (ZnCl₂/Ni-USY). Согласно данным TПД аммиака, модифицирование цеолита привело к увеличению концентрации слабых кислотных центров и снижению концентрации сильных, суммарная концентрация кислотных центров уменьшилась от 4,00 до 3,52 ммоль/г. Введение в цеолит USY соединений металлов привело к увеличению соотношения ЛКЦ / БКЦ от 0,79 (USY) до 1,03 (ZnCl₂/Ni-USY). Новые ЛКЦ представлены катионами Ni²⁺ и ионообменными частицами –O–Zn–Cl.

цеолита Установлено, что постобработки привели к повышению 28 53 %. суммарного хинолинов Среди выхода OT ДО хинолинов идентифицированы 3-метил-2-этилхинолин **15b** (основной продукт), 2,3диметилхинолин, 2-этилхинолин, 2-метилхинолин и др. При варьировании условий реакции⁸ удалось достичь суммарного выхода хинолинов 78,3 %. Авторами показано, что увеличение соотношения ЛКЦ / БКЦ способствует росту выхода хинолинов и ЛКЦ являются более предпочтительными для формирования хинолинового остова, чем БКЦ.

1.4 Заключение по главе 1

На основании литературных данных можно сделать вывод, что хинолины являются востребованными соединениями в фармацевтической, химической, электронной промышленности в качестве компонентов лекарственных препаратов, ингибиторов коррозии, агрохимикатов и других сферах.

Зарубежный промышленный способ получения хинолиновых оснований из каменноугольной смолы является высокозатратным и малоэффективным для малотоннажных производств, поэтому производство и технологии получения хинолинов в РФ на данный момент отсутствуют.

Способы получения синтетических хинолинов основаны на взаимодействии карбонильных соединений с ароматическими аминами, катализируемые кислотами или основаниями. Использование гомогенных катализаторов приводит к многостадийности процесса, трудности отделения продуктов от катализатора, появлению кислых стоков, а применение карбонильных соединений создает ряд сложностей при их хранении и использовании. Поэтому перспективными синтетическими методами получения хинолиновых оснований в настоящее время считаются синтезы с участием дешевых, доступных, стабильных спиртов, в том числе в присутствии цеолитов. На момент начала научно-исследовательской работы, по синтезу хинолинов реакцией анилинов со спиртами под действием цеолитов было известно следующее:

- требуются цеолиты с трехмерной канальной структурой;

⁸ Условия реакции: ZnCl₂/Ni-USY, анилин : н-пропанол = 1:2, 410 °C, H₂, 0,8 ч⁻¹

– при работе с прекурсорами акролеина (глицерин, ацетали акролеина) катализатор должен обладать преимущественно кислотными центрами Бренстеда слабой и средней силы, поскольку сильные БКЦ катализируют в большей степени побочные превращения непредельного альдегида. Слабые кислотные центры Льюиса проявляют активность в реакции синтеза 3-метилиндола, но, совместно с БКЦ, могут способствовать образованию хинолинов благодаря синергетическому эффекту;

– при использовании прекурсоров насыщенных альдегидов (например, молочной кислоты), образующих альдегиды при дегидратации, для получения хинолинов с высоким выходом необходим катализатор с сильными БКЦ;

– для образования хинолинов из прекурсоров, дающих насыщенные альдегиды при дегидрировании (одноатомные спирты), требуется высокое соотношение ЛКЦ/БКЦ.

Таким образом, в литературе было показано только влияние топологии цеолитного каркаса и частично силы и природы кислотных центров на выход хинолинов. Влияние пористой структуры почти не было изучено, хотя применение описанных в литературе традиционных цеолитов в синтезе быть затруднено блокировкой микропор объемными хинолинов может молекулами хинолинов, что приводит к быстрой дезактивации катализатора. Кроме того, микропористая структура может затруднять образование объемных молекул хинолинов. Поэтому основой для создания эффективных гетерогенных катализаторов синтеза хинолинов могут быть гранулированные цеолиты с иерархической пористой структурой.

В соответствии с изложенным, несовершенство зарубежных технологий получения хинолинов, отсутствие их производства в России, высокая потребность в указанных соединениях; небольшое количество информации об эффективных гетерогенных катализаторах получения хинолинов обуславливают актуальность и научную значимость работы.

ГЛАВА 2 ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦЕОЛИТОВ

В главе представлены физико-химические свойства следующих групп цеолитов: 1) высокодисперсных микропористых цеолитов H-ZSM-5 и H-Y; 2) гранулированных цеолитов H-ZSM-5_h с иерархической пористой структурой, синтезированных гидротермальной кристаллизацией из исходных гранул с различным содержанием микропористого цеолита ZSM-5 и аморфного алюмосиликата; 3) гранулированных цеолитов Y_h с иерархической пористой структурой в H- и Na-форме, модифицированных оксидами металлов.

2.1 Цеолиты H-ZSM-5

Физико-химические характеристики микропористого и иерархических цеолитов H-ZSM-5 приведены в таблице 2.1 [109].

Таблица 2.1 – Физико-химические харак	теристики цеолитов H-ZSM-5
1	1

Катализатор	X, %	β, %	$S_{ m E ext{$>T$}}, \ { m m}^2/{ m r}$	$V_{ m mukpo}, \ { m cm}^3/{ m \Gamma}$	$V_{ m meso}, \ { m cm}^3/{ m \Gamma}$	$V_{ m makpo}, \ { m cm}^3/{ m \Gamma}$	$V_{ m oбщ},{ m cm}^3/{ m r}$
H-ZSM-5	-	100	285	0,11	0,02	-	0,13
H-ZSM- $5_{h}(10)$	10	93	239	0,10	0,05	0,34	0,49
H-ZSM- $5_{h}(30)$	30	94	284	0,11	0,08	0,31	0,50
H-ZSM-5 _h	60	95	295	0,13	0,19	0,29	0,61
Х – массовое содержание цеолита в исходных гранулах;							
β – степень кристалличности;							
S _{БЭТ} – удельная поверхность по методу БЭТ;							
V _{микро} , V _{мезо} , V _{макро} и V _{общ} – объем микро-, мезо -, макро- и общий объем пор соответственно.							

На рисунке 2.1 приведены результаты исследования методом РФА кристаллической структуры образцов H-ZSM-5, H-ZSM-5_h(10), H-ZSM-5_h(30) и H-ZSM-5_h. Видно, что на всех дифрактограммах присутствуют рефлексы, характерные только для цеолитов типа MFI (ICDD-PDF№ 00-037-0359) [110].
Степени кристалличности образцов H-ZSM-5, H-ZSM- $5_h(10)$, H-ZSM- $5_h(30)$ и H-ZSM- 5_h выше 93 %.

Рисунок 2.1 – Дифрактограммы образцов H-ZSM-5

По данным рентгенофлуоресцентного анализа атомное отношение Si/Al во всех иерархических образцах близко к 12, микропористый цеолит H-ZSM-5 характеризуется атомным соотношением Si/Al = 15.

На рисунке 2.2 представлены изотермы адсорбции-десорбции азота и распределение пор по размеру для образцов H-ZSM-5 и H-ZSM-5_h. Показано, что цеолит H-ZSM-5 обладает изотермой I типа, которая характерна для микропористых материалов (Рисунок 2.2, А). Для иерархического цеолита H-ZSM-5_h получена изотерма IV типа с петлей гистерезиса типа H1 по классификации ИЮПАК [111] (Рисунок 2.2, Б) с подъемом при давлении P/P_o ~ 1, которая характерна для мезо-макропористых материалов. Следует отметить, что для иерархического образца также характерен резкий подъем при низких давлениях, что говорит о наличии микропор. Размеры мезопор у образца ZSM-5_h, рассчитанные по методу BJH, изменяются от 2 до 14 нм.

Рисунок 2.2 – Изотермы адсорбции-десорбции азота и распределение пор по размеру для образцов: (А) H-ZSM-5 и (Б) H-ZSM-5_h

Согласно данным низкотемпературной адсорбции-десорбции азота и ртутной порометрии, микропористый цеолит характеризуется наличием небольшой доли мезопор (15 %) (Таблица 2.1). При переходе от образца H-ZSM-5_h(10) к образцу H-ZSM-5_h удельная поверхность увеличивается с 239 до 295 м²/г, объем микропор – с 0,10 до 0,13 см³/г, мезопор – с 0,05 до 0,19 см³/г, в то же время объем макропор уменьшается с 0,34 до 0,29 см³/г.

Согласно данным СЭМ, микропористый цеолит H-ZSM-5 (Рисунок 2.3, A) состоит из кристаллов в форме параллелепипеда с длиной большей стороны от 70 до 100 нм. Приготовленные образцы (Рисунок 2.3, Б, В, Г) представляют собой сростки исходных (70-100 нм) и образованных кристаллов цеолита ZSM-5 различной морфологии. Средние размеры кристаллов образцов H-ZSM-5_h(10), H-ZSM-5_h(30) и H-ZSM-5_h составляют 322, 201 и 83 нм, соответственно.

ИК-спектры адсорбированного пиридина на образцах H-ZSM-5, H-ZSM- $5_h(10)$, H-ZSM- $5_h(30)$ и H-ZSM- 5_h приведены на рисунке 2.4. В спектрах наблюдаются полосы поглощения в диапазоне 1455-1545 см⁻¹. Полосы поглощения при 1455 см⁻¹ принято относить к пиридину, адсорбированному на Льюисовских кислотных центрах (ЛКЦ), а полосы поглощения в области 1545 см⁻¹ – к протонированному пиридину (Бренстедовские кислотные центры, БКЦ).

Полосы поглощения при 1491 см⁻¹ появляются в результате взаимодействия пиридина со всеми центрами, в т.ч. при возникновении водородной связи [112].

Рисунок 2.3 – СЭМ-изображения образцов: (А) H-ZSM-5, (Б) H-ZSM-5_h(10), (В) H-ZSM-5_h(30) и (Г) H-ZSM-5_h

В таблице 2.2 приведены значения концентрации ЛКЦ и БКЦ. Иерархические цеолиты H-ZSM-5_h обладают близкой концентрацией ЛКЦ и БКЦ, их соотношение варьируется в пределах БКЦ/ЛКЦ = 2,6–2,9. Микропористый цеолит H-ZSM-5 характеризуется более низкой концентрацией БКЦ (примерно в 1,3 раза) и соотношением БКЦ/ЛКЦ = 2,0. Иерархические цеолиты H-ZSM-5_h обладают более высокой концентрацией «сильных» кислотных центров (пиридин, адсорбированный при 350 °C) обоих типов, чем их микропористый аналог.

Рисунок 2.4 – ИК-спектры адсорбированного пиридина для микропористого и иерархических образцов H-ZSM-5 (при 150 °C)

Таблица 2.2 – Концентрации Льюисовских (ЛКЦ) и Бренстедовских (БКЦ) кислотных центров по данным ИК-спектроскопии адсорбированного пиридина цеолитов ZSM-5

	Концентрация кислотных центров, мкмоль							
Образец		БКЦ	пирид	ЛКЦ			ЛКЦ⁄	
	150°C	250°C	350°C	150°C	250°C	350°C		
H-ZSM-5	297	250	177	145	92	71	2,0	
H-ZSM- $5_{h}(10)$	392	308	195	149	100	80	2,6	
H-ZSM- $5_{h}(30)$	396	292	197	139	98	78	2,9	
H-ZSM-5 _h	395	288	201	154	108	97	2,6	
*Отношение БКЦ/ЛКЦ рассчитано для 150 °С.								

40

2.2 Цеолиты Ү

2.2.1 Цеолиты Ү в Н-форме

Физико-химические характеристики цеолитов Y в H-форме приведены в таблице 2.3 [113].

Таблица 2.3 – Физико-химические характеристики цеолитов У в Н-форме

Катализатор	Si/Al	β, %	S _{бЭТ} , M ² /Γ	V _{микро} , см ³ /г	V _{мезо} , см ³ /г	V _{макро} , см ³ /г	V _{общ} , см ³ /г	
H-Y	2,5	100	609	0,30	0,03	-	0,33	
H-Y _h	H-Y _h 3,6 93 535 0,26 0,10 0,15 0,51							
β – степень кристалличности. $S_{\text{БЭТ}}$ – удельная поверхность по методу БЭТ.								
$V_{\text{микро}}, V_{\text{мезо}}, V_{\text{мак}}$	ро И $V_{ m oбщ}$ –	объем мик	хро- , мезо -	, макро-ио	бщий объен	м пор соотве	тственно.	

Ha дифрактограммах указанных образцов присутствую рефлексы, характерные для цеолитов У (ICDD-PDF№ 00-012-0228) [110]. Микропористый цеолит Н-Ү характеризуется близкой к 100 % степенью кристалличности. При образца H-Y_h приготовлении иерархического относительная степень кристалличности несколько уменьшается вследствие частичной аморфизации кристаллической решетки при термообработке после ионного обмена и составляет 93 %.

По данным рентгенофлуоресцентного анализа атомное отношение Si/Al микропористого цеолита составляет 2,5, иерархический цеолит $H-Y_h$ характеризуется атомным соотношением Si/Al = 3,6.

Рисунок 2.5 – Дифрактограммы образцов Н-Ү

На рисунке 2.6 представлены изотермы адсорбции-десорбции азота и распределение пор по размеру для образцов H-Y и H-Y_h. Показано, что цеолит H-Y обладает изотермой I типа (Рисунок 2.6, А). Для иерархического цеолита H-Y_h получена изотерма IV типа с небольшой петлей гистерезиса типа H1 по классификации ИЮПАК [111] (Рисунок 2.6, Б). Размеры мезопор у образца H-Y_h, рассчитанные по методу BJH, изменяются от 2 до 14 нм.

Рисунок 2.6 – Изотермы адсорбции-десорбции азота и распределение пор по размеру для образцов: (А) Н-Ү и (Б) Н-Ү_h

Согласно данным низкотемпературной адсорбции-десорбции азота и ртутной порометрии, микропористый цеолит Н-Ү характеризуется наличием небольшой доли мезопор (9%). Гранулированный цеолит Н-Ү_h имеет

иерархическую (микро-мезо-макро) пористую структуру. Суммарный объем мезои макропор в образцах H-Y_h составляет 49 % от общего объема пор (микропоры – 51%, мезопоры – 20 %, макропоры – 29 %).

Методом сканирующей электронной микроскопии (СЭМ) изучены форма и размеры кристаллов образцов микропористого и иерархического цеолитов H-Y и H-Y_h (Рисунок 2.7).

Рисунок 2.7 – Снимки СЭМ образцов цеолитов (А) H-Y; (Б) H-Y_h

Для микропористого цеолита H-Y характерны кристаллы с правильной кубической формой, их средний размер составляет около 1 мкм. В иерархическом образце H-Y_h присутствуют агломераты кристаллов различной морфологии. Кроме кристаллитов исходного цеолита H-Y, образец содержит нанокристаллы с размером от 15 до 100 нм.

ИК-спектры адсорбированного пиридина на микропористом (H-Y) и иерархическом (H-Y_h) цеолитах приведены на рисунке 2.8. Для цеолитов H-Y наблюдаются аналогичные полосы поглощения, как и для цеолитов H-ZSM-5 (Рисунок 2.4).

Рисунок 2.8 – ИК-спектры адсорбированного пиридина для микропористого и иерархического цеолитов H-Y (при 150 °C)

В таблице 2.4 приведены значения концентрации ЛКЦ и БКЦ. Микропористый и иерархический цеолиты H-Y характеризуются близкой концентрацией ЛКЦ и БКЦ, их соотношение варьируется в пределах БКЦ/ЛКЦ = 2,0 - 2,2. Цеолит H-Y_h обладает в 1,2 раза большей концентрацией сильных БКЦ, его микропористый аналог – в 1,2 раза большей концентрацией сильных ЛКЦ.

Таблица 2.4 – Концентрации ЛКЦ и БКЦ цеолитов Н-Ү по данным ИКспектроскопии адсорбированного пиридина

0.7	К)ЛЬ						
Образец		БКЦ	r ′		БКЦ/ЛКЦ*			
	150°C	250°C	350°C	150°C	250°C	350°C		
H-Y	651	578	365	321	191	180	2,0	
H-Y _h	682	596	422	311	166	149	2,2	
*Отношение БКЦ/ЛКЦ рассчитано для 150 °С.								

44

2.2.2 Модифицированные иерархические цеолиты Na-Y_h

Физико-химические свойства цеолитов Na-Y_h, ZnO/Na-Y_h, NiO/Na-Y_h, $Co_3O_4/Na-Y_h$, CuO/Na-Y_h представлены в таблице 2.5.

Катализатор	Массовая доля оксида, %	$S_{ m byt}, M^2/\Gamma$	$V_{\text{микро}},$ cm $^3/\Gamma$	$V_{\text{meso}},$ cm $^3/\Gamma$	$V_{ m макро}, \ { m cm}^3/{ m \Gamma}$	V _{общ} , см ³ /г			
Na-Y _h	-	627	0,30	0,05	0,15	0,50			
NiO/Na-Y _h	2,9	586	0,28	0,05	0,16	0,49			
Co ₃ O ₄ /Na-Y _h	3,1	582	0,28	0,04	0,16	0,48			
CuO/Na-Y _h	2,9	574	0,28	0,05	0,15	0,48			
ZnO/Na-Y _h	2,9	553	0,27	0,05	0,16	0,48			
β – степень кристалл	β – степень кристалличности.								
$S_{\text{БЭТ}}$ – удельная поверхность по методу БЭТ.									
$V_{ m микро}$, $V_{ m Meso}$, $V_{ m makpo}$ и	V _{общ} – объем микро-,	мезо - , м	акро- и обш	ий объем	пор, соответ	гственно			

Таблица 2.5 – Физико-химические характеристики цеолитов Na-Y_h

Согласно данным РФА (Рисунок 2.6), для цеолита Na-Y_h и модифицированных образцов характерна степень кристалличности, близкая к 100 %. Для всех металлсодержащих образцов наблюдаются основные сигналы, характерные для фазы цеолита Y. Отсутствие сигналов, характерных для фаз оксидов, может быть связано с их низким содержанием и высокой дисперсией [114].

По данным низкотемпературной адсорбции-десорбции азота пористая структура исходного цеолита Na-Y_h сформирована преимущественно из микро- и макропор (микропоры – 60 %, мезопоры – 10 %, макропоры – 30 %). Удельная поверхность образца Na-Y_h по БЭТ составляет 627 м²/г, при введении оксидов металлов в образец Na-Y_h удельная площадь поверхности модифицированных образцов снижается. Наблюдается уменьшение объема микропор и общего объема пор, что обусловлено, по-видимому, частичной блокировкой пор.

Рисунок 2.9 – Дифрактограммы образцов: $1-Na-Y_h,\,2-NiO/Na-Y_h,\,3-CuO/Na-Y_h,\,\,4-ZnO/Na-Y_h,\\5-Co_3O_4/Na-Y_h$

Состояние нанесенных металлов исследовали с помощью метода спектрофотометрии в УФ и видимой областях (Рисунок 2.10). На всех спектрах присутствуют полосы поглощения в области 250-350 нм (УФ), которые связаны с переносом заряда О²⁻→Меⁿ⁺ (лиганд-металл) в оксидах [115, с. 1041]. Полосы поглощения в видимой области спектра (380-800 нм): 380, 427 и ~725 нм (NiO/Na-Y_b) [116]; 400-500 и 600-800 нм (Со₃O₄/Na-Y_b) [117, 118]; 400-500 и 600-800 нм (CuO/Na-Y_h) [119] обусловлены преимущественно электронными d-d переходами в металлах [115, с. 1041]. Для образца Со₃O₄/Na-Y_h указанные полосы свидетельствуют также о переносе заряда лиганд-металл (O²⁻→Co²⁺, O²⁻→ Co³⁺) и металл-металл (Co²⁺⁻→ Co³⁺) [120], что подтверждает образование Co₃O₄ на поверхности цеолитов. Таким образом, нанесенные частицы на цеолитный носитель (Na-Y_h) действительно обладают природой оксидов.

Рисунок 2.10 – Спектры поглощения образцов цеолита Na-Y_h в УФ и видимой областях

Исследование поверхности модифицированных оксидами металлов цеолитов Na-Y_h методом ИК-спектроскопии адсорбированного пиридина (Рисунок 2.11, Таблица 2.6) показало, что исходный цеолит Na-Y_h и модифицированные образцы обладают низкой концентрацией БКЦ (6-14 мкмоль пиридина· Γ^{-1}) преимущественно слабой силы и высокой концентрацией ЛКЦ (до 569 мкмоль пиридина· Γ^{-1}).

При введении в цеолит Na-Y_h оксидов никеля и кобальта концентрация ЛКЦ незначительно увеличивается, при модифицировании оксидами меди и цинка – уменьшается в 1,1–1,8 раз.

Рисунок 2.11 – ИК-спектры адсорбированного пиридина для модифицированных оксидами металлов цеолитов Na-Y_h (при 150 °C)

Таблица 2.6 – Концентрации ЛКЦ и БКЦ модифицированных цеолитов Na-Y_h по данным ИК-спектроскопии адсорбированного пиридина

	Кон	Концентрация кислотных центров, мкмоль							
Образец	БКЦ			Lina. I	БКЦ *				
	150°C	250°C	350°C	150°C	250°C	350°C			
Na-Y _h	9	0	0	548	22	9	60,9		
CoO/Na-Y _h	6	0	0	555	14	0	92,5		
NiO/Na-Y _h	7	0	0	569	21	11	81,3		
CuO/Na-Y _h	14	0	0	479	78	31	34,2		
ZnO/Na-Y _h	14	5	0	300	32	6	21,4		
*Отношение ЛКЦ / БКЦ рассчитано для 150 °С.									

2.3 Заключение по главе 2

В главе приведены результаты исследования физико-химических характеристик используемых в работе катализаторов (микропористых и иерархических цеолитов H-Y и H-ZSM-5, а также иерархических цеолитов Na-Y_h, модифицированных оксидами металлов).

Изучение физико-химических свойств катализаторов проводилось С использованием следующих методов: рентгенофлуоресцентный анализ, рентгенофазовый и рентгеноструктурный анализы, спектрофотометрия в УФ и видимой областях, низкотемпературная адсорбция-десорбция азота, ртутная ИК-спектроскопия порометрия, сканирующая электронная микроскопия, адсорбированного пиридина.

ГЛАВА З КАТАЛИТИЧЕСКИЕ СВОЙСТВА ЦЕОЛИТОВ

В данной главе приведены результаты, полученные при исследовании каталитических свойств систем на основе гранулированных цеолитов с иерархической пористой структурой (Y_h и ZSM-5_h) в синтезе хинолинов и других N-гетероциклов реакциями анилинов со спиртами.

Согласно информации, представленной в литературном обзоре (п.1.3.2), спирты на активных центрах катализатора превращаются *in situ* в альдегиды, которые далее, при взаимодействии с анилином, дают хинолины (Схема 3.1).

Схема 3.1 – Синтез хинолинов с участием спиртов

При этом из многоатомных спиртов альдегиды образуются в результате *дегидратации* на кислотных центрах цеолитов. Указанный тип реакций мы изучили на примере взаимодействий анилинов с глицерином, этандиолом или 1,2пропандиолом, результаты которых приведены в подразделах 3.1 и 3.2.

В подразделе 3.3 показаны результаты каталитических свойств цеолитов в реакциях анилина с одноатомными спиртами (этанол, *н*-пропанол), в случае которых для получения альдегидов требуются *дегидрирующие* центры.

3.1 Каталитические свойства цеолитов в реакции анилина с глицерином

Результаты, представленные в данном разделе, описаны в работе [109] и частично в [121, 122].

3.1.1 Влияние пористой структуры и морфологии кристаллов

Исследованы каталитические свойства образцов цеолита H-ZSM-5 с иерархической пористой структурой, отличающихся текстурными свойствами и размерами кристаллов (H-ZSM-5_h(10), H-ZSM-5_h(30) и H-ZSM-5_h).

Реакция анилина с глицерином в присутствии цеолитных катализаторов H-ZSM-5 идет с образованием хинолина (**1a**) и 2-, 4-метилхинолинов (**1b**, **c**) (Схема 3.2).

Схема 3.2 - Синтез хинолинов взаимодействием анилина с глицерином

Кроме целевых хинолинов (**1а-с**), в реакционной массе идентифицированы прекурсоры 2-метилхинолина (**1b**) – *cis-* и *trans-*2-метил-N-фенил-1,2,3,4тетрагидрохинолинамины (**2а,а`**), а также 3-метилиндол (**A**), алкиланилины (метиланилин **B**, этиланилин **C**), гидроксипропаналь (**D**) и прочие продукты конденсации карбонильных соединений, обозначенные далее как «другие».

Схему основных превращений реагентов и образования вышеуказанных соединений на цеолитах можно представить следующим образом (Схема 3.3).

Основной реакционный путь, ведущий к образованию хинолина (**1a**) – взаимодействие анилина с акролеином (**E**), образующегося при дегидратации глицерина [123]. Реакция идет согласно схеме, приведенной в пункте 1.2.2.

Метилхинолины (1b, c) образуются с участием ацетальдегида (F), который является термическим продуктом превращения гидроксипропаналя **(D)** и гидроксиацетона (G). Кроме ацетальдегида, при термическом разложении соединений (D) и (G) образуется формальдегид (H). 2-Метилхинолин (1b) формируется результате реакции анилина **(F)** В с ацетальдегидом С промежуточным образованием имина, который далее димеризуется и циклизуется с образованием ТГХА (2a, a`). Дальнейшее их превращение дает 2-метилхинолин (1b). 4-Метилхинолин (1c) может являться продуктом реакции анилина с кротоновым альдегидом (J), появляющимся в реакционной массе вследствие конденсации ацетальдегида (**F**).

Схема 3.3 – Маршруты образования продуктов реакции анилина с глицерином

Синтез скатола (**A**), согласно работе [124], происходит при взаимодействии анилина с 2-гидрокси-1-пропаналем (**K**), который образуется из гидроксиацетона (**G**). Реакция идет через формирование основания Шиффа и последующую внутримолекулярную циклоконденсацию.

Алкиланилины (**B**) и (**C**) образуются в результате линейной конденсации анилина с формальдегидом (**H**) или ацетальдегидом (**F**) с дальнейшим гидрированием.

В таблице 3.1 приведены результаты исследования каталитических свойств микропористого и 3-х образцов гранулированных иерархических цеолитов ZSM-5 в реакции анилина с глицерином.

Через 1 ч после начала эксперимента конверсия анилина как на микропористом цеолите, так и на образцах с иерархической пористой структурой составляет 91-95 %. Близкие значения конверсии на всех образцах объясняются, по-видимому, незначительной разницей в концентрации кислотных центров.

Таблица 3.1 – Синтез хинолинов в присутствии образцов цеолитов H-ZSM-5 с микро- и иерархической пористой структурой

	IC	(Селек	тивн	юсть, %	Π		
Катализатор	конверсия анилина, %	1a	1b, c	2a, a`	«Другие»	Доля хинолина в хинолиновой фракции, %	Выход 1 , %	
H-ZSM-5	92	44	18	16	22	71	57	
H-ZSM- $5_{h}(10)$	95	45	24	5	26	65	66	
H-ZSM- $5_{h}(30)$	93	68	12	4	16	85	74	
$H-ZSM-5_h$	$I-ZSM-5_h$ 91 81 5 2 12 94 78					78		
Условия реакции: анилин : глицерин = 1 : 2 моль/моль; водный раствор глицерина с массовой лолей 20 %, 450°C, объемная скорость полачи анилина 0.2 ч ⁻¹ , 1 ч.								

Суммарная селективность по хинолинам достигает 62 % на микропористом цеолите, а в ряду гранулированных иерархических цеолитов возрастает от образца H-ZSM-5_h(10) (69 %) к образцу H-ZSM-5_h, на котором достигает максимального значения (86 %). При этом в хинолиновой фракции, полученной на цеолите H-ZSM-5_h, доля хинолина также максимальна и составляет 94 %, в то время как на образцах H-ZSM-5_h(30) и H-ZSM-5_h(10) наблюдается уменьшение содержания хинолина до 85 % и 65 %, соответственно, и рост доли

метилхинолинов. Максимальное количество метилхинолинов – до 24 % – присутствует в хинолиновой фракции, полученной на цеолите H-ZSM-5_b(10).

Для понимания полученных результатов обратимся к схеме 3.3, согласно которой хинолин (1а) и метилхинолины (1b,c) образуются различными путями (хинолин – при взаимодействии анилина с акролеином E, метилхинолины – при взаимодействии анилина с ацетальдегидом F или с кротоновым альдегидом J). Все три упомянутых альдегида образуются в результате протекающей на кислотных центрах дегидратации глицерина. Первая стадия дегидратации дает гидроксипропаналь (D), который, как указано в [124], на слабых Бренстедовских кислотных центрах легко превращается в акролеин (E). Для превращения гидроксипропаналя (D) в ацетальдегид (F) и, далее, в кротоновый альдегид (J), нужны более «жесткие» условия, например, высокая температура.

Следовательно, если в продуктах превращения глицерина преобладает акролеин, то в конечных продуктах реакции должно быть больше хинолина (**1a**), тогда как повышенный выход ацетальдегида (**F**) и кротонового альдегида (**J**) приведет к росту в реакционной массе содержания метилхинолинов (**1b**, **c**). Исходя из этого, высокий выход метилхинолинов (**1b**, **c**) на образцах микропористого цеолита H-ZSM-5 и иерархического H-ZSM-5_h(10) объясняется повышенным содержанием в продуктах превращения глицерина указанных альдегидов (**F**, **J**). Наиболее селективно акролеин образуется из глицерина в присутствии цеолита H-ZSM-5_h, что и дает в результате высокий выход хинолина (**1a**).

Поскольку кислотные свойства образцов катализаторов близки, то причиной различий в селективности их действия, по-видимому, являются отличия в пористой структуре и размере кристаллов.

Исходя из размера каналов цеолита ZSM-5 (0,53 нм х 0,56 нм; 0,51 нм х 0,55 нм), очевидно, что размеры молекул хинолинов (1) (Приложение А, Таблица А.1, строки 3-5) близки к размерам каналов цеолита, а размер молекул ТГХА (2a, a`) (строка 14) превышает размер пор, что затрудняет или делает невозможным их формирование в каналах цеолита. Поэтому большинство целевых реакций

циклоконденсации, с нашей точки зрения, протекает в устьях пор цеолитов с участием структурных ОН-групп («сильных» кислотных центров). Поверхностные кислотные центры цеолитов немногочисленны и представлены, как правило, слабокислотными центрами. Поэтому на поверхностных кислотных центрах возможны наиболее легко протекающие реакции: линейная конденсация анилина с альдегидами, конденсация альдегидов.

Большая доступность «сильных» кислотных центров достигается за счет иерархической пористой структуры катализатора. Так, в ряду исследованных катализаторов максимальным объемом мезопор характеризуется цеолит H-ZSM-5_h, проявивший высокую активность и селективность в синтезе хинолинов. Микро-мезо-макропористая структура этого цеолита создает необходимые условия для протекания реакции Скраупа: хорошую доступность активных центров и возможности для формирования в порах объемных молекул промежуточных соединений и целевых хинолинов. Присутствующие в образце Н-ZSM-5_h нанокристаллы размером 15-100 нм обеспечивают большую доступность активных центров цеолита и снижение диффузионного пути реагентов и Последний продуктов. фактор, согласно литературным данным [125]. существенно влияет на селективность образования акролеина (Е) из глицерина, что обуславливает максимальный выход хинолина (1a) на цеолите H-ZSM-5_h. В более крупных кристаллах цеолитов H-ZSM-5_h(10) и H-ZSM-5_h(30) время пребывания глицерина в порах увеличивается и это приводит к протеканию его дальнейшего превращения в ацетальдегид (**F**) и, далее, в кротоновый альдегид (**J**), приводящие к метилхинолинам (1b, c).

Таким образом, высокая активность и селективность цеолита H-ZSM-5_h в синтезе хинолинов реакцией Скраупа обусловлена наличием в нем развитой микро-мезо-макропористой структуры, нанокристаллов размером 15-100 нм и наиболее высокой среди исследованных образцов концентрации кислотных центров.

55

3.1.2 Стабильность образцов

Как известно, основной недостаток цеолитных катализаторов, особенно в случае химических превращений объемных молекул – быстрая дезактивация в результате образования кокса, что значительно сокращает время работы катализатора [126].

На рисунке 3.1 показано изменение конверсии анилина во времени на изученных иерархических цеолитах H-ZSM-5_h. Цеолит H-ZSM-5_h демонстрирует высокую стабильность действия в течение 9 ч работы. Конверсия анилина практически не изменяется в течение этого времени и составляет 89-91%.

Условия реакции: анилин : глицерин = 1 : 2 моль/моль; водный раствор глицерина с массовой долей 20 %; 450 °C; объемная скорость подачи анилина 0,2 ч⁻¹

Рисунок 3.1 – Изменение конверсии анилина во времени реакции в присутствии иерархических образцов цеолита H-ZSM-5_h

Цеолиты H-ZSM- $5_h(10)$ и H-ZSM- $5_h(30)$ менее стабильны и теряют активность уже через 3-4 ч работы. Особенно быстро конверсия анилина падает на образце H-ZSM- $5_h(10)$, что свидетельствует о быстрой дезактивации данного образца.

На рисунке 3.2 показано изменение селективности образования продуктов реакции анилина с глицерином во времени в присутствии иерархических цеолитов H-ZSM-5_h.

В присутствии цеолита H-ZSM-5_h (Рисунок 3.2, А) состав продуктов начинает меняться после 6 ч работы: наблюдается небольшое снижение селективности образования хинолинов (**1а-с**), после 9 ч селективность снижается до 66 %. При этом в продуктах реакции постепенно возрастает содержание ТГХА (**2а,а**`), что косвенно говорит о частичной дезактивации сильных кислотных центров, необходимых для превращения ТГХА в хинолины [103, 127].

В присутствии цеолита H-ZSM-5_h(30) (Рисунок 3.2, Б) через 9 ч реакции селективность по хинолинам (**1а-с**) уменьшается более, чем в два раза, а основными продуктами реакции становятся ТГХА (**2а, а`**), олигомеры альдегидов и продукты их линейной конденсации с анилином. На образце H-ZSM-5_h(10) (Рисунок 3.2, В) суммарная селективность образования хинолинов снижается с 69 % (2 ч) до 9 % (6 ч), образуются побочные продукты – предшественники реакций ароматизации и уплотнения.

Рисунок 3.2 – Изменение селективности по продуктам реакции Скраупа во времени в присутствии цеолитов (А) H-ZSM-5_h, (Б) H-ZSM-5_h(30) и (В) H-ZSM-5_h(10)

Быстрая дезактивация образца H-ZSM-5_h(10) обусловлена, по-видимому, его текстурой. В пористой структуре катализатора присутствуют преимущественно микро- (20%) и макропоры (70%), доля мезопор невелика – 10%. Макропоры служат транспортными каналами, подводящими молекулы к кислотным центрам цеолитов, расположенными в каналах и устьях пор. Большой объем макропор в цеолите H-ZSM-5_h(10) приводит к созданию в порах повышенной концентрации реагентов, часть из которых не может вступить в акт химического взаимодействия с участием кислотных центров, на которых уже адсорбированы молекулы Это способствует протеканию исходных соединений И интермедиатов. термических реакций конденсации, олиго- и полимеризации, приводящих к образованию продуктов уплотнения, превращающихся далее в кокс. В результате микропоры, объем которых в цеолите H-ZSM-5_h(10) невелик (20 % от общего объема пор), оказываются быстро заблокированы продуктами указанных реакций. Уменьшение объема макропор с одновременным повышением объема мезопор $H-ZSM-5_{h}(30)$ положительно (образцы И $H-ZSM-5_h$) сказывается на продолжительности действия катализаторов. Пористая структура гранул цеолита H-ZSM-5_h наиболее благоприятна для проведения реакции Скраупа с получением высокого суммарного выхода хинолинов (до 78%) и селективного образования хинолина, содержание которого в хинолиновой фракции достигает 94 %.

Стабильность цеолита H-ZSM-5_h с регенерацией между циклами.

Поскольку цеолит H-ZSM-5_h проявил высокую активность, селективность и стабильность в синтезе хинолинов, представляло интерес изучить стабильность его действия после регенерации (Рисунок 3.3). Окислительную регенерацию между циклами проводили при температуре 550 °C в токе осушенного воздуха в течение 5 ч.

Установлено, что конверсия анилина практически не менялась в течение циклов и после регенерации катализатора, сохраняясь в пределах 87-91 %. Суммарная селективность по хинолинам снижалась в течение каждого цикла от 82-86 до 64-66 %, но после регенерации катализатор восстанавливал свою селективность по хинолинам. Таким образом, иерархический цеолит H-ZSM-5_h показал стабильную работу в течение 4-х циклов работы с регенерацией.

- � - 4-й цикл — × 3-й цикл - **∆** - 2-й цикл — **□**— 1-й цикл

Условия каждого цикла: анилин : глицерин = 1 : 3 моль/моль; водный раствор глицерина с массовой долей 20 %; 450 °C; 0,2 ч⁻¹(анилин)

Рисунок 3.3 – Стабильность цеолита H-ZSM-5_h за 4 цикла работы

На основании полученных результатов установлено, что реакция анилина с глицерином в присутствии гранулированных иерархических цеолитов H-ZSM-5_h с образованием преимущественно протекает хинолина И метилхинолинов. Суммарный выход хинолинов, доля хинолина в хинолиновой фракции на образцах иерархических цеолитов H-ZSM-5_h, стабильность работы катализаторов уменьшаются в следующем ряду: $H-ZSM-5_h > H-ZSM-5_h(30) > H-$ ZSM-5_h(10). Наиболее селективно хинолины образуются на цеолите H-ZSM-5_h – 86 %, при этом селективность по хинолину составляет 81 %. Каталитические свойства цеолита H-ZSM-5_h обусловлены наличием в нем развитой микро-мезомакропористой структуры, нанокристаллов размером 15-100 нм и наиболее высокой среди исследованных образцов концентрации кислотных центров.

Исследование стабильности действия катализаторов показало, что на гранулах иерархического цеолита H-ZSM-5_h конверсия анилина практически не

изменяется в течение 9 ч, в то время на образцах H-ZSM-5_h(30) и H-ZSM-5_h(10) активность снижается через 3-4 ч работы. Селективность образования хинолинов в присутствии цеолита H-ZSM-5_h практически не изменяется в течение 6 ч работы, а в присутствии образцов H-ZSM-5_h(30) и H-ZSM-5_h(10) – резко уменьшается через 4 работы, а основными продуктами реакции становятся олигомеры альдегидов и продукты их линейной конденсации с анилином. Повышению стабильности действия гранулированных цеолитов H-ZSM-5_h способствует оптимальное сочетание в структуре микро-, мезо- и макропор, в то время как увеличение доли макропор и уменьшение доли мезопор приводит к быстрой дезактивации катализаторов.

3.2 Каталитические свойства цеолитов в реакциях анилинов с 1,2-диолами

Отсутствие детальных работ [95] по реакции анилинов с диолами в присутствии цеолитов стимулировало наши исследования по разработке способов получения хинолинов с использованием двухатомных спиртов. Результаты данного раздела защищены патентами на изобретения РФ [128-131] и опубликованы в статье [132].

3.2.1 Влияние пористой структуры и топологии каркаса цеолитов

Нами подробно изучены каталитические свойства микропористых (H-Y и H-ZSM-5) и гранулированных иерархических (H-Y_h и H-ZSM-5_h) цеолитов в реакции анилина с 1,2-пропандиолом.

Кроме основного продукта реакции (3-метил-2-этилхинолина 1d) (Схема 3.4), в исследованных условиях образуются другие N-гетероциклы – прекурсор хинолина (1d) (3-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амин 2b), 2-метил-3-*н*-пропил-1Н-индол (3), 3,4-диметил-1-фенил-1Н-пиррол (4). Идентифицированы алкиланилины (N-пропиланилин (5), N,N-дипропиланилин), а также продукты превращения пропаналя (олигомеры линейного и циклического

строения, ароматические углеводороды) и его взаимодействия с 1,2пропандиолом (2-этил-4-метил-1,3-диоксолан), тяжелые соединения, обозначенные как "другие". Синтез соединений **2b**, **3** и **4** реакцией анилина с 1,2пропандиолом описан впервые.

Схема 3.4 – Продукты взаимодействия анилина с 1,2-пропандиолом

Результаты изучения каталитических свойств цеолитов в реакции анилина с 1,2-пропандиолом представлены в таблице 3.2.

Таблица 3.2 – Сравнение каталитических свойств микропористых и иерархических цеолитов в реакции анилина с 1,2-пропандиолом

	Конверсия	Селективность, %						
Катализатор	анилина, %	1d	2b	3	4	5	Легкие	Другие
H-Y	87	20	3	28	12	22	0	15
H-Y _h	98	20	7	35	7	13	0	18
H-ZSM-5	75	44	4	18	2	21	0	11
H-ZSM-5 _h	99	60	0	2	0	8	2	28
Условия реакции: 260 °C, анилин : 1,2-пропандиол = 1 : 3 моль/моль, массовая доля								
катализатора 10 %, растворитель хлорбензол, 9 ч.								

Установлено, что конверсия анилина на всех исследованных образцах была высокой (≥ 75 %). В присутствии гранулированных иерархических цеолитов H-Y_h,

H-ZSM-5_h конверсия анилина выше (93 и 99%, соответственно), чем на соответствующих микропористых образцах H-Y, H-ZSM-5 (87 и 75%). Максимальная селективность по хинолину (1d) достигнута в присутствии иерархического цеолита H-ZSM-5_h – 60 %, на микропористом цеолите H-ZSM-5 селективность ниже – 44 %. Цеолиты H-Y показали низкую селективность в реакции образования хинолина 1d (20 % – H-Y, 20 % – H-Y_h). В их присутствии основную долю в продуктах реакции составляет индол (3) (28-35 %).

Полученные результаты показывают, что в присутствии цеолитов различных структурных типов реакция протекает по разным маршрутам. Мы предположили, что это связано с маршрутами превращения 1,2-пропандиола на цеолитах H-Y и H-ZSM-5, поскольку для получения 3-метил-2-этилхинолина (1d) требуется присутствие в реакционной массе продукта дегидратации диола пропионового альдегида [95], а синтез индолов протекает при взаимодействии анилина с продуктами дегидрирования спирта [133] – гидроксипропаналя и гидроксиацетона. Однако сравнение каталитических свойств цеолитов С иерархической пористой структурой H-ZSM-5_h и H-Y_h в превращении 1,2пропандиола (Приложение Б, Рисунки Б.1-Б.2) показало, что в присутствии обоих катализаторов образуется только ряд продуктов *дегидратации*, среди которых пропионовый альдегид и продукт его конденсации – 2-метил-2-пентеналь – со начинают доминировать В реакционной массе. Продукты временем дегидрирования 1,2-диола обнаружены в следовых количествах.

Таким образом, синтез 3-метил-2-этилхинолина (1d)на цеолитах действительно протекает при взаимодействии анилина с пропионовым альдегидом, который образуется из диола. 2-Метил-3-*н*-пропил-1Н-индол (3), как предполагаем, может быть получен следующим образом. Согласно ΜЫ литературным данным [134], дегидратация 1,2-пропандиола в пропаналь протекает через адсорбцию последнего на сильных кислотных центрах [135] с образованием частицы L (Схема 3.5).

62

Схема 3.5 – Маршруты превращения/взаимодействия 1,2-пропандиола

Присутствие анилина в реакционной массе может привести к образованию 2-(аминофенил)пропанола **М**, который может выполнять ключевую функцию в образовании индолов [133]. Для осуществления данного взаимодействия требуются преимущественно сильные БКЦ, что показано нами в работе [132].

Таким образом, образование хинолина и индола на цеолитах, скорее всего, можно регулировать их формоселективностью. Из-за размеров входных окон (0,51 х 0,55 нм; 0,53 х 0,56 нм), сильные кислотные центры внутри микропор цеолитов H-ZSM-5 доступны, по-видимому, только для 1,2-пропандиола (Приложение A, Таблица A.1, строка 1). Поэтому дегидратация диола с образованием пропаналя может протекать на сильных кислотных центрах внутри пор, а взаимодействие альдегида с анилином – только в устьях пор (Схема 3.6, А). Данный путь реакции приводит к образованию 3-метил-2-этилхинолина (**1d**).

В широкопористых цеолитах H-Y сильные кислотные центры внутри пор (0,74 х 0,74 нм, α-полость 1,2 нм) могут быть доступны как для 1,2-пропандиола, так и для молекул анилина (Приложение А, Таблица А.1, строка 2), что повышает вероятность атаки анилином адсорбированного диола с образованием соединения **М** (Схема 3.6, В). Указанный путь ведет к получению 2-метил-3-*н*-пропил-1H-индола (**3**).

Схема 3.6 – Влияние структурного типа цеолитов на направление реакции анилина с 1,2-пропандиолом

3.2.2 Влияние типа растворителя на конверсию анилина и селективность по продуктам

Влияние растворителя на конверсию анилина и селективность по продуктам показано на примере бензола и хлорбензола (Таблица 3.3).

Показано, что без растворителя конверсия анилина в реакции с 1,2пропандиолом составляет 55 % на цеолите H-ZSM-5_h, тогда как в присутствии растворителей конверсия анилина увеличивается до 67-99 %. Установлено, что под действием цеолита H-ZSM-5_h без растворителя и в присутствии неполярного растворителя (бензола) образуется 3,4-диметил-1-фенил-1H-пиррол (**4**) с селективностью 35-45 %. Использование полярного растворителя (хлорбензола) приводит к образованию 3-метил-2-этилхинолина (**1d**).

В случае цеолита H-Y_h, использование растворителей оказывает незначительное влияние на селективность по продуктам и практически не влияет на конверсию анилина. Установлено, что наиболее селективно 2-метил-3-*н*-пропил-1H-индол (**3**) (45 %) образуется в отсутствие растворителя.

Таблица 3.3 – Влияние растворителя на конверсию анилина и селективность по продуктам в реакции анилина с 1,2-пропандиолом

	IC		Селективность, %						
Растворитель	конверсия анилина, %	1d	2b	3	4	5	Легкие	Другие	
Цеолит H-ZSM-5 _h									
Без растворителя	55	8	7	8	35	20	0	22	
Бензол	67	7	8	9	45	16	0	15	
Хлорбензол	99	60	0	2	0	8	2	28	
	Цеолит H-Y _h								
Без растворителя	99	22	2	45	7	15	0	9	
Бензол	98	14	4	32	15	17	0	18	
Хлорбензол	98	20	7	35	7	13	0	18	
Условия реакции: 260 °C, анилин : 1,2-пропандиол = 1 : 3 моль/моль, массовая доля катализатора 10 %, 9 ч.									

3.2.3 Влияние типа реакционной системы на конверсию анилина и селективность по продуктам

При изменении типа реакционной системы (периодического реактора смешения (автоклава) на реактор вытеснения непрерывного действия – проточный реактор со стационарным слоем катализатора) мы обнаружили, что в реакции анилина с 1,2-пропандиолом в определенных условиях можно селективно

получить 3-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амин **2b** (Схема 3.7), который является прекурсором хинолина **1d** (Схема 3.8). Скорее всего, это обусловлено уменьшением времени контакта реакционной массы с катализатором и изменением реакционных условий, поскольку известно, что оба типа реакционных систем могут использоваться для селективного получения промежуточных соединений [136, с. 182].

Схема 3.7 – Влияние типа реактора и условий реакции на состав продуктов в реакции анилина с 1,2-пропандиолом

В таблице 3.4 показаны результаты, полученные при изучении реакции анилина с 1,2-пропандиолом в присутствии гранулированных иерархических цеолитов H-Y_h и H-ZSM-5_h с использованием проточного реактора. Наиболее высокая степень превращения анилина достигнута на цеолите H-Y_h (95%). Селективность образования ТГХА (**2b**) на цеолите H-ZSM-5_h (85%) почти в два раза превышает значение, полученное в присутствии цеолита H-Y_h (45%).

Таблица 3.4 – Синтез ТГХА (2b) в присутствии иерархических цеолитов

	Koupopoug	Ce	пективность,	Содержание (2S,				
Катализатор	конверсия				3 <i>S</i> , 4 <i>R</i>)-ТГХА в			
	анилина, %	2b	1d	Другие	смеси изомеров,			
					%			
H-Y _h	95	45	15	40	78			
H-ZSM-5 _h	81	85	1	14	74			
Условия реакции: анилин : 1,2-пропандиол = 1 : 3 моль/моль, 350 °C, объемная скорость								
подачи сырья 1 ч ⁻¹	подачи сырья 1 ч ⁻¹ .							

Отметим, что образуется смесь стереоизомеров 3-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов (**2b**) с преобладанием продукта с относительной (2*S*, 3*S*, 4*R*)-конфигурацией. Содержание последнего в смесях изомеров, полученных на разных катализаторах, близко и составляет 74-78 %.

Как установлено нами при изучении реакции анилина с альдегидами в присутствии иерархического цеолита H-Y_h [103], ТГХА (**2b**) наиболее селективно образуется под действием менее кислотных цеолитов. Кроме того, катализаторы с большей концентрацией сильных кислотных центров способствуют превращению ТГХА (**2b**) в 3-метил-2-этилхинолин (**1d**) [103]. Похожие закономерности мы видим и в реакции анилина с 1,2-пропандиолом: цеолит H-Y_h, в котором количество кислотных центров (как БКЦ, так и ЛКЦ) значительно выше, чем в цеолите H-ZSM-5_h, более активен в реакции (судя по значению тГХА (**2b**) в 3-метил-2-этилхинолин (**1d**). В образовании хинолина (**1d**) участвуют, повидимому, расположенные в устьях пор сильные активные центры, которых в цеолите H-Y_h в 2 раза больше, чем в цеолите H-ZSM-5_h (Глава 2, Таблицы 2.2, 2.4).

3.2.4 Влияние структуры реагентов на их конверсию и селективность по продуктам

Влияние структуры реагентов на конверсию анилина и селективность по продуктам показано в условиях получения хинолинов и ТГХА.

Установлено, что при использовании в реакции с анилином этандиола получали 2-метилхинолин (**1b**) с низкой селективностью (14 %) (Таблица 3.5, строка 1). В большей степени в этой реакции образуются алкиланилины, индол и его алкилпроизводные.

Влияние заместителя в ароматическом кольце анилина на его конверсию и селективность по хинолинам изучено на примере электронодонорных (-CH₃, -OCH₃) и электроноакцепторного (-Cl) заместителей в *пара*-положении.

Как показано в пункте 3.2.1, в ходе синтеза хинолинов с участием 1,2пропандиола анилин взаимодействует с пропионовым альдегидом, образующимся при дегидратации спирта. Взаимодействие анилинов с альдегидами относится к реакциям нуклеофильного присоединения-отщепления, поэтому реакционная способность замещенных анилинов зависит от их нуклеофильности (основности). Из литературы известно, что константы основности замещенных анилинов изменяются в ряду п-хлоранилин < п-толуидин < п-анизидин [137], следовательно, конверсия замещенных анилинов должна изменяться в указанной последовательности. На практике наблюдается обратное – с увеличением нуклеофильности анилинов с электрофильными заместителями их конверсия снижается (от 92 до 80 %, Таблица 3.5, строки 4,5), при наличии -Cl конверсия замещенного анилина составляет 90 %. В случае анилина получена самая высокая конверсия (99 %).

	R	+ OH R ₁	,oH → H-ZSM-5 _h R	R ₁ N R ₁					
	R = H, CH _{3,} OCH ₃	$R_1 = H, CH_3$		1b,d-h					
N⁰	R	R_1	Конверсия анилина, %	Селективность 1, %					
1	Н	Н	65	14 (b)					
2	Н	CH ₃	99	60 (d)					
3	п-С1	CH ₃	90	53 (e)					
4	п-СН3	CH_3	92	62 (f)					
5	п-OCH ₃	CH_3	80	68 (g)					
6	м-OCH ₃	CH ₃	67	25 (h)					
7	o-OCH ₃	CH ₃	25	-					
Услови	ия реакции: 260 °C	С, анилин : 1,2	-пропандиол = 1 : 3 моль	/моль, массовая доля цеолита Н-					
ZSM-5	ZSM-5 _h 10 %, р-ль хлорбензол, 9 ч.								

Таблица 3.5 – Синтез хинолинов реакцией анилинов с 1,2-диолами

Как показано ранее в одной из работ лаборатории приготовления катализаторов ИНК УФИЦ РАН [103], ключевая каталитическая стадия для

получения прекурсора целевого продукта (1d) – циклизация основания Шиффа

(**N**) в тетрагидрохинолинамин (**2b**) (Схема 3.8) – является электрофильным процессом, поэтому наличие электронодонорных заместителей в ароматическом ядре исходного анилина должно приводить к увеличению выхода ТГХА **2b** и, соответственно, целевого хинолина **1d**, а присутствие электроноакцепторного – к снижению.

Схема 3.8 – Синтез 3-метил-2-этилхинолина (1d) на цеолитах

Действительно, с увеличением нуклеофильности анилинов растет селективность по замещенных хинолинам (от 62 до 68 %, Таблица 3.5, строчки 4,5), при наличии -Cl – снижается до 53 %.

Влияние положения заместителя в бензольном кольце анилина на его конверсию и выход продуктов исследовано на примере метоксианилинов. Константы основности изменяются в ряду *м*-анизидин < *o*-анизидин < *n*-анизидин, а конверсия анилинов – *o*-анизидин (25 %) < *м*-анизидин (67 %) < *n*-анизидин (80 %).

С теоретической точки зрения, циклизация основания Шиффа (**N**) в ТГХА (**2b**) (Схема 3.8) будет протекать более селективно при согласованном ориентирующем влиянии заместителей (*м*-анизидин, Рисунок 3.4, Б). На практике, с наибольшей селективностью образуется 3-метил-6-метокси-2-этилхинолин (**1g**) – 68 %, селективность по хинолину (**1h**) ниже – 17 %. При взаимодействии *о*-анизидина с диолом 3-метил-8-метокси-2-этилхинолин не образуется.

Таким образом, полученные результаты в реакции 1,2-пропандиола с анилином и его производными обусловлены, по-видимому, влиянием электронных эффектов заместителей.

Рисунок 3.4 – Ориентирующее влияние заместителей в метоксианилинах: А, В – несогласованное, Б – согласованное

При использовании этандиола в условиях синтеза ТГХА, конверсия анилина оказалась ниже (74 %), чем с 1,2-пропандиолом (81 %), но суммарная селективность получаемых ТГХА (2а) достигает 92 % (Таблица 3.6). Синтезируемые продукты 2а состоят из *cis-* и *trans-*изомеров 2-метил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амина (2а и 2а`, соответственно) с соотношением 1 : 1,4.

Таблица 3.6 – Синтез ТГХА (2) реакциями анилина с 1,2-диолами

	Конверсия	Селектив	вность, %				
R	анилина,	ΤΓΧΑ	Другие,	Изомерный состав ТГХА (2)			
	%	2,%	%				
п	74	02	o	2a : 2a` =			
п	/4	92	8	= 1 : 1,4			
СЦ	Q 1	95	15	2b (2 <i>S</i> , 3 <i>S</i> , 4 <i>R</i>)-изомер : другие			
СП3	01	85	15	изомеры = 2,9 : 1)			
Условия реакции: катализатор H-ZSM-5 _h , 350 °C, анилин : 1,2-диол = 1 : 3 моль/моль, 1 ч ⁻¹ .							

3.2.5 Влияние условий реакции на конверсию анилина и селективность по продуктам в синтезе N-гетероциклов

Результаты исследования влияния условий реакции на конверсию анилина и селективность по продуктам в синтезе **3-метил-2-этилхинолина 1d** представлены на рисунке 3.5.

Изучение влияния температуры на конверсию анилина и селективность по продуктам (Рисунок 3.5, А) показало, что при 160 °С конверсия анилина низкая (5 %). С увеличением температуры она растет и достигает 99 % при 260 °С. При низких температурах протекают преимущественно реакции линейной конденсации (образование N-пропиланилина 5), 3-метил-2-этилхинолин (1d) образуется с селективностью 38 %. Повышение температуры до 260 °С позволяет получить 3-метил-2-этилхинолин (1d) более селективно (60 %). Полученные зависимости можно объяснить реакционной способностью 1,2-пропандиола.

Из литературы известно [134], что при 200 °С цеолитные катализаторы мало активны в превращении диола, его количественная конверсия с образованием пропионового альдегида (Приложение Б, Рисунок Б.2,а) происходит при 260 °С. Следовательно, в условиях реакции конверсия анилина зависит от конверсии диола.

Увеличение мольного соотношения анилин : 1,2-пропандиол с 1 : 1 до 1 : 4 моль/моль приводит к росту конверсии анилина до 99 % (Рисунок 3.5, В). Максимальная селективность по хинолину (1d) достигается при соотношении анилин : 1,2-пропандиол = 1 : 3 моль/моль. Дальнейшее увеличение доли 1,2-пропандиола в составе реагентов приводит к избытку пропаналя в реакционной массе, который на кислотных катализаторах активно подвергается реакциям конденсации и ароматизации, что приводит к уменьшению селективности по хинолину (1d).

Рост массовой доли катализатора от 5 до 20 % приводит к количественной конверсии анилина (Рисунок 3.5, С). Максимальная селективность по хинолину (**1d**) получена при использовании 10 % катализатора, при большем его количестве

активно протекают процессы конденсации образующегося из 1,2-пропандиола пропаналя.

Рисунок 3.5 – Влияние условий реакции на конверсию анилина и селективность по продуктам:

A) температуры (10 % H-ZSM-5_h, анилин : 1,2-пропандиол = 1 : 3 моль/моль, 9 ч, хлорбензол);
 B) мольного соотношения (10 % H-ZSM-5_h, 260 °C, 9 ч, хлорбензол);

С) массовой доли катализатора (H-ZSM-5_h, анилин : 1,2-пропандиол = 1 : 3 моль/моль, 260 $^{\circ}$ C, 9 ч, хлорбензол)

При исследовании влияния условий реакции на конверсию анилина и селективность образования **TГХА** (**2b**) в реакции анилина с 1,2-пропандиолом в присутствии цеолита H-ZSM-5_h показано (Рисунок 3.6), что рост температуры в диапазоне 250-400 °C приводит к увеличению конверсии анилина от 29 до 95 %. Значения селективности образования ТГХА (**2b**) проходят через максимум при 350 °C (Рисунок 3.6, А), в этом случае селективность составляет 81 %. Дальнейшее повышение температуры до 400 °C ведет к уменьшению селективности по ТГХА (**2b**), в продуктах возрастает содержание 3-метил-2-
этилхинолина (**1d**) и побочных продуктов (алкиланилинов, продуктов превращения спирта). Более высокая температура реакции благоприятна для повышения содержания изомера (2*S*, 3*S*, 4*R*)-ТГХА в смеси образующихся тетрагидрохинолинаминов **2b**.

С) количества катализатора (H-ZSM-5_h, 350 °C, анилин : 1,2-пропандиол = 1 : 3 моль/моль)

Увеличение мольного соотношения анилин : 1,2-пропандиол от эквимольного до 1 : 4 моль/моль приводит к росту конверсии анилина (от 62 до 95 %) (Рисунок 3.6, В). С максимальной селективностью ТГХА (**2b**) образуется при соотношении анилин : 1,2-пропандиол = 1 : 3 моль/моль. С уменьшением мольного соотношения содержание (*2S*, *3S*, *4R*)-ТГХА в смеси изомеров и селективность по хинолину (**1d**) увеличиваются; начинают доминировать продукты эквимольного взаимодействия анилина с 1,2-пропандиолом («Другие») – метилиндолы, N-пропиланилин.

С увеличением объемной скорости подачи сырья от 0,5 до 2,0 ч⁻¹ наблюдается снижение конверсии анилина от 90 до 63 %, изменение селективности по ТГХА (**2b**) имеет экстремальный характер с максимумом (85 %) при 1,0 ч⁻¹. Поскольку ТГХА (**2b**) является промежуточным продуктом синтеза хинолина (**1d**), при снижении времени контакта реакционной массы с катализатором (с увеличением от 0,5 до 1,0 ч⁻¹) растет селективность по ТГХА (**2b**) и снижается по хинолину (**1d**). Содержание (*2S*, *3S*, *4R*)-ТГХА в смеси изомеров максимально при 0,5 ч⁻¹ (89 %) и уменьшается с повышением значения скорости подачи до 2,0 ч⁻¹ (Рисунок 3.6, С).

Полученные результаты показывают антибатную зависимость суммарной селективности по ТГХА (**2b**) и селективности по хинолину (**1d**), что еще раз доказывает промежуточный характер ТГХА (**2b**) в синтезе хинолина (**1d**). Кроме того, содержание (2*S*, 3*S*, 4*R*)-ТГХА (**2b**) в смеси изомеров растет с уменьшением суммарной селективности по ТГХА (**2b**). Причиной этого может быть высокая стабильность изомера ТГХА (**2b**) с (2*S*, 3*S*, 4*R*)-конфигурацией. Поэтому в изученных условиях реакции прекурсорами 3-метил-2-этилхинолина (**1d**) являются преимущественно изомеры ТГХА(**2b**) с другими конфигурациями хиральных центров.

Результаты исследования условий реакции в синтезе **2-метил-3-и-пропил-1Н-индола (3)** приведены на рисунке 3.7. Установлено, что увеличение температуры от 220 до 260 °С приводит к росту конверсии анилина от 82 до 99 % и селективности по индолу (3) (Рисунок 3.7, А). При этом снижается селективность по «другим» соединениям, в составе которых доминирует 2метилиндол.

Рисунок 3.7 – Влияние условий реакции на конверсию анилина и селективность по продуктам:

A) температуры (условия: 10 % H-Y_h; анилин : 1,2-пропандиол = 1 : 3 моль/моль; 6 ч);

В) мольного соотношения (условия: 10 % H-Y_h; 260 °C; 6 ч);

С) массовой доли катализатора (условия: H-Y_h, 260 °C,

анилин : 1,2-пропандиол = 1 : 3 моль/моль; 6 ч);

При исследовании влияния мольного соотношения анилин : 1,2-пропандиол установлено, что увеличение доли спирта в исходной смеси приводит к росту конверсии анилина от 75 до 99 % (Рисунок 3.7, В). При эквимольном соотношении реагентов селективность по индолу (**3**) составляет 34 %, селективность по хинолину (**1d**) с его прекурсором (**2b**) – 22 %, по алкиланилину (**5**) – 22%. В «других» продуктах обнаружен преимущественно 2-метилиндол. С увеличением мольного соотношения от 1:1 до 1:5 моль/моль растет селективность образования индола (**3**) (от 34 до 55 %), продуктов (**1d** +**2b**) (от 22 до 27 %), снижается селективность по N-пропиланилину (**5**) и «других» (в т.ч. 2-метилиндола). Дальнейший рост количества диола в сырье приводит к

образованию полиалкиланилинов, хинолинов, индолов и продуктов превращения 1,2-пропандиола («Другие»).

С увеличением массовой доли катализатора от 2 до 20 % конверсия анилина растет от 57 до 99 % (Рисунок 3.7, С), уменьшается селективность образования продукта линейной конденсации (N-пропиланилина 5) и увеличивается содержание «Других». Селективность по индолу (3) проходит через максимум (50 %) при 10 % катализатора.

Результаты исследования условий реакции в синтезе **3,4-диметил-1-фенил-1Н-пиррола** (4) приведены на рисунке 3.8.

Рисунок 3.8 – Влияние условий реакции на конверсию анилина и селективность по продуктам:

A) температуры (условия: 10 % H-ZSM-5_h; 260 °C; анилин : 1,2-пропандиол = 1 : 5 моль/моль; 9 ч; бензол);
B) мольного соотношения (условия: 10 % H-ZSM-5_h; 260 °C; 9 ч; бензол);
C) массовой доли катализатора (условия: H-ZSM-5_h; 260 °C;

анилин : 1,2-пропандиол = 1 : 3 моль/моль; 9 ч; бензол)

Низкая конверсия анилина при температуре 220 °С может быть связана с низкой степенью превращения 1,2-пропадиола [134]. Из литературы известно, что

при 200 °С цеолитные катализаторы мало активны в превращении диола, его количественная конверсия с образованием пропионового альдегида происходит при 250 °С (Приложение Б, Рисунки Б.1-Б.2). Следовательно, в условиях реакции конверсия анилина зависит от конверсии диола.

Увеличение мольного соотношения анилин : 1,2-пропандиол от 1:2 до 1:10 приводит к росту конверсии анилина от 43 до 99 % (Рисунок 3.8, В). Селективность по пирролу (4) проходит через максимум (58 %) при соотношении анилин : 1,2-пропандиол = 1 : 5 моль/моль. С ростом мольного соотношения снижается селективность по соединениям 1d, 2b, 3, 5.

С увеличением массовой доли катализатора от 2 до 20 % конверсия анилина растет от 27 до 83 %, а селективность по пирролу (4) снижается от 54 до 40 % (Рисунок 3.8, С). Кроме того, увеличение количества катализатора приводит к росту побочных продуктов («Другие»).

3.2.6 Обсуждение маршрутов реакции

С учетом вышеизложенного, обобщенную схему реакции анилина с 1,2пропандиолом в присутствии цеолитных катализаторов можно представить следующим образом (Схема 3.9). Направление реакций зависит от маршрута превращения/взаимодействия 1,2-пропандиола.

Первая стадия синтеза индолов на цеолитах протекает преимущественно через N-алкилирование анилина диолом с образованием 2- (фениламино)пропанола **M**.

При дегидрировании соединения **М** [138] образуется 2-(фениламино)пропаналь **N**, который, согласно авторам [133], является ключевым интермедиатом в синтезе алкилиндолов. Циклоконденсация продукта **N** приводит к 2-метилиндолу **O**. Согласно представленным нами в работе [132] результатам, 2-метилиндол **O** является прекурсором 2-метил-3-*н*-пропил-1H-индола (**3**).

В синтезе 3,4-диметил-1-фенил-1Н-пиррола (4), 3-метил-2-этилхинолина (1d), N-пропиланилина (5) и 3-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-

4-амина (**2b**) ключевую роль выполняет пропионовый альдегид, который образуется при дегидратации 1,2-пропандиола на сильных БКЦ [135].

Схема 3.9 – Возможные маршруты реакции анилина с 1,2-пропандиолом

действием Согласно схеме 3.9, под цеолитных катализаторов взаимодействие анилина с пропионовым альдегидом проходит по ПУТИ нуклеофильного присоединения c образованием основания Шиффа **P1**. димеризация и циклизация которого приводит к образованию ТГХА (2b). При отщеплении от соединения (2b) молекулы анилина и дегидрировании образуется диалкилхинолин (**1d**).

Синтез фенилпиррола (4), предположительно, протекает через образование енамина **P2**, который далее взаимодействует с молекулой 1,2-пропандиола. Полученный таким образом спирт **Q** подвергается внутримолекулярной дегидратации и дегидрированию, в результате чего формируется 3,4-диметил-1-фенил-1H-пиррол (4).

3.2.7 Сравнение каталитических свойств гранулированных иерархических цеолитов в реакциях анилина с альдегидами и со спиртами

Часть результатов данного раздела по синтезу хинолинов (**1**) и ТГХА (**2**) с участием карбонильных соединений опубликована в работах [121, 127] и защищена патентом [139].

Поскольку цель данной научно-исследовательской работы заключается в замене используемых в традиционных способах получения хинолинов альдегидов на спирты, представляло интерес сравнить разработанные способы получения хинолинов (1) и ТГХА (2) реакциями анилинов с алифатическими альдегидами и соответствующими 1,2-диолами (Схема 3.10).

Показано, что в присутствии иерархического цеолита H-ZSM-5_h реакция анилина с альдегидами в изученных условиях (автоклав, массовая доля катализатора 20 %, 160 °C, 6 ч, анилин : альдегид = 1 : 2 моль/моль, хлорбензол) протекает с образованием диалкилхинолинов (**1d,i**) с селективностью до 47 % (Схема 3.10, реакция 1). Кроме хинолинов, в реакционной массе обнаружены продукты конденсации альдегидов и их взаимодействия с анилином [121], к чему приводит избыток альдегида в реакционной массе. Использование 1,2-диола в реакции позволяет снизить локальную концентрацию альдегидов и уменьшить долю побочных продуктов (Схема 3.10, реакция 3).

В соответствии с ранее полученными результатами [103], 3-метил-2этилхинолин (**1d**) можно синтезировать реакцией анилина с пропионовым альдегидом в тех же условиях (Схема 3.10, реакция 1) более селективно (до 59 %) в присутствии иерархического цеолита H-Y_h (конверсия анилина 95 %). Подобные результаты получены в реакции с 1,2-пропандиолом в присутствии цеолита H-ZSM-5_h (селективность по **1d** 60 %, конверсия анилина 99 %) (Схема 3.10, реакция 3).

хинолинов и ТГХА

Установлено, что с использованием проточной установки реакция анилина с алифатическими альдегидами C_3 - C_4 в присутствии иерархического цеолита H-Y_h (250°C, анилин : альдегид = 1 : 2 моль/моль, 7 ч⁻¹) протекает с образованием ТГХА (**2**) с селективностью до 69 % (Схема 3.10, реакция 2) [127, 139]. При этом в реакции с 1,2-диолами селективность по ТГХА (**2**) достигает 92 % (Схема 3.10, реакция 4). Таким образом, в данном разделе показана эффективность использования 1,2-диолов в качестве реагентов синтеза хинолинов (**1**) и ТГХА (**2**).

В результате исследования каталитических свойств микропористых (H-Y и H-ZSM-5) и гранулированных иерархических цеолитов (H-Y_h и H-ZSM-5_h) в реакции анилина и 1,2-пропандиола установлено, что максимальную активность (99 %) и селективность (60 %, 3-метил-2-этилхинолин **1d**) в реакции проявил гранулированный иерархический цеолит H-ZSM-5_h (автоклав, 260 °C, анилин : 1,2пропандиол = 1 : 3 моль/моль; массовая доля катализатора 10 %, растворитель хлорбензол, 9 ч).

Показано, что направление реакции анилина с 1,2-пропандиолом зависит от Ha БКЦ формоселективности цеолита. сильных цеолитов H-ZSM-5. расположенных внутри их каналов (0,51 х 0,55 нм; 0,53 х 0,56 нм), может идти диола образованием только дегидратация С пропаналя, который далее взаимодействует с анилином на активных центрах, расположенных в устьях пор. Указанный путь реакции приводит к образованию 3-метил-2-этилхинолина (1d), 3-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амина (**2b**), Nпропиланилина (5) и 3,4-диметил-1-фенил-1Н-пиррола (4).

В широкопористых цеолитах H-Y сильные кислотные центры внутри пор (0,74 х 0,74 нм; α-полость 1,2 нм) могут быть доступны как для 1,2-пропандиола, так и для молекул анилина, поэтому существует возможность взаимодействия анилина с адсорбированным диолом внутри пор. По-видимому, именно формоселективность цеолитов H-Y позволяет получить 2-метил-3-*н*-пропил-1H-индол (**3**) через указанный маршрут.

Установлено, что при изменении природы растворителя (использование бензола вместо хлорбензола) в присутствии цеолита H-ZSM-5_h можно получить с достаточной селективностью 3,4-диметил-1-фенил-1H-пиррол (**4**) (45 %). Осуществление взаимодействия анилина с 1,2-пропандиолом без растворителя в присутствии цеолита H-Y_h позволило увеличить селективность по 2-метил-3-*н*-пропил-1H-индолу (**3**) до 45 %.

Установлено, что с использованием проточной установки со стационарным слоем катализатора основным продуктом реакции анилина с 1,2-пропандиолом является смесь изомеров 3-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов (**2b**) с преобладанием кристаллического продукта с относительной (2*S*, 3*S*, 4*R*)-конфигурацией. С максимальной селективностью ТГХА (**2b**) образуется на цеолите H-ZSM-5_h (85 %) при конверсии анилина 81 % (содержание изомера с (2*S*, 3*S*, 4*R*)-конфигурацией – 74 %).

Синтез 3-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амина (**2b**), 2метил-3-*н*-пропил-1Н-индола (**3**), 3,4-диметил-1-фенил-1Н-пиррола (**4**) реакцией анилина с 1,2-пропандиолом описаны впервые.

Показано, что на конверсию анилинов и селективность образования хинолинов в реакции 1,2-диолов с анилином и его производными оказывают влияние электронные эффекты заместителей.

В результате исследования влияния условий реакции на конверсию анилина и состав продуктов реакции определены условия образования хинолина (1d), индола (3), пиррола (4) и ТГХА (2b) с максимальной селективностью: хинолин (1d) – 60 % в присутствии 10 % H-ZSM-5_h, 260 °C, анилин : 1,2-пропандиол = 1:3 моль/моль, хлорбензол, 9 ч; индол (3) – 55 % в присутствии 10 % H-Y_h, 260 °C; анилин : 1,2-пропандиол = 1:5 моль/моль; 6 ч; пиррол (4) – 58 % в присутствии 10 % H-ZSM-5_h, 260 °C, анилин : 1,2-пропандиол = 1:5 моль/моль, бензол, 9 ч; ТГХА (2b) – 85 % в присутствии H-ZSM-5_h; анилин : 1,2-пропандиол = 1:3 моль/моль, 350°C, объемная скорость подачи сырья 1 ч⁻¹).

Показана более высокая эффективность использования 1,2-диолов в качестве реагентов синтеза хинолинов (1) и ТГХА (2) в присутствии цеолита H-ZSM-5_h по сравнению с альдегидами.

3.3 Каталитические свойства цеолитов в реакциях анилина с одноатомными спиртами

В данном разделе приведены результаты исследования каталитических свойств гранулированных цеолитов Y_h с иерархической пористой структурой в Hи Na-форме, модифицированных оксидами металлов, в реакции анилина с алифатическими спиртами C₂-C₃, материалы опубликованы в статье [140].

3.3.1 Влияние кислотности цеолитов и природы нанесенного металла на конверсию анилина и селективность по продуктам

Согласно схеме 3.1, в случае синтеза хинолинов с вовлечением одноатомных спиртов для превращения последних *in situ* в альдегиды требуются дегидрирующие центры (стратегия безакцепторного дегидрирования). Дегидрирование спиртов В альдегиды, согласно литературным данным [115, с. 3259], проводят в присутствии оксидов цинка, меди, кобальта, железа и их комбинации, а также металлического серебра, меди и цинка. Наиболее эффективными катализаторами превращения спиртов в альдегиды признаны медь- [141, 142] и цинксодержащие [142-144] пористые материалы.

Для осуществления синтеза хинолинов реакцией анилина с *н*-пропанолом нами приготовлены образцы гранулированного цеолита Na-Y_h с иерархической пористой структурой, промотированные оксидами Ni, Co, Cu, Zn. В качестве образцов сравнения использовали исходный цеолит Na-Y_h и цеолит H-Y_h.

Результаты исследования каталитических свойств образцов цеолита Na-Y_h, промотированного оксидами металлов, представлены в таблице 3.7.

В составе продуктов реакции идентифицированы 3-метил-2-этилхинолин (1d) и прочие хинолины (2-метилхинолин, 3-метилхинолин, 2-этилхинолин, 2,3диметилхинолин), 3-метил-2-этил-*N*-фенил-1,2,3,4-тетрагидрохинолин-4-амин (2b), N-алкиланилины (N-пропиланилин (5), N-метиланилин, N-этиланилин). Кроме вышеперечисленных соединений, в реакционной массе присутствуют соединения с молекулярной массой выше 171 г/моль и продукты превращения *н*-пропанола («Другие»).

Таблица 3.7 – Каталитические свойства образцов цеолита Na-Y_h, промотированных оксидами металлов, в реакции анилина с *н*-пропанолом

Катали- затор	Конверсия анилина, %	Селективность, %					
		Хинолины				Алкил-	Пет
		(1d)	Прочие	Сум-	(2b)	анилины (5	«дру- гие»
				ма		и прочие)	
H-Y _h	31	-	-	-	-	57	43
Na-Y _h	15	-	-	-	-	90	10
NiO/Na-Y _h	20	30	12	42	9	40	9
Co ₃ O ₄ /Na-	26	31	14	45	2	40	13
Y _h	20	51	14	43	2	40	15
CuO/Na-Y _h	25	27	24	51	4	30	15
ZnO/Na-Y _h	49	14	49	63	1	24	12
Условия реакции: 480°С, анилин : <i>н</i> -пропанол = 1 : 2 моль/моль; объемная скорость подачи сырья 0.5 y^{-1}							

Исходный цеолит Na-Y_h проявляет невысокую активность в реакции, продуктами являлись N-алкиланилины, образующиеся основными С 90 %. По-видимому, образование селективностью ИХ происходит при взаимодействии анилина с *н*-пропанолом на поверхностных слабокислотных центрах. Более сильные кислотные центры цеолита Na-Y_h ответственны за дегидратацию спирта [145] и дальнейшие превращения продуктов этой реакции (10 %). На образце H-Y_h конверсия анилина вдвое выше, чем на Na-Y_h, и состав продуктов более разнообразный. Высокая концентрация сильных кислотных центров способствует тому, что в реакционной массе присутствует значительное количество (43%) соединений, образующихся при дегидратации спирта – олефины, их олигомеры, арены (обозначены «другие»).

На образцах, содержащих оксиды Со, Ni, Cu, конверсия анилина невысокая – 20-26 %. Образец ZnO/Na-Y_h значительно активнее: на нем конверсия в 1,9-2,5

раза выше (49 %). Суммарное количество хинолинов на образцах NiO/Na-Y_h и $Co_3O_4/Na-Y_h$ составляет 42–45 %, на цеолите CuO/Na-Y_h селективность по хинолинам достигает 51 %. Образец ZnO/Na-Y_h характеризуется максимальной конверсией (49 %) и селективностью образования хинолинов (63 %).

Следует отметить, что конверсия анилина имеет почти обратную зависимость от концентрации кислотных центров в катализаторе (ZnO/Na-Y_h << CuO/Na-Y_h < Co₃O₄/Na-Y_h < NiO/Na-Y_h), что указывает на быструю дезактивацию образцов, модифицированных не цинком. Высокая концентрация кислотных центров приводит к более интенсивному образованию побочных продуктов (олефинов, аренов), которые являются прекурсорами кокса.

Обратная зависимость от концентрации кислотных центров в катализаторе также наблюдается для селективности образования хинолинов, а для селективности по N-алкиланилинам – прямая. Это может быть связано с тем, что N-алкиланилины образуются на кислотных центрах цеолита конденсацией анилина с *н*-пропанолом [146] (Схема 3.11), поэтому рост концентрации кислотных центров в ряду образцов ZnO/Na-Y_h << CuO/Na-Y_h < Co₃O₄/Na-Y_h < NiO/Na-Y_h приводит к увеличению селективности по N-алкиланилинам в том же ряду.

Кроме того, селективность по хинолинам тесно связана с селективностью дегидрирования *н*-пропанола в пропионовый альдегид. Поскольку среди всех изученных оксидов только ZnO является донором электронов (CuO – одновременно донор и акцептор, остальные – акцепторы), молекула *н*-пропанола адсорбируется на нем с диссоциацией связи О-Н. При этом образуется поверхностный анион $C_3H_7O^{-1}$ за счет акцептирования электрона с донорных уровней ZnO [147]. Указанный маршрут приводит к дегидрированию спирта, поэтому в присутствии цеолита ZnO/Na-Y_h более селективно образуется пропионовый альдегид, который вовлекается в синтез целевых хинолинов.

Отметим, что на образцах NiO/Na-Y_h и Co₃O₄/Na-Y_h среди образующихся хинолинов доминирует 3-метил-2-этилхинолин (**1d**), содержание которого в хинолиновой фракции достигает 71 %. На цеолите CuO/Na-Y_h селективность

образования хинолина (**1d**) уменьшается (53 % во фракции), а на образце ZnO/Na- Y_h она минимальна (22 % во фракции). Поскольку теоретически из одной молекулы анилина и 2-х молекул *н*-пропанола должен образоваться именно 3-метил-2-этилхинолин (**1d**), то присутствие других хинолинов свидетельствует о наличии в цеолите ZnO/Na- Y_h активных центров, ответственных за деструктивное преобразование образовавшегося хинолина (**1d**).

Маршруты взаимодействия анилина с *н*-пропанолом в присутствии модифицированных образцов цеолита Na-Y_h представлены на схеме 3.11.

Схема 3.11 – Возможные маршруты взаимодействия анилина с *н*-пропанолом в присутствии промотированных оксидами металлов (Me_xO_y) образцов цеолита Na-Y_h

Согласно представленной схеме, сначала протекает дегидрирование *н*-пропанола в пропионовый альдегид, который участвует в образовании хинолиновых продуктов **1d-2b** (аналогично Схеме 3.9).

Хемосорбированный на гидрирующих/дегидрирующих центрах водород может выделяться в молекулярном виде или присоединяться к акцепторам (ненасыщенные соединения), таким как основание Шиффа (**P1**) или олефины, образуемые при дегидратации спирта и дальнейших крекинге/олигомеризации [148]. Первый путь ведет к образованию N-пропиланилина (**5**), второй – к алканам, следы которых были обнаружены нами при исследовании превращения *н*-пропанола (Приложение B). Кроме того, существует иной маршрут образования N-пропиланилина (**5**) – через прямую конденсацию анилина с *н*-пропанолом на кислотных центрах цеолита.

Присутствие в продуктах реакции других алкиланилинов (кроме 5) и алкилхинолинов (кроме 1d) свидетельствует о взаимодействии анилина с альдегидами (ацетальдегидом, акролеином и др.), или о деструкции соединений 1d и 5. Первое направление маловероятно, поскольку в продуктах превращения *н*-пропанола альдегиды со структурой, отличной от пропионовой, не обнаружены (Приложение В, Рисунок В.1). Наиболее вероятно получение других алкилхинолинов и алкиланилинов через отщепление алкильных заместителей от продуктов 1d и 5.

3.3.2 Влияние условий реакции на конверсию анилина и селективность по продуктам

Результаты исследований влияния условий реакции на конверсию анилина и селективность по продуктам представлены на рисунке 3.9.

С увеличением температуры от 390 до 510 °С конверсия анилина возрастает до 55 % (Рисунок 3.9, А). Наиболее селективно хинолины образуются при 480 °С (63 %), дальнейшее повышение температуры приводит к незначительному уменьшению селективности по хинолинам и росту содержания «других» в связи с интенсификацией дегидратации спирта. В составе хинолинов с повышением

температуры уменьшается содержание хинолина (**1d**) и растет содержание других алкилхинолинов.

При исследовании влияния объёмной скорости подачи сырья (Рисунок 3.9, В) установлено, что ее снижение от 1,0 до 0,2 ч⁻¹ способствует повышению конверсии анилина от 32 до 55 %, при этом селективность по хинолинам также увеличивается с 31 до 64 %. При максимальной объёмной скорости (1,0 ч⁻¹) преимущественно протекают реакции линейной конденсации с образованием алкиланилинов (54%).

Увеличение доли спирта в сырьевой смеси (анилин : *н*-пропанол = 1 : 1-5 моль/моль) позволяет увеличить конверсию анилина с 26 до 65 %, однако селективность по хинолинам при этом снижается с 65 до 29 % (Рисунок 3.9, С) за счет роста содержания алкиланилинов и продуктов превращения спирта («Другие»).

■Хинолины, % ■ТГХА (2b), % ■Алкиланилины, % ■Другие, % ◆ Конверсия анилина, %

Рисунок 3.9 – Влияние условий реакции на конверсию анилина и селективность по продуктам:

А) температуры (условия: ZnO/Na-Y_h, анилин : *н*-пропанол = 1 : 2 моль/моль; $0,5 \text{ ч}^{-1}$);

В) объемной скорости подачи сырья (условия: ZnO/Na-Y_h, 480°C,

анилин : н-пропанол = 1:2 моль/моль);

С) мольного соотношения (условия: ZnO/Na-Y_h, 480 °C, 0,5 ч⁻¹).

3.3.3 Влияние структуры реагентов на их конверсию и селективность по продуктам

При использовании в реакции с анилином более низкомолекулярного гомолога *н*-пропанола – этанола – наблюдается незначительное снижение конверсии анилина (от 49 до 45 %) и увеличение селективности по хинолинам (от 63 до 69 %). В составе хинолиновой фракции присутствуют хинолин **1a**, 2- и 4-метилхинолины (**1b**,**c**) (Таблица 3.8).

Таблица 3.8 – Синтез хинолинов взаимодействием анилина с алифатическими спиртами R₃

	Конверси	Селективность, %				
R	я анилина, %	Хинолины	Другие	Состав хинолиновой фракции, %		
Н	45	69	31	1a : 1b : 1c = 1 : 6 : 2		
CH ₃	49	63	37	1a: 1b+MeQ: diMeQ: EtQ: 1d =		
		03	57	= 7.5 : 12.5 : 3.5 : 1 : 7		
Условия реакции: ZnO/Na-Y _h , 480°C, анилин : спирт = 1 : 2 моль/моль; 0,5 ч ⁻¹						
MeQ – 3-метилхинолин; diMeQ – 2,3-диметилхинолин; EtQ – 2-этилхинолин						

Таким образом, в результате исследования каталитических свойств гранулированных цеолитов Y_h с иерархической пористой структурой в H- и Naформе, модифицированных оксидами металлов (Co₃O₄, NiO, CuO, ZnO), в реакции анилина с *н*-пропанолом установлено, что на конверсию анилина и селективность по хинолинам оказывают влияние природа введенного оксида металла и сила/концентрация кислотных центров образца. Максимальные конверсия и селективность по хинолинам (49 и 63 %, соответственно) достигнуты на образце, промотированном донором электронов и обладающем низкой концентрацией слабых кислотных центров (ZnO/Na-Y_h). На цеолитах, модифицированных оксидами Ni, Co, Cu, конверсия анилина была в 2 раза ниже (20–26 %) при селективности по хинолинам 42–51 %.

В результате изучения влияния условий реакции в присутствии цеолитного катализатора ZnO/Na-Y_h установлено, что максимальная суммарная селективность образования хинолинов в реакции анилина с *н*-пропанолом составляет 65 % при конверсии анилина 55 % в следующих условиях: 480 °C; *н*-пропанол : анилин = 2 : 1 моль/моль; 0,2 ч⁻¹.

С использованием этанола в реакции образуются хинолины (хинолин, 2- и 4-метилхинолины) с суммарной селективностью 69 % при конверсии анилина 45 %.

3.4 Заключение по главе 3

В работе исследованы каталитические свойства: 1) высокодисперсных микропористых цеолитов ZSM-5 и Y в H-форме; 2) гранулированных цеолитов ZSM-5_h с иерархической пористой структурой в H-форме, синтезированных гидротермальной кристаллизацией из исходных гранул с различным содержанием микропористого цеолита ZSM-5 и аморфного алюмосиликата; 3) гранулированных цеолитов Y_h с иерархической пористой структурой в H-форме и Na-форме, модифицированных соединениями металлов в синтезе хинолинов взаимодействием альдегидов / спиртов с анилином и его производными.

Впервые для указанных реакций показаны преимущества каталитических систем с иерархической (микро-мезо-макро) пористой структурой по сравнению с их микропористыми аналогами. Стабильность указанных катализаторов в синтезе хинолинов оказалась выше, чем в присутствии микропористых цеолитных катализаторов.

По реакции Скраупа хинолины наиболее селективно образуются в присутствии цеолита H-ZSM-5_h (86 %), содержащего максимальное количество цеолитной затравки (60 %). Его высокая активность, селективность и стабильность обусловлена наличием в нем развитой микро-мезо-макропористой

структуры, нанокристаллов размером 15-100 нм и наиболее высокой среди исследованных образцов концентрации кислотных центров.

Установлено, что максимальную конверсию (99 %) и селективность по 3метил-2-этилхинолину (1d) (60 %) в реакции анилина с 1,2-пропандиолом проявил гранулированный иерархический цеолит H-ZSM-5_h. Впервые показано, что направление реакции анилина с 1,2-пропандиолом зависит от структурного типа цеолитов и условий реакции. На цеолитах H-ZSM-5 образуется преимущественно 3-метил-2-этилхинолин (1d), на цеолитах H-Y – 2-метил-3-нпропил-1Н-индол (3). Впервые показано, что в присутствии цеолита H-ZSM-5_h в среде бензола образуется 3,4-диметил-1-фенил-1Н-пиррол (4). Установлено, что с использованием проточной установки со стационарным слоем катализатора основным продуктом реакции анилина с 1,2-пропандиолом является смесь изомеров 3-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов (2b) с преобладанием кристаллического продукта с относительной (2S, 3S, 4R)конфигурацией. Синтез 3-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4амина (**2b**) (селективность до 85 %), 2-метил-3-*н*-пропил-1Н-индола (**3**) (селективность до 55 %), 3,4-диметил-1-фенил-1Н-пиррола (4) (селективность до 58 %) реакцией анилина с 1,2-пропандиолом под действием цеолитных катализаторов описаны впервые.

Установлено, что на конверсию анилинов и селективность по хинолинам в реакции 1,2-диолов с анилином и его производными в большей степени оказывают влияние ограничения диффузии молекул реагентов и продуктов в порах и стерические затруднения при образовании промежуточных соединений в порах, чем электронные эффекты заместителей.

Показана более высокая эффективность использования 1,2-диолов в качестве реагентов синтеза хинолинов (1) и ТГХА (2) в присутствии цеолита H-ZSM-5_h по сравнению с альдегидами.

Показано, что на конверсию анилина и селективность по хинолинам в реакции анилина с *н*-пропанолом оказывают влияние природа введенного металла и сила/концентрация кислотных центров образца. Максимальные конверсия и селективность по хинолинам (49 и 63 %, соответственно) достигнуты на образце, промотированном ZnO и обладающем низкой концентрацией слабых кислотных центров (ZnO/Na-Y_h).

Для каждой реакции выявлены наиболее перспективные каталитические системы, позволяющие получить хинолины с выходом до 78%, тетрагидрохинолинамины с выходом до 74%, другие N-гетероциклы с выходом до 54%.

ГЛАВА 4 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

4.1 Реагенты и катализаторы

В работе использовали анилин (99,8 %, «ACROS»), *n*-толуидин, *o*-, *n*анизидин (99 %, «ACROS»), *n*-хлоранилин (98 %, «ACROS»), *м*-анизидин (97 %, «ACROS»), пропионовый, масляный, валерьяновый альдегиды (97 %, «ACROS»), этиловый спирт, *н*-пропиловый спирт, 1,2-этандиол, 1,2-пропандиол (99 %, «ACROS»), глицерин (99 %, «ACROS»).

В качестве катализаторов изучены следующие группы цеолитов: 1) высокодисперсные микропористые цеолиты ZSM-5 и Y в H-форме; 2) гранулированные цеолиты H-ZSM-5_h с иерархической пористой структурой, синтезированные гидротермальной кристаллизацией из исходных гранул с различным содержанием микропористого цеолита ZSM-5 и аморфного алюмосиликата; 3) гранулированные цеолиты Y_h с иерархической пористой структурой в H- и Na-форме, модифицированные соединениями металлов.

Микропористый цеолит Y (соотношение Si/Al = 2,5) синтезировали в Naформе [149].

Цеолиты Na-ZSM-5_h синтезировали согласно методике, описанной в [150, 151]. Для приготовления использовали порошкообразный цеолит Na-ZSM-5 (Si/Al = 15) производства ООО «ИСХЗК» и предварительно приготовленный аморфный алюмосиликат (Si/Al = 6) в разных соотношениях (Таблица 4.1). Указанные выше компоненты смешивали, увлажняли полученную смесь путем добавления воды, формовали гранулы, затем подвергали их термообработке при 550±5 °C в течение 4 ч и гидротермальной кристаллизации в растворе силиката натрия.

Гранулированный цеолит Na-Y_h синтезировали аналогично цеолиту Na-ZSM-5_h с использованием в качестве аморфного связующего материала метакаолина [152].

Образец после	Массовый состав исходных гранул, %				
гидротермальной	Пеолит №-75М-5	Аморфный алюмосиликат			
кристаллизации	Leonin na 2511 5				
$Na-ZSM-5_{h}(10)$	10	90			
$Na-ZSM-5_h(30)$	30	70			
Na-ZSM-5 _h	60	40			
*в пересчете на сухое вещество.					

Таблица 4.1 – Содержание* цеолита и аморфного алюмосиликата в исходных гранулах

В Н-форму цеолиты переводили путем обмена катионов Na^+ на NH_4^+ с последующей термообработкой при 550 °C в течение 4–6 ч в атмосфере воздуха. Степень обмена катионов Na^+ на H^+ в полученных образцах составляет 0,95.

Образцы цеолита Na-Y_h, модифицированные оксидами переходных $(ZnO/Na-Y_h,$ NiO/Na-Y_h, $Co_3O_4/Na-Y_h$, $CuO/Na-Y_h)$, металлов получали цеолита капиллярной пропиткой исходного Na-Y_h растворами солей $Zn(NO_3)_2 \cdot 6H_2O$, Ni(NO₃)₂ · 6H₂O, Co(NO₃)₂ · 6H₂O, Cu(NO₃)₂ · 3H₂O. После пропитки образцы выдерживали в закрытых бюксах, затем подвергали термообработке в атмосфере воздуха при 120, 300 и 540 °С в течение 12, 2 и 4 ч, соответственно. Экспериментальное содержание оксидов составило 2,9 % NiO, 3,1% Co₃O₄, 2,9 % CuO, 2,9 % ZnO.

Непосредственно перед испытаниями катализаторы подвергали высокотемпературной обработке в атмосфере осушенного воздуха при 540 °С в течение 3-4 ч.

4.2 Характеристика катализаторов

Химический состав полученных каталитических систем анализировали на пламенном фотометре ПФА-378 и энергодисперсионном рентгенофлуоресцентном спектрометре EDX-800HS (Shimadzu) с рентгеновской

трубкой с родиевым анодом (напряжение 15–50 кВ, ток 20-1000 мкА, вакуум, коллиматор 3–5 мм).

Фазовый состав и относительную степень кристалличности образцов определяли с помощью методов рентгенофазового (РФА) и рентгеноструктурного (РСА) анализов на дифрактометре Rigaku Ultima IV в СиК α -излучении в области углов от 3 до 40-80 °C по 2 θ с шагом 0,5 град/мин и временем накопления в каждой точке 20 с. Степень кристалличности цеолитов рассчитывали по отношению суммарной интегральной интенсивности от кристаллической фазы к сумме суммарных интегральных интенсивностей от кристаллической и аморфной фаз. Фазовый анализ проводили сопоставлением полученных дифрактограмм с базой данных PDF2.

Изучение состояния оксидов металлов на поверхности образцов $Me_xO_y/Na-Y_h$ (Me = Cu, Co, Ni, Zn) изучали с помощью спектрофотометрии в УФ и видимой областях на приборе SILab TUV10DCS с интегрирующей сферой в диапазоне 200-860 нм.

Удельную поверхность, объем микро- и мезопор измеряли методом низкотемпературной (-196 °C) адсорбции-десорбции азота на сорбтометре Nova 1200е. Образцы перед анализом подвергались вакуумной обработке при 350 °C в течение 6 ч. Удельную поверхность рассчитывали методом БЭТ при относительном парциальном давлении $P/P_0=0,2$. Распределение пор по размерам рассчитывали по кривой десорбции ВЈН (Barrett-Joiner-Halenda); объем микро- и мезопор определяли методом ВЈН при относительном парциальном давлении $P/P_0=0,95$. Объем микропор при наличии мезопор рассчитывали с помощью *t*-метода де Бура и Липпенса [111]. Суммарный объем макропор размером от 50 нм и более оценивали методом ртутной порометрии на приборе Carlo Erba Porozimeter-2000.

Кислотные свойства цеолитов определяли методом ИК-спектроскопии адсорбированного пиридина. ИК-спектры адсорбированного пиридина регистрировали на Фурье-спектрометре Bruker Vertex-70V. Спектры записывали с

разрешением 4 см⁻¹ в диапазоне 400-4000 см⁻¹. Образцы прокаливали при 400 °С в вакууме 4 ч. Диаметр таблетки для регистрации ИК-спектров составлял 15 мм. Адсорбцию пиридина проводили при 150 °С в течение 30 мин, затем физически адсорбированный пиридин удаляли путём вакуумирования при 150 °С в течение 30 мин. Дополнительно проводили десорбцию пиридина при 250 °С и 350 °С по 30 мин. Количественную оценку Бренстедовских кислотных центров (БКЦ) проводили путём интегрирования пика при 1543-1545 см⁻¹, Льюисовских кислотных центров (ЛКЦ) – при 1453-1455 см⁻¹, исходя из известных в литературе интегральных коэффициентов экстинкции пиридина для центров каждого типа [112].

Морфологию и размеры кристаллов образцов исследовали методом сканирующей электронной микроскопии (СЭМ) на электронном микроскопе Hitachi Regulus 8220 (Япония). Съемку изображений вели в режиме регистрации вторичных электронов при ускоряющем напряжении 20 кВ и рабочем расстоянии 10 мм. Перед съемкой образцы помещали на поверхность алюминиевого столика диаметром 25 мм, фиксировали при помощи токопроводящей липкой ленты. Средний размер кристаллов рассчитывали на основании полученных изображений.

4.3 Разработанные способы получения N-гетероциклов

Синтез хинолинов по Скраупу. Синтез осуществляли реакцией анилина с 20%-ным водным раствором глицерина в проточном реакторе с неподвижным слоем катализатора (1,0 г) при 450 °C, мольном соотношении анилин : глицерин = 1 : 2, атмосферном давлении, объемной скорости подачи анилина 0,2 ч⁻¹, в атмосфере азота [109, 121, 122].

Анилин (объемная скорость подачи $0,2 \, \text{ч}^{-1}$) и водный раствор глицерина (анилин : глицерин = 1 : 2 моль/моль) двумя шприцевыми насосами подают в реактор проточного типа с неподвижным слоем катализатора (1,0 г H-ZSM-5_h) в течение 1 ч. Температура реакции 450 °C. После окончания реакции реактор

продувают азотом в течение 0,5 ч. Из собранной в охлаждаемый льдом приемник реакционной массы продукты реакции экстрагируют хлористым метиленом, отгоняют растворитель и анализируют с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ).

Синтез алкилхинолинов взаимодействием анилинов с диолами.

Синтез осуществляли в автоклаве при 160-260 °С, мольном соотношении анилин : диол = 1 : 1-4, в присутствии 5-20 % катализатора, в течение 9 ч, в хлорбензоле.

В автоклав загружают соответствующие анилин и диол с мольным соотношением 1 : 3 моль/моль, катализатор H-ZSM-5_h (массовая доля 10 %), хлорбензол (1 мл) в качестве растворителя. Автоклав герметизируют, помещают в термостат (260 °C), реакцию проводят в условиях перемешивания в течение 9 ч. После проведения реакции автоклав охлаждают до комнатной температуры, реакционную массу экстрагируют дихлорметаном с поверхности катализатора, фильтруют, отгоняют растворитель, анализируют методом высокоэффективной жидкостной хроматографии (ВЭЖХ) [128].

Синтез алкилхинолинов взаимодействием анилина с одноатомными спиртами.

Синтез проводили в проточном реакторе с неподвижным слоем катализатора (1,0 г) при 390–510 °С, мольных соотношениях анилин : спирт = 1 : 1-5; 0,2–1,0 ч⁻¹, в течение 3 ч, в атмосфере азота [140].

Сырье (смесь анилина с одноатомным спиртом в соотношении 1 : 2 моль/моль) с помощью шприцевого насоса подают в реактор проточного типа с неподвижным слоем катализатора (1,0 г ZnO/Na-Y_h) с объемной скоростью подачи сырья 0,5 ч⁻¹ в течение 3 ч. Температура реакции 480 °C. После окончания реакции реактор продувают азотом в течение 0,5 ч. Из собранной в охлаждаемый льдом приемник реакционной массы продукты реакции экстрагируют хлористым метиленом, отгоняют растворитель и анализируют с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ).

Синтез производных алкилхинолинов взаимодействием анилинов с альдегидами.

Синтез осуществляли в автоклаве при 160 °С, мольном соотношении анилин : альдегид = 1 : 2, в присутствии 20 % катализатора, в течение 6 ч, в хлорбензоле [121].

В автоклав загружают соответствующие анилин и альдегид с мольным соотношением 1 : 2 моль/моль, катализатор H-Y_h (массовая доля 20 %), хлорбензол (1 мл) в качестве растворителя. Автоклав герметизируют, помещают в термостат (160 °C), реакцию проводят в условиях перемешивания в течение 6 ч. После проведения реакции автоклав охлаждают до комнатной температуры, реакционную массу экстрагируют дихлорметаном с поверхности катализатора, фильтруют, отгоняют растворитель, анализируют методом высокоэффективной жидкостной хроматографии (ВЭЖХ) на модульном приборе SHIMADZU со спектрофотометрическим детектором SPD-20A. Условия съемки: колонка – Agilent C18 (4,6 x 250 мм), элюент-CH₃CN/H₂O – 80/20, скорость подачи элюента – 1 мл/мин.

Продукты выделяли методом колоночной хроматографии (сорбент – SiO₂, 35 – 70 нм, Sigma-Aldrich) с использованием градиентного элюирования. В качестве компонентов элюента применялись гексан (неполярный растворитель) и этилацетат (полярный растворитель) с соотношением, % объемн.: от 100 / 0 до 20 / 80. Для TCX-анализа применялись хроматографические пластины Silufol с использованием в качестве детектирующего реактива 1 % раствор ванилина в смеси серной кислоты с этанолом (1:50).

Масс-спектры соединений получали на хромато-масс-спектрометре SHIMADZU GCMS-QP2010Plus (фаза SPB-5, капиллярная колонка 30 м × 0.25 мм, газ-носитель – гелий, температура программирования 40-300 °C, температура ионного источника 200 °C, энергия ионизации 70 эВ).

Спектры ЯМР ¹Н и ¹³С, гомо- и гетероядерные методики COSY, HSQC, HMBC регистрировали на приборе «Bruker Avance III 500 HD Ascend» (рабочая частота для ¹H – 500,17 МГц; для ¹³C – 125,78 МГц), растворитель – CDCl₃.

Хинолин (1а)

Выход до 69 % в зависимости от типа катализатора.

Масс-спектр m/z: 129 (M⁺). Спектр ¹Н ЯМР (400 МГц, CDCl₃, δ , м. д.): 7.35-7.38 (м, 1Н, C(3)H); 7.53 (т, ³J_{HH} = 7.5 Гц, 1Н, C(6)H); 7.71 (т, ³J_{HH} = 7.7 Гц, 1Н, C(7)H); 7.79 (д, ³J_{HH} = 8.1 Гц,

1H, C(5)H); 8.12 (д, ³*J*_{*HH*} = 8.3 Гц, 1H, C(4,8)H); 8.86-8.97 (м, 1H, C(2)H). Спектр ¹³С ЯМР (125.78 МГц, CDCl₃, δ, м. д.): 121.07 (C8); 126.53 (C3); 127.79 (C6); 128.28 (C4a); 129.45 (C4,5); 136.04 (C7); 148.28 (C8a); 150.40 (C2). Спектры соответствуют литературным данным [153].

2-Метилхинолин (1b)

Выход до 9 % в зависимости от условий реакции и типа катализатора.

Масс-спектр m/z: 143 (M⁺). Спектр ¹Н ЯМР (400 МГц, CDCl₃, δ , м. д.): 3.13 (с, 3H, C(9)H), 7.55 (д, ³J_{HH} = 8.4 Гц, 1H,

С(3)Н); 7.79-7.83 (м, 1Н, С(6)Н); 7.92-7.97 (м, 1Н, С(7)Н); 8.01 (д, ${}^{3}J_{HH} = 7.6$ Гц, 1Н, С(5)Н); 8.54 (д, ${}^{3}J_{HH} = 8.9$ Гц, 1Н, С(4)Н); 8.95 (д, ${}^{3}J_{HH} = 9.2$ Гц, 1Н, С(8)Н). Спектр 13 С ЯМР (125.78 МГц, CDCl₃, δ , м. д.): 26.1(С9), 122.01 (С3); 125.82 (С8); 126.65 (С4а); 127.67 (С7); 128.78 (С5); 129.81 (С6); 136.42 (С4); 148.14 (С8а), 159.27 (С2).Спектры соответствуют литературным данным [154].

3-Метил-2-этилхинолин (1d)

Выход до 60 % в зависимости от типа катализатора и условий реакции.

¹⁰ Масс-спектр m/z: 171 (M⁺). Спектр ЯМР ¹Н (500.17 МГц, CDCl₃, δ, м. д.): 1.40 (т, ³*J*_{*HH*} = 7.5 Гц, 3H, C(10)H₃), 2.48

(с, 3H, C(11)H₃), 2.99-3.03 (м, 2H, C(9)H₂), 7.45 (т, ${}^{3}J_{HH} = 7.5$ Гц, 1H, C(6)H), 7.63 (т, ${}^{3}J_{HH} = 8.0$ Гц, 1H, C(7)H), 7.70 (д, ${}^{3}J_{HH} = 8.0$ Гц, 1H, C(5)H), 7.81 (с, 1H, C(4)H), 8.07 (д, ${}^{3}J_{HH} = 8.5$ Гц, 1H, C(8)H). Спектр ЯМР ¹³С (125.78 МГц, CDCl₃, δ , м. д.): 12.89(C10), 19.12(C11), 29.48(C9), 125.63(C8), 126.69(C4), 127.34(C4a), 128.33(C7), 128.44(C5), 129.44 (C3), 135.83(C6), 146.62(C8a), 163.36(C2). Спектры соответствуют литературным данным [154].

6-хлоро-3-метил-2-этилхинолин (1е)

Выход 48 %. Масс-спектр m/z: 207 (M⁺). Спектр ¹H ЯМР (500.17 МГц, CDCl₃, δ , м. д.): 1.38 (т, ³J_{HH} = 7.5 Гц, 3H, C(10)H₃), 2.49 (с, 3H, C(11)H₃), 2.97-3.01 (м, 2H, C(9)H₂), 7.54-7.56 (дд, ³J_{HH} = 8.9 Гц, ⁴J_{HH} = 2.2 Гц,

1H, C(7)H), 7.68 (д, ${}^{4}J_{HH} = 2.0$ Гц, 1H, C(5)H), 7.74 (с, 1H, C(4)H), δ 7.96 (д, ${}^{3}J_{HH} = 8.9$ Гц, 1H, C(8)H). Спектр ЯМР 13 C (125.78 МГц, CDCl₃, δ , м. д.): 12.61(C10), 19.14(C11), 29.41(C9), 125.36(C8), 127.92 (C4), 129.12 (C4a), 130.19(C7), 130.56 (C5), 131.14(C3), 134.70 (C6), 145.01(C8a), 163.64(C2). Спектры соответствуют литературным данным [155].

3,6-диметил-2-этилхинолин (1f)

Выход 57 %. Масс-спектр m/z: 185 (M⁺). Спектр ¹H ЯМР (500.17 МГц, CDCl₃, δ , м. д.): 1.37 (т, ³*J*_{*HH*} = 7.5 Гц, 3H, C(10)H₃), 2.45 (с, 3H, C(11)H₃), 2.50 (с, 3H, C(12)H₃), 2.95 – 3.00 (м, 2H, C(9)H₂), 7.41-7.45 (м,

2H, C(5)H, C(7)H), 7.71 (c, 1H, C(4)H), 7.94 (д, ${}^{3}J_{HH} = 8.9$ Гц, 1H, C(8)H). Спектр ЯМР 13 C (125.78 МГц, CDCl₃, δ , м. д.): 12.92(C10), 19.09(C11), 21.50(C12), 29.39(C9), 125.60(C5), 127.35(4a), 128.15(C8), 129.30(C3), 130.52(C7), 135.22(C4), 135.24(C6), 145.21(C8a), 162.30(C2). Спектры соответствуют литературным данным [155].

6-метокси-3-метил-2-этилхинолин (1g)

Выход 54 %. Масс-спектр m/z: 201 (M⁺). Спектр ¹Н ЯМР (500.17 МГц, CDCl₃, δ , м. д.): 1.37 (т, ³J_{HH} = 7.5 Гц, 3H, C(10)H₃), 2.48 (с, 3H, C(11)H₃), 2.95-3.00 (м, 2H, C(9)H₂), 3.92 (с, 3H, C(13)H₃), 7.00 (д,

⁴ J_{HH} = 2.7 Гц, 1H, C(5)H), 7.27 – 7.30 (м, 1H, C(7)H), 7.75 (с, 1H, C(4)H), 7.94 (д, ³ J_{HH} = 9.2 Гц, 1H, C(8)H). Спектр ЯМР ¹³С (125.78 МГц, CDCl₃, δ , м. д.): 12.95(C10), 19.12(C11), 29.25(C9), 55.46(C13), 104.53(C5), 120.68(C7), 128.15(C4a), 129.67(C3), 129.94(C8), 134.83(C4), 142.67(C8a), 157.17(C6), 160.73(C2). Спектры соответствуют литературным данным [155].

7-метокси-3-метил-2-этилхинолин (1h)

Выход 30 %. Масс-спектр m/z: 201 (M⁺). Спектр ¹H ЯМР (500.17 МГц, CDCl₃, δ , м. д.): 1.38 (т, ³J_{HH} = 7.6 Гц, 3H, C(10)H₃), 2.46 (с, 3H, C(11)H₃), 3.01 – 2.97 (м, 2H, C(9)H₂), 3.95 (с, 3H, C(13)H₃), 7.12 (дд, ³J_{HH}

= 8.9 Гц, ${}^{4}J_{HH}$ = 2.5 Гц, 1H, C(6)H), 7.39 (д, ${}^{4}J_{HH}$ = 2.4 Гц, 1H, C(8)H), 7.59 (д, ${}^{3}J_{HH}$ = 8.9 Гц, 1H, C(5)H), 7.77 (с, 1H, C(4)H). Спектр ЯМР ¹³C (125.78 МГц, CDCl₃, δ , м. д.): 13.01 (C10), 18.88 (C11), 29.56(C9), 55.46 (C13), 106.73 (C8), 118.65 (C6), 122.43 (C4a), 126.95(C3), 127.71(C4), 135.70(C5), 148.17(C8a), 159.93(C7), 163.51(C2). Спектры соответствуют литературным данным [154].

2-пропил-3-этилхинолин (1i)

Выход 50 %. Масс-спектр m/z: 199 (M⁺). Спектр ¹H ЯМР (500.17 МГц, CDCl₃, δ , м. д.): 1.10 (т, ³*J*_{*HH*} = 7.3 Гц, 3H, C(11)H₃); 1.37 (т, ³*J*_{*HH*} = 7.5 Гц, 3H, C(13)H₃); 1.85-1.89 (м, 2H, C(10)H₂); 2.85-2.89 (м, 2H, C(12)H₂);

3.00 (т, ${}^{3}J_{HH} = 7.8$ Гц, 2H, C(9)H₂); 7.47 (т, ${}^{3}J_{HH} = 7.3$ Гц, 1H, C(6)H); 7.64 (т, ${}^{3}J_{HH} = 7.5$ Гц,1H, C(7)H); 7.75 (д, ${}^{3}J_{HH} = 8.0$ Гц, 1H, C(5)H); 7.90 (с, 1H, C(4)H); 8.06 (д, ${}^{3}J_{HH} = 8.5$ Гц, 1H, C(8)H). Спектр 13 С ЯМР (125.78 МГц, CDCl₃, δ , м. д.): 14.39 (C11); 14.46 (C13); 22.94 (C10); 25.19 (C12); 37.75 (C9); 125.62 (C8); 126.92 (C4); 127.36 (C4a); 128.41 (C7); 128.56 (C5); 134.02 (C3); 135.41 (C6); 146.31(C8a); 162.02(C2). Спектры соответствуют литературным данным [154].

N-Пропиланилин (5)

Выход до 30 % в зависимости от условий реакции и катализатора.

⁶ $_{7}$ $_{H_{1}}$ $_{9}$ ¹⁰ Масс-спектр m/z: 135 (M⁺). Спектр ¹Н ЯМР (500.17 МГц, CDCl₃, δ , м. д.): 1.03 (т, $^{3}J_{HH} = 7.3$ Гц, 3H, C(10)H₃), 1.64-1.71 (м, 2H, C(9)H₂), 3.11 (т, $^{3}J_{HH} = 7.0$ Гц, 2H, C(8)H₂), 3.67 (уш. с., 1H, N(1)H), 6.64 (д, $^{3}J_{HH} = 7.5$ Гц, 2H, C(3,7)H), 6.72 (т, $^{3}J_{HH} = 7.3$ Гц, 1H, C(5)H), 7.20 (т, $^{3}J_{HH} = 7.8$ Гц, 2H, C(4,6)H). Спектр ЯМР ¹³С (125.78 МГц, CDCl₃, δ , м. д.): 11.66 (C10), 22.74(C9), 45.81 (C8),

112.70(С3,7), 117.09(С5), 129.23(С4,6), 148.53(С2). Спектры соответствуют литературным данным [103].

Синтез тетрагидрохинолинаминов (ТГХА 2) реакциями анилина с альдегидами C_3 - C_4 осуществляли в проточном реакторе со стационарным слоем катализатора (1,0 г) при 250–350 °С, мольном соотношении анилин : альдегид = 1:2, с объемной скоростью подачи сырья 2,0–10,0 ч⁻¹, в течение 1 ч, в атмосфере азота [127].

Сырье (анилин и соответствующий альдегид с мольным соотношением 1:2, 7 ч⁻¹) с помощью шприцевого насоса подают в реактор проточного типа с неподвижным слоем катализатора (1,0 г H-Y_h) в течение 1 ч. Температура реакции 250 °C. После окончания реакции реактор продувают азотом в течение 0,5 ч. Из собранной в охлаждаемый льдом приемник реакционной массы продукты реакции экстрагируют хлористым метиленом, отгоняют растворитель и анализируют с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ) [139].

Синтез ТГХА реакциями анилина с 1,2-диолами осуществляли в проточном реакторе со стационарным слоем катализатора (1,5 г) при 300–400 °С, мольном соотношении анилин : диол = 1 : 1-4; 0,5-2,0 ч⁻¹, в течение 2 ч, в атмосфере азота.

Сырье (анилин и 1,2-диол с мольным соотношением 1 : 3; 1,0 ч⁻¹) с помощью шприцевого насоса подают в реактор проточного типа с неподвижным слоем катализатора (1,0 г H-ZSM-5_h) в течение 2 ч. Температура реакции 350 °C. После окончания реакции реактор продувают азотом в течение 0,5 ч. Из собранной в охлаждаемый льдом приемник реакционной массы продукты реакции экстрагируют хлористым метиленом, отгоняют растворитель и анализируют с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ) [131].

Кристаллы ТГХА осаждали из раствора этанола.

cis-2-метил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амин (2а)

Выход 28 %. $T_{плав} = 123-125$ °C, 121-124 °C лит. [156]. Масс-спектр m/z: 238. Спектр ЯМР ¹Н (400 МГц, CDCl₃, δ , м. д.): 1.29 (д, ³*J*_{HH} = 6.3 Гц, 3H, C(9)H₃), 1.53-1.62 (м, 1H, C(3)H[°]), 2.40-2.45 (м, 1H, C(3)H[°]), 3.66-3.70 (м, 1H, C(2)H), 3.82 (уш. с, 2H, N(1,10)H), 4.87-4.91 (м, 1H, C(4)H), 6.57 (д, ³*J*_{HH} = 7.9 Гц, 1H, C(8)H), 6.72-6.82 (м, 4H,

С(6)H, С(12,16)H, С(14)H), 7.12 (т, ${}^{3}J_{HH} = 7.5$ Гц, 1H, С(7)H), 7.28 (т, ${}^{3}J_{HH} = 7.8$ Гц, 2H, С(13,15)H), 7.46 (д, ${}^{3}J_{HH} = 7.7$ Гц, 1H, С(5)H). Спектр ЯМР 13 С (125.78 МГц, CDCl₃, δ , м. д.): 22.56 (С9), 37.98(С3), 47.06(С2), 50.18(С4), 113.10(С12,16), 114.08(С8), 117.36(С14), 117.57(С6), 123.42(С4а), 127.21(С5), 128.20(С7), 129.53(С13,15), 145.02(С8а), 147.99(С11).

trans-2-метил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амин (2a`) Выход 40 %. Масс-спектр m/z: 238 (M⁺). Спектр ЯМР ¹Н (400 МГц, CDCl₃, δ , м. д.): 1.25 (д, ³J_{HH} = 6.3 Гц, 3H, C(9)H₃), 1.55-1.63 (м, 1H, C(3)H⁻), 2.22 (д, ²J_{HH} = 13.6 Гц, 1H, C(3)H⁻), 3.43-3.50 (м, 1H, C(2)H), 3.90 (уш.с, 2H, N(1,10)H), 4.58 (с, 1H, C(4)H), 6.59 (д, ³J_{HH} = 8.1 Гц, 1H, C(8)H), 6.68-6.77 (м, 4H, C(6)H, C(12,16)H, C(14)H), 7.10 (т, ³J_{HH} = 7.6 Гц, 1H, C(7)H), 7.22-7.26 (м, 3H, C(13,15)H, C(5)H). Спектр ЯМР ¹³С (125.78 МГц, CDCl₃, δ , м. д.): 22.06(С9), 35.16(С3), 42.42(С2), 48.94(С4), 112.70(С12,16), 114.57(С8), 117.17(С14), 117.44(С6), 121.29(С4а), 128.64(С7), 129.41(С13,15), 130.81(С5), 145.03(С8а), 146.52(С11). Спектры ЯМР соединений **2a** и **2a**` соответствуют литературным источникам [157].

(2S, 3S, 4R)-3-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амин

(**2b**)

Выход до 62 % в зависимости от реакции и типа катализатора. $T_{плав} = 108-110$ °C, 106-107 °C лит.[158].

Масс-спектр m/z: 266 (M⁺). Спектр ЯМР ¹H (500.17 М Гц, CDCl₃, δ , м. д.): 1.01 (т, ³*J*_{*HH*} = 9.5 Гц, 3H, C(10)H₃), 1.12 (д, ${}^{3}J_{HH} = 8.5 \ \Gamma$ ц, 3H, C(11)H₃), 1.60-1.66 (м, 1H, C(9)H^{*}), 1.73-1.77 (м, 1H, C(9)H^{*}), 1.89-1.94 (м, 1H, C(3)H), 3.14-3.18 (м, 1H, C(2)H), 3.85 (уш. с, 2H, N(1,12)H), 4.34 (д, ${}^{3}J_{HH} = 11.5 \ \Gamma$ ц, 1H, C(4)H), 6.55 (д, ${}^{3}J_{HH} = 10.0 \ \Gamma$ ц, 1H, C(8)H), 6.63-6.73 (м, 4H, C(6,14,16,18)H), 7.06 (т, ${}^{3}J_{HH} = 8.8 \ \Gamma$ ц, 1H, C(7)H), 7.20-7.26 (м, 3H, C(5,15,17)H). Спектр ЯМР ¹³C (125.78 МГц, CDCl₃, δ , м. д.): 9.12(C10), 15.75(C11), 26.49(C9), 37.39(C3), 56.44(C4), 57.86(C2), 112.50(C14,18), 113.86(C8), 116.85(C16), 117.36(C6), 123.38(C4a), 128.05(C5), 128.31(C7), 129.45(C15,17), 144.37(C8a), 148.76(C13). Спектры ЯМР соответствуют литературным источникам [159].

Структура полученного (2*S*, 3*S*, 4*R*)-ТГХА (**2b**) установлена с помощью 1D и 2D методик ЯМР ¹Н и ¹³С спектроскопии и подтверждена данными рентгеновской дифрактометрии (Рисунок 4.1) (номер депонента в Кембриджском банке структурных данных – СССС-1846969).

Рисунок 4.1 – Структура (2*S*, 3*S*, 4*R*)-3-метил-2-этил-*N*-фенил-1,2,3,4-тетрагидро-4-хинолинамина (**2b**) в кристалле

2-пропил-3-этил-*N*-фенил-1,2,3,4-тетрагидрохинолин-4-амин (2с)

Выход 59 %. Масс-спектр m/z: 294 (M⁺). Спектр ¹Н ЯМР (500.17 М Гц, CDCl₃, δ , м. д.): 1.01 (т, ³J_{HH} = 7.5 Гц, 3H, C(11)H₃), 1.07 (т, ³J_{HH} = 7.3 Гц, 3H, C(13)H₃), 1.49-1.63 (м, 4H, C(10,12)H₂), 1.92-2.00 (м, 3H, C(9)H₂, C(3)H), 3.32-3.36 (м, 1H, C(2)H), 3.96 (уш. с, 2H, N(1,14)H), 4.47 (д, ${}^{3}J_{HH} = 9.5$ Гц, 1H, C(4)H), 6.59 (д, ${}^{3}J_{HH} = 7.8$ Гц, 1H, C(8)H), 6.71 (д, ${}^{3}J_{HH} = 7.8$ Гц, 1H, C(5)H), 6.79 (т, ${}^{3}J_{HH} = 8.8$ Гц, 2H, C(19,17)H), 7.12 (т, ${}^{3}J_{HH} = 7.8$ Гц, 1H, C(18)H), 7.28-7.37 (м, 4H, C(6,7,16,20)H). Спектр 13 C ЯМР (125.78 МГц, CDCl₃, δ , м. д.): 11.04 (C11), 14.14(C13), 19.58 (C10), 23.58 (C12), 37.05 (C9), 41.67 (C3), 49.78 (C4), 53.24 (C2), 112.46 (C8), 113.34 (C16,20), 114.35 (C18), 116.87(C6), 117.33 (C4a), 122.30(C5), 128.31(C17,19), 129.44 (C7), 143.59(C8a), 148.05(C15). Спектры ЯМР соответствуют литературным источникам [159].

Синтез 2-метил-3-н-пропил-1Н-индола (3) осуществляли в автоклаве при 220-260 °С, мольном соотношении анилин : 1,2-пропандиол = 1 : 1-10, в присутствии 2-20 % катализатора, в течение 1-9 ч [132].

В автоклав загружают анилин и 1,2-пропандиол с мольным соотношением 1:5 моль/моль, катализатор H-Y_h (массовая доля 10 %). Автоклав герметизируют, помещают в термостат (260 °C), реакцию проводят в условиях перемешивания в течение 6 ч. После проведения реакции автоклав охлаждают до комнатной температуры, реакционную массу экстрагируют дихлорметаном с поверхности катализатора, фильтруют, отгоняют растворитель, анализируют методом высокоэффективной жидкостной хроматографии (ВЭЖХ) [130].

2-метил-3-н-пропил-1Н-индол (**3**) выделяли методом колоночной хроматографии (сорбент – SiO₂, 35 – 70 нм, Sigma-Aldrich) с использованием дихлорметана в качестве элюента. Масс-спектры и спектры ЯМР ¹Н и ¹³С соединения (**3**) регистрировали аналогично хинолинам.

2-метил-3-н-пропил-1Н-индол (3)

Выход до 54 % в зависимости от типа катализатора.

Масс-спектр m/z: 173 (M⁺). Спектр ЯМР ¹Н (500.17 М Гц, CDCl₃, δ, м. д.): 1.06 (т, ³J_{HH} = 7.3 Гц, 3H, C(11)H₃), 1.73-1.80 (м, 2H, C(10)H₂), 2.41 (с, 3H, C(8)H₃), 2.78 (т, ³J_{HH} = 7.4 Гц, 8 2H, C(9)H₂), 7.17-7.23 (м, 2H, C(5,6)H), 7.31 (д, ³J_{HH} = 7.6 Гц, 1H, C(7)H), 7.63 (д, ${}^{3}J_{HH} = 7.0$ Гц, 1H, C(4)H), 7.78 (уш. с., 1H, N(1)H). Спектр ЯМР 13 C (125.78 МГц, CDCl₃, δ , м. д.): 11.66 (C8), 14.19(C11), 23.98(C10), 26.25(C9), 110.24(C7), 112.22(C3), 118.26(C4), 118.98(C5), 120.78(C6), 128.96(C3a), 130.89(C2), 135.32(C7a). Спектры ЯМР соответствуют литературным источникам [160]. Положение заместителей в пятичленном кольце установлено на основе двумерных спектров ЯМР с использованием гетероядерной методики HMBC (Рисунок 4.2).

Рисунок 4.2 – Фрагмент двумерного спектра ЯМР(НМВС) для соединения 3

Синтез 3,4-диметил-1-фенил-1Н-пиррола (4) осуществляли в автоклаве при 220-280 °С, мольном соотношении анилин : 1,2-пропандиол = 1 : 2-10, в присутствии 2-20 % катализатора, в течение 1-12 ч [132].

В автоклав загружают анилин и 1,2-пропандиол с мольным соотношением 1:5 моль/моль, катализатор H-ZSM- 5_h (массовая доля 10%). Автоклав герметизируют, помещают в термостат (260 °C), реакцию проводят в условиях перемешивания в течение 12 ч. После проведения реакции автоклав охлаждают до

комнатной температуры, реакционную массу экстрагируют дихлорметаном с поверхности катализатора, фильтруют, отгоняют растворитель, анализируют методом высокоэффективной жидкостной хроматографии (ВЭЖХ) [129]. 3,4диметил-1-фенил-1H-пиррол (4) выделяли методом колоночной хроматографии (сорбент – SiO₂, 35 – 70 нм, Sigma-Aldrich) с использованием дихлорметана в качестве элюента. Масс-спектр и спектры ЯМР ¹Н и ¹³С соединения (4) регистрировали аналогично хинолинам.

3,4-диметил-1-фенил-1Н-пиррол (4)

Выход до 54 % в зависимости от катализатора и условий реакции. Масс-спектр m/z: 171 (M⁺). Спектр ЯМР ¹H (500.17 М Гц, CDCl₃, δ , м. д.): 2.16 (c, 6H, C(4)H₃), 6.92 (c, 2H, C(2)H), 7.23 (т, ³J_{HH} = 7.2 Гц, 1H, C(8)H), 7.39 (д, ³J_{HH} = 8.3 Гц, 2H, C(6)H), 7.38-7.46 (м, 2H, C(7)H). Спектр ЯМР ¹³C (125.78 МГц, CDCl₃, δ , м. д.): 10.22 (C4,4^{*}), 116.79(C2,2^{*}), 119.49(C6,6^{*}), 120.84(C3,3^{*}), 124.64(C8), 129.49(C7,7^{*}), 140.80(C5). Спектры ЯМР соответствуют литературным источникам

[161]. Положение метильных заместителей установлено на основе двухмерных спектров ЯМР с использованием гетероядерной методики НМВС (Рисунок 4.3).

Рисунок 4.3 – Двумерный спектр ЯМР(НМВС) для соединения 4

Конверсию реагентов (X, %) и селективность образования продуктов (S_i , %) рассчитывали следующим образом:

$$X(\%) = 100\% * (C_{n \text{ b cupbe}} - C_{n \text{ b peak(uohhoŭ cmecu)}} / C_{n \text{ b cupbe}}, \qquad (1)$$

где С_{*n* в сырье – концентрация *n*-го компонента в исходной смеси;}

С_{*п* в реакционной смеси – концентрация *n*-го компонента в реакционной смеси;}

$$S_i(\%) = 100\% * C_i / \sum C_i,$$
 (2)

где С_{*i*} – концентрация *i*-го продукта в реакционной смеси;

 $\sum C_i$ – суммарная концентрация всех продуктов.

4.4 Заключение по главе 4

В главе 4 приведены методики получения каталитических систем на основе гранулированных цеолитов с иерархической пористой структурой и синтеза хинолинов, тетрагидрохинолинаминов и других N-гетероциклов. Анализ и идентификация полученных продуктов каталитических превращений выполнены с использованием высокоэффективной жидкостной хроматографии, хроматомасс-спектрометрии, одномерной и двумерной ЯМР ¹Н и ¹³С- спектроскопии. Исследования физико-химических свойств катализаторов проводились С следующих методов: рентгенофлуоресцентный использованием анализ, рентгенофазовый и рентгеноструктурный анализы, спектрофотометрия в УФ и видимой областях, низкотемпературная адсорбция-десорбция азота, ртутная электронная микроскопия, ИК-спектроскопия порометрия, сканирующая адсорбированного пиридина.
ЗАКЛЮЧЕНИЕ

Создан новый подход промышленно К синтезу ряда важных азогетероциклических соединений, основанный на использовании в качестве катализаторов гранулированных цеолитов с иерархической пористой структурой Y_h и ZSM-5_h. В ходе диссертационной работы разработаны методы управления активностью и селективностью новых каталитических систем в реакциях спиртов с анилином и его производными, в результате которых образуются хинолины и другие N-гетероциклы. Созданы перспективные гетерогенно-каталитические способы получения практически значимых хинолинов, алкилтетрагидрохинолинаминов, 4-диметил-1-фенил-1Н-пиррола и 2-метил-3-нпропил-1Н-индола с выходом до 78 %, которые основаны на реакциях анилина с многоатомными спиртами в присутствии гранулированных цеолитов H-Y_h и H-ZSM-5_h с иерархической пористой структурой.

Показано, что иерархические цеолиты проявляют более высокую активность, селективность и стабильность по сравнению с микропористыми цеолитами того же структурного типа, что обусловлено присутствием мезо- и макропор.

Установлено, что максимальной активностью и селективностью в реакции анилина с глицерином (реакция Скраупа) обладает цеолит H-ZSM-5_h, синтезированный из исходных гранул, содержащих 60 % микропористого цеолита H-ZSM-5 и 40 % аморфного алюмосиликата. Это обусловлено наличием наноразмерных кристаллов и наибольшим объемом мезопор в образце.

В результате исследования каталитических свойств цеолитов Na-Y_h, модифицированных оксидами переходных металлов (Co₃O₄, NiO, CuO, ZnO), в реакции анилина с *н*-пропанолом установлено, что активность и селективность образцов зависит от природы введенного оксида металла и силы/концентрации кислотных центров образца. Конверсия анилина возрастает в ряду NiO/Na-Y_h (20 %) < CuO/Na-Y_h (25 %) < Co₃O₄/Na-Y_h (26 %) < ZnO/Na-Y_h (49 %), суммарная селективность по хинолинам: NiO/Na-Y_h (42 %) < Co₃O₄/Na-Y_h (45 %) < CuO/Na-Y_h (51 %) < ZnO/Na-Y_h (63 %).

Впервые показано, что направление реакции анилина с 1,2-пропандиолом зависит от структурного типа цеолита и условий реакции. Под действием цеолитов H-ZSM-5 образуется преимущественно 3-метил-2-этилхинолин, в присутствии цеолитов H-Y – 2-метил-3-*н*-пропил-1H-индол.

Синтез алкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов, 2-метил-3-*н*-пропил-1Н-индола и 3,4-диметил-1-фенил-1Н-пиррола реакцией анилина с 1,2диолами осуществлен впервые.

выводы

1) Впервые исследованы закономерности синтеза хинолинов реакциями многоатомных и одноатомных спиртов с анилином и его производными в присутствии новых каталитических систем на основе гранулированных цеолитов с иерархической пористой структурой H-Y_h и H-ZSM-5_h. Установлено, что во всех изученных реакциях иерархические цеолиты проявили более высокую активность, селективность и стабильность по сравнению с микропористыми аналогами.

2) Впервые в реакции Скраупа изучены каталитические свойства трех образцов H-ZSM-5_h, приготовленных гидротермальной кристаллизацией гранул различного состава (10-60 % цеолита ZSM-5; 40-90 % алюмосиликата), и отличающихся текстурой и морфологией. Установлено, что максимальной активностью, селективность и стабильностью обладает цеолит H-ZSM-5_h (содержание цеолита ZSM-5 в исходных гранулах 60 %). В его присутствии хинолины образуются с селективностью 86 % при конверсии анилина 91 %. Время стабильной работы на нем более 9 ч в течение 4-х циклов работы с регенерацией.

3) Впервые реакцией анилина с 1,2-пропандиолом (автоклав, 260 °С, анилин : 1,2-пропандиол = 1 : 5 моль/моль) синтезирован 2-метил-3-*н*-пропил-1Н-индол (S = 55 %, конверсия анилина 99 %) в присутствии цеолита H-Y_h. 3,4-Диметил-1фенил-1Н-пиррол (S = 58 %, конверсия анилина 87 %) получен под действием цеолита H-ZSM-5_h в аналогичных условиях.

4) Установлено, что осуществление реакции анилина с 1,2-диолами в присутствии цеолита H-ZSM-5_h на проточной установке со стационарным слоем катализатора позволяет получать алкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-амины с селективностью до 92 % (350 °C, анилин : 1,2-диол =1:3 моль/моль, 1 ч⁻¹).

5) Реакцией анилина и его производных с 1,2-диолами под действием цеолита H-ZSM-5_h осуществлен синтез алкилхинолинов и их производных с

селективностью до 68 % (автоклав, 260 °С, анилин : 1,2-диол = 1:3 моль/моль; массовая доля катализатора 10 %, хлорбензол, 9 ч).

6) Разработан селективный способ синтеза хинолинов реакцией анилина с *н*-пропанолом в присутствии иерархического цеолита ZnO/Na-Y_h (конверсия анилина 49 %, селективность по хинолинам 63 %). Показано, что максимальная селективность по хинолинам обусловлена низкой концентрацией слабых кислотных центров и влиянием ZnO, который является донором электронов.

Список литературы

- Kumar, S. Biological Activities of Quinoline Derivatives / S. Kumar, S. Bawa, H. Gupta. – DOI 10.2174/138955709791012247 // Mini-Reviews in Medicinal Chemistry. – 2009. – V. 9, № 14. – P. 1648-1654.
- Lavanya, K. Recent reviews on quinoline derivatives as corrosion inhibitors / K. Lavanya, J. Saranya, S. Chitra. – DOI 10.1515/corrrev-2017-0129 // Corrosion Reviews. – 2018. – V. 36, № 4. – C. 365-371.
- Udhayakumari, D. A comprehensive anthology of literature based on quinoline chemosensors from 2006 to 2022. – DOI 10.1016/j.molstruc.2023.135715 / D. Udhayakumari // Journal of Molecular Structure. – 2023. – V. 1287. – P. 135715.
- 4. Shindy, H. A. Fundamentals in the chemistry of cyanine dyes: A review / H. A. Shindy. DOI 10.1016/j.dyepig.2017.06.029 // Dyes and Pigments. 2017. V. 145. P. 505-513.
- Yadav, P. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry / P. Yadav, K. Shah – DOI 10.1016/j.bioorg.2021.104639 // Bioorganic Chemistry. – 2021. – V. 109. – P. 104639.
- Recent contributions of quinolines to antimalarial and anticancer drug discovery research / T. Van De Walle, L. Cools, S. Mangelinckx, M. D'hooghe. – DOI 10.1016/j.ejmech.2021.113865 // European Journal of Medicinal Chemistry. – 2021. – V. 226. – P. 113865.
- 7. A review on recent progress in electrochemical detection of antimalarial drugs / Z. Nate, A. A. S. Gill, R. Chauhan, R. Karpoormath. DOI 10.1016/j.rechem.2022.100494 // Results in Chemistry. 2022. V. 4. P. 100494.
- Patel, K. B. A review: Structure-activity relationship and antibacterial activities of Quinoline based hybrids / K. B. Patel, P. Kumari. – DOI 10.1016/j.molstruc.2022.133634 // Journal of Molecular Structure. – 2022. – V. 1268. – P. 133634.

- Kaur, R. Synthetic and medicinal perspective of quinolines as antiviral agents / R. Kaur, K. Kumar. – DOI 10.1016/j.ejmech.2021.113220 // European Journal of Medicinal Chemistry. – 2021. – V. 215. – P. 113220.
- 10.Ilakiyalakshmi, M. Review on recent development of quinoline for anticancer activities / M. Ilakiyalakshmi, A. Arumugam Napoleon. DOI 10.1016/j.arabjc.2022.104168 // Arabian Journal of Chemistry. 2022. V. 15, № 11. P. 104168.
- 11.Design, synthesis, modeling studies and biological screening of novel pyrazole derivatives as potential analgesic and anti-inflammatory agents / A. T. Taher, M. T. Mostafa Sarg, N. R. El-Sayed Ali, N. Hilmy Elnagdi. DOI 10.1016/j.bioorg.2019.103023 // Bioorganic Chemistry. 2019. V. 89. P. 103023.
- 12.Fluorene vs carbazole substituent at quinoline core toward organic electronics / A. Slodek, D. Zych, A. Maroń [et al.] DOI 10.1016/j.dyepig.2019.03.032 // Dyes and Pigments. 2019. V. 166. P. 98-106.
- 13.Ilina, K. Cyanine Dyes Containing Quinoline Moieties: History, Synthesis, Optical Properties, and Applications / K. Ilina, M. Henary. DOI 10.1002/chem.202003697
 // Chemistry A European Journal. 2021. V. 27, № 13. P. 4230-4248.
- 14.Tribological Studies of Some Quinoline Derivatives and Their Synergistic Interaction with Phosphate Ester / D. K. Verma, Kalyani, V. Jaiswal, R. B. Rastogi. DOI 10.1080/10402004.2018.1549299 // Tribology Transactions. 2019. V. 62, № 2. P. 1-12.
- 15.Куликова, Н. А. Гербициды и экологические аспекты их применения / Н. А. Куликова, Γ. Φ. Лебедева. – Москва : Книжный дом, 2010. – 152 с. – ISBN 978-5-397-01431-1.
- 16.Quinoline-based metal complexes: Synthesis and applications / R. Kumar,
 A. Thakur, Sachin [et al.] DOI 10.1016/j.ccr.2023.215453 // Coordination
 Chemistry Reviews. 2024. V. 499. P. 215453.

- 17.Способ получения хинолина : Jining Qicai Chemical Co., Ltd : офиц. сайт. URL: http://www.qicaichemical.com/xwzx01/id/7.html (дата обращения: 10.04.2023).
- 18.Справочник коксохимика: Улавливание и переработка химических продуктов коксования. В 6 т. Т. 3. / ред. А. К. Шелков. Москва : Металлургия, 1966. 391 с.
- 19.Kaitwade, N. Quinoline Market Growth Trends and Forecast 2023-2033 // Future Market Insights Inc. : сайт. – URL: https://www.futuremarketinsights.com/reports/quinoline-market. Дата публикации: 15.01.2023.
- 20.Анализ рынка кокса и полукокса в России // Инвестиционно-аналитическая Группа «ПКР» : сайт. URL: https://prcs.ru/analytics-article/rynok-kamennougolnogo-koksa-i-polukoksa-3/. Дата публикации: 25.10.2020.
- 21.Дубичева, К. На Урале закрылось производство сырья для выпуска лекарств // Российская Газета : эл. газета. URL: https://rg.ru/2018/02/07/reg-urfo/proizvodstvo-syria-dlia-vypuska-lekarstv.html. Дата публикации: 07.02.2018.
- 22.Vapor-phase synthesis of 1,2-dihydro-2,2,4-trimethylquinolines from anilines and acetone over group 5–7 metal halide clusters as catalysts / S. Kamiguchi, I. Takahashi, H. Kurokawa [et al.] DOI 10.1016/j.apcata.2006.04.034 // Applied Catalysis A: General. 2006. V. 309, № 1. P. 70-75.
- 23.Cheng, C.C. The Friedlander synthesis of quinolines / C.C. Cheng, S.J. Yan. DOI 10.1002/0471264180.or028.02 // Organic Reactions. 1982. V. 28. P. 37-201.
- 24.Recent Advances in the Friedländer Reaction / J. Marco-Contelles, E. Pérez-Mayoral, A. Samadi [et al.] DOI 10.1021/cr800482c // Chemical Reviews. 2009.
 V. 109, № 6. P. 2652-2671.
- 25.Sulfamic acid: an efficient, cost-effective and recyclable solid acid catalyst for the Friedlander quinoline synthesis / J. S. Yadav, P. Purushothama Rao, D. Sreenu [et al.] DOI 10.1016/j.tetlet.2005.08.042 // Tetrahedron Letters. 2005. V. 46, № 42. P. 7249-7253.

- 26.Bandgar, B. P. Synthesis of Polysubstituted Quinolines Using Cyanuric Chloride as a Catalyst Under Aqueous Conditions / B. P. Bandgar, Parmeshwar. E. More, V. T. Kamble. DOI 10.1002/jccs.200800141 // Journal of the Chinese Chemical Society. 2008. V. 55, № 5. P. 947-951.
- 27.Silica supported perchloric acid: A mild and highly efficient heterogeneous catalyst for the synthesis of poly-substituted quinolines via Friedländer hetero-annulation / M. Narasimhulu, T. S. Reddy, K. C. Mahesh [et al.] DOI 10.1016/j.molcata.2006.10.049 // Journal of Molecular Catalysis A: Chemical. 2007. V. 266, № 1-2. P. 114-117.
- 28.Efficient Friedländer Synthesis of Quinoline Derivatives from 2-Aminoarylketones and Carbonyl Compounds Mediated by Recyclable PEG-Supported Sulfonic Acid / X.L. Zhang, Q.Y. Wang, S.R. Sheng [et al.] DOI 10.1080/00397910902754283 // Synthetic Communications. 2009. V. 39, № 18. P. 3293-3304.
- 29.Maleki, B. Friedlander Synthesis of Quinolines Promoted By Polymer-bound Sulfonic Acid / B. Maleki, E. R. Seresht, Z. Ebrahimi. DOI 10.1080/00304948.2015.1005986 // Organic Preparations and Procedures International. 2015. V. 47, № 2. P. 149-160.
- 30.Kiss, Á. Heterogeneous Catalytic Solvent-free Synthesis of Quinoline Derivatives via the Friedländer Reaction/ Á. Kiss, A. Potor, Z. Hell. DOI 10.1007/s10562-008-9573-7 // Catalysis Letters. 2008. V. 125, № 3-4. P. 250-253.
- 31.Baghbanian, S. M. CuFe₂O₄ nanoparticles: a magnetically recoverable and reusable catalyst for the synthesis of quinoline and quinazoline derivatives in aqueous media / S. M. Baghbanian, M. Farhang. DOI 10.1039/c3ra46119j // RSC Advances. 2014. V. 4, № 23. P. 11624.
- 32.Юровская, М. А. Химия ароматических гетероциклических соединений /
 М. А. Юровская. 2-е изд. Москва : Лаборатория знаний, 2020. 211 с. –
 ISBN 978-5-00101-832-2.
- 33.One-pot three-component regioselective synthesis of C1-functionalised 3arylbenzo[f]quinoline / R. Gattu, R. S. Basha, P. R. Bagdi, A. T. Khan. – DOI 10.1039/C5RA23413A // RSC Advances. – 2016. – V. 6, № 14. – P. 11675-11682.

- 34.Pandeya, S. N. Synthetic approaches for quinoline and isoquinoline / S. N. Pandeya,
 A. Tyagi // International Journal of Pharmacy and Pharmaceutical Sciences. 2011.
 V. 3, № 3. P. 10.
- 35.Coproduct Promoted Povarov Reaction: Synthesis of Substituted Quinolines from Methyl Ketones, Arylamines, and α-Ketoesters / Q. Gao, S. Liu, X. Wu [et al.] – DOI 10.1021/acs.joc.5b00785 // The Journal of Organic Chemistry. – 2015. – V. 80, № 11. – P. 5984-5991.
- 36.Quinolines: Microwave-assisted synthesis and their antifungal, anticancer and radical scavenger properties / N. A. Liberto, J. B. Simões, S. De Paiva Silva [et al.] DOI 10.1016/j.bmc.2016.12.023 // Bioorganic & Medicinal Chemistry. 2017. V. 25, № 3. P. 1153-1162.
- 37.Synthesis of substituted 8-aminoquinolines and phenanthrolines through a Povarov approach / K. De, J. Legros, B. Crousse [et al.] DOI 10.1039/C0OB00496K // Organic & Biomolecular Chemistry. 2011. V. 9, № 2. P. 347-350.
- 38.Employing Arylacetylene as a Diene Precursor and Dienophile: Synthesis of Quinoline via the Povarov Reaction / X.X. Yu, P. Zhao, Y. Zhou [et al.] DOI 10.1021/acs.joc.1c00793 // The Journal of Organic Chemistry. 2021. V. 86, № 12. P. 8381-8388.
- 39.More, S. TMSCI-Catalyzed Aza-Diels-Alder Reaction: A Simple and Efficient -Synthesis of Pyrano- and Furanoquinolines / S. More, M. Sastry, C.F. Yao. – DOI 10.1055/s-2006-939711 // Synlett. – 2006. – V. 2006, № 9. – P. 1399-1403.
- 40.Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity / O. Di Pietro, E. Vicente-García, M. C. Taylor [et al.] DOI 10.1016/j.ejmech.2015.10.007 // European Journal of Medicinal Chemistry. 2015. V. 105. P. 120-137.
- 41.Regioselective three-component synthesis of 2,3-disubstituted quinolines *via* the enaminone modified Povarov reaction / Y. Li, X. Cao, Y. Liu, J.P. Wan. DOI 10.1039/C7OB02411H // Organic & Biomolecular Chemistry. 2017. V. 15, № 45. P. 9585-9589.

- 42.Study and application of graphene oxide in the synthesis of 2,3-disubstituted quinolines *via* a Povarov multicomponent reaction and subsequent oxidation / S. Caputo, A. Kovtun, F. Bruno [et al.] DOI 10.1039/D2RA01752K // RSC Advances. 2022. V. 12, № 25. P. 15834-15847.
- 43.Kulkarni, A. Microwave-assisted multicomponent domino cyclization– aromatization: an efficient approach for the synthesis of substituted quinolines / A. Kulkarni, B. Török. – DOI 10.1039/c001076f // Green Chemistry. – 2010. – V. 12, № 5. – P. 875.
- 44.Zhang, Y. Iron-catalyzed tandem reactions of aldehydes, terminal alkynes, and primary amines as a strategy for the synthesis of quinoline derivatives / Y. Zhang,
 P. Li, L. Wang. DOI 10.1002/jhet.417 // Journal of Heterocyclic Chemistry. 2011. V. 48, № 1. P. 153-157.
- 45.Jeena, V. A Green, Solvent-Free One-Pot Synthesis of Disubstituted Quinolines via A3-Coupling Using 1 Mol% FeCl₃ / V. Jeena, S. Naidoo. DOI 10.3987/COM-15-13391 // Heterocycles. 2016. V. 92, № 9. P. 1655.
- 46.Cu(I)-catalyzed three component coupling protocol for the synthesis of quinoline derivatives / H. Z. Syeda Huma, R. Halder, S. Singh Kalra [et al.] DOI 10.1016/S0040-4039(02)01240-6 // Tetrahedron Letters. 2002. V. 43, № 36. P. 6485-6488.
- 47.Efficient and environmentally-benign three-component synthesis of quinolines and bis-quinolines catalyzed by recyclable potassium dodecatungstocobaltate trihydrate under microwave irradiation / S. Anvar, I. Mohammadpoor-Baltork, S. Tangestaninejad [et al.] DOI 10.1039/c2ra20639k // RSC Advances. 2012. V. 2, № 23. P. 8713.
- 48.Kumar, A. Microwave-Assisted and Yb(OTf)₃-Promoted One-Pot Multicomponent Synthesis of Substituted Quinolines in Ionic Liquid / A. Kumar, V. Rao. DOI 10.1055/s-0030-1261200 // Synlett. 2011. V. 2011, № 15. P. 2157-2162.
- 49.Naidoo, S. Synthesis of 2,4-Disubstituted Quinoline Derivatives via A3-Coupling: An EcoScale Evaluation / S. Naidoo, V. Jeena. – DOI 10.1055/s-0036-1588176 // Synthesis. – 2017. – V. 49, № 12. – P. 2621-2631.

- 50.Continuous Flow Doebner–Miller Reaction and Isolation Using Continuous Stirred Tank Reactors / M. B. Yadav, S. Kulkarni, R. A. Joshi, A. A. Kulkarni. – DOI 10.1021/acs.oprd.6b00179 // Organic Process Research & Development. – 2016. – V. 20, № 9. – P. 1621-1625.
- 51.Ramann, G. Recent Advances in Metal-Free Quinoline Synthesis / G. Ramann,
 B. Cowen. DOI 10.3390/molecules21080986 // Molecules. 2016. V. 21, № 8. –
 P. 986.
- 52.Kharasch, M. S. The Condensation of Butyraldehyde and Aniline / M. S. Kharasch,
 I. Richlin, F. R. Mayo. DOI 10.1021/ja01860a010 // Journal of the American Chemical Society. 1940. V. 62, № 3. P. 494-497.
- 53.Recent advances in the synthesis of quinolines: a review / S. M. Prajapati,
 K. D. Patel, R. H. Vekariya [et al.] DOI 10.1039/C4RA01814A // RSC Adv. –
 2014. V. 4, № 47. P. 24463-24476.
- 54.Aerobic Synthesis of Substituted Quinoline from Aldehyde and Aniline: Copper-Catalyzed Intermolecular C–H Active and C–C Formative Cyclization / R. Yan, X. Liu, C. Pan [et al.] DOI 10.1021/ol402312h // Organic Letters. 2013. V. 15, № 18. P. 4876-4879.
- 55.Oxidant Effect of H₂O₂ for the Syntheses of Quinoline Derivatives via One-Pot Reaction of Aniline and Aldehyde / Q. Guo, W. Wang, W. Teng [et al.] DOI 10.1080/00397911.2011.563022 // Synthetic Communications. 2012. V. 42, № 17. P. 2574-2584.
- 56.The Ruthenium Complex Catalyzed *N*-Heterocyclization of Aminoarenes to Quinoline Derivatives Using Allylic Alcohols and Aliphatic Aldehydes / Y. Watanabe, Y. Tsuji, Y. Ohsugi, J. Shida. DOI 10.1246/bcsj.56.2452 // Bulletin of the Chemical Society of Japan. 1983. V. 56, № 8. P. 2452-2457.
- 57.Synthesis of substituted quinolines via the condensation of anilines with aliphatic and aromatic aldehydes in the presence of transition metal and rare-earth metal catalysts / U. M. Dzhemilev, F. A. Selimov, R. A. Khusnutdinov [et al.] DOI 10.1007/BF00961307 // Bulletin of the Academy of Sciences of the USSR Division of Chemical Science. 1991. V. 40, № 6. P. 1248-1253.

- 58.A new approach to the preparation of lanthanide catalysts for the synthesis of 2propyl-3-ethylquinoline based on the reactions of LnCl₃·6H₂O crystalline hydrates with triisobutylaluminum / R. G. Bulgakov, S. P. Kuleshov, A. R. Makhmutov [et al.] – DOI 10.1134/S0023158406040136 // Kinetics and Catalysis. – 2006. – V. 47, № 4. – P. 572-579.
- 59.The rhodium catalyzed N-heterocyclization. The synthesis of quinolines from aminoarenes and aldehydes / Y. Watanabe, M. Yamamoto, S. C. Shim [et al.] DOI 10.1246/cl.1979.1025 // Chemistry Letters. 1979. V. 8, № 8. P. 1025-1026.
- 60.Minkin, V. I. Structure and reactivity of the condensation products of aromatic amines with aliphatic aldehydes: VII. Synthesis and structure of bis-propylidenearylamines / V. I. Minkin, L. E. Nivorozhkin, A. V. Knyazev. DOI 10.1007/BF00742373 // Chemistry of Heterocyclic Compounds. 1967. V. 2, № 3. P. 298-302.
- 61.Efficient microwave-assisted synthesis of quinolines and dihydroquinolines under solvent-free conditions / B. C. Ranu, A. Hajra, S. S. Dey, U. Jana. DOI 10.1016/S0040-4020(02)01587-9 // Tetrahedron. 2003. V. 59, № 6. P. 813-819.
- 62.Xuan, D. D. Recent Progress in the Synthesis of Quinolines / D. D. Xuan. DOI 10.2174/1570179416666190719112423 // Current Organic Synthesis. 2019. V. 16, № 5. P. 671-708.
- 63. The effect of crystal sizes of HZSM-5 zeolites in ethanol conversion to propylene / T. Meng, D. Mao, Q. Guo, G. Lu. DOI 10.1016/j.catcom.2012.01.030 // Catalysis Communications. 2012. V. 21. P. 52-57.
- 64.Experimental and theoretical study of quinoline derivatives obtained by slight modifications of the standard Skraup reaction / B. Douara, M. Manachou, N. Merabet [et al.] DOI 10.1016/j.molstruc.2019.05.006 // Journal of Molecular Structure. 2019. V. 1193. P. 416-428.
- 65.Al Marzouq, D. S. Glycerol and Q-Tubes: Green Catalyst and Technique for Synthesis of Polyfunctionally Substituted Heteroaromatics and Anilines / D. S. Al

Marzouq, N. M. H. Elnagdi. – DOI 10.3390/molecules24091806 // Molecules. – 2019. – V. 24, № 9. – P. 1806.

- 66.Cohn, B. E. A modification of the Skraup synthesis of quinoline / B. E. Cohn,
 R. G. Gustavson. DOI 10.1021/ja01397a018 // Journal of the American Chemical Society. 1928. T. 50, № 10. C. 2709-2711.
- 67.Amarasekara, A. S. 1-(1-Alkylsulfonic)-3-methylimidazolium chloride Brönsted acidic ionic liquid catalyzed Skraup synthesis of quinolines under microwave heating / A. S. Amarasekara, M. A. Hasan. DOI 10.1016/j.tetlet.2014.04.047 // Tetrahedron Letters. 2014. V. 55, № 22. P. 3319-3321.
- 68. Yamashkin, S. A. Traditional and modern approaches to the synthesis of quinoline systems by the Skraup and Doebner-Miller methods / S. A. Yamashkin, E. A. Oreshkina. DOI 10.1007/s10593-006-0150-y // Chemistry of Heterocyclic Compounds. 2006. V. 42, № 6. P. 701-718.
- 69.Quinoline: A versatile heterocyclic / A. Marella, O. P. Tanwar, R. Saha [et al.] DOI 10.1016/j.jsps.2012.03.002 // Saudi Pharmaceutical Journal. 2013. V. 21, № 1. P. 1-12.
- 70.Udayakumar, V. Synthesis of quinolines from glycerol over tungstic acid functionalized mesoporous KIT-6 catalyst in aqueous medium / V. Udayakumar, A. Pandurangan // Indian Journal of Chemistry. 2016. V. 8. C. 919-928.
- 71.Reddy, B. M. Vapour phase synthesis of quinoline from aniline and glycerol over mixed oxide catalysts / B. M. Reddy, I. Ganesh. DOI 10.1016/S1381-1169(99)00361-1 // Journal of Molecular Catalysis A: Chemical. 2000. V. 151, № 1-2. P. 289-293.
- 72.Reaction pathway in the vapour-phase synthesis of indole and alkylindoles / M. Campanati, S. Franceschini, O. Piccolo, A. Vaccari. DOI 10.1016/j.jcat.2005.02.014 // Journal of Catalysis. 2005. V. 232, № 1. P. 1-9.
- 73.Iridium- and ruthenium-catalysed synthesis of 2,3-disubstituted indoles from anilines and vicinal diols / M. Tursky, L. L. R. Lorentz-Petersen, L. B. Olsen, R. Madsen. DOI 10.1039/c0ob00106f // Organic & Biomolecular Chemistry. 2010. V. 8, № 24. P. 5576.

- 74.Effect of ZnO on the performance of Ag/SiO2 catalyst for the vapor-phase synthesis of 3-methylindole / Y. Hu, W. Lü, D. Liu [et al.] DOI 10.1016/S1003-9953(08)60139-5 // Journal of Natural Gas Chemistry. 2009. V. 18, № 4. P. 445-448.
- 75.Xing, J. D. Study on Cu-Based Catalysts for Synthesis of Indole / J. D. Xing,
 X. F. Jia. DOI 10.4028/www.scientific.net/AMR.295-297.668 // Advanced
 Materials Research. 2011. V. 295-297. C. 668-671.
- 76.Synthesis of indoles through acceptorless dehydrogenative coupling catalyzed by nickel on silica-alumina / A. Charvieux, A. A. Hammoud, M.C. Duclos [et al.] DOI 10.1016/j.tetlet.2021.153270 // Tetrahedron Letters. 2021. V. 78. P. 153270.
- 77.Vapor-Phase Synthesis of 3-Methylindole over Fe-, Co-, or Ni-Promoted Ag/SiO₂
 Catalysts / W. Lü, X. Liu, D. Liu [et al.] DOI 10.1016/S1872-2067(08)60145-X //
 Chinese Journal of Catalysis. 2009. V. 30, № 12. P. 1287-1290.
- 78.Straight Access to Indoles from Anilines and Ethylene Glycol by Heterogeneous Acceptorless Dehydrogenative Condensation / P. J. Llabres-Campaner, R. Ballesteros-Garrido, R. Ballesteros, B. Abarca. DOI 10.1021/acs.joc.7b02722 // The Journal of Organic Chemistry. 2018. V. 83, № 1. P. 521-526.
- 79.Quinoline Synthesis by the Reaction of Anilines with 1,2-diols Catalyzed by Iron Compounds: Synthesis of Quinolines / R. Khusnutdinov, A. Bayguzina, R. Aminov, U. Dzhemilev. DOI 10.1002/jhet.2425 // Journal of Heterocyclic Chemistry. 2016. V. 53, № 4. P. 1022-1029.
- 80.Campanati, M. Environment-friendly synthesis of nitrogen-containing heterocyclic compounds / M. Campanati, A. Vaccari, O. Piccolo. DOI 10.1016/S0920-5861(00)00345-X // Catalysis Today. 2000. V. 60, № 3-4. P. 289-295.
- 81.Synthesis of N-alkylanilines and substituted quinolines by reaction of aniline with alcohols and CCl₄ effected with Ni-containing catalysts / R. I. Khusnutdinov, A. R. Baygusina, R. I. Aminov, U. M. Dzhemilev. DOI 10.1134/S1070428012050107 // Russian Journal of Organic Chemistry. 2012. V. 48, № 5. P. 690-693.

- 82.Assembly of Diversely Substituted Quinolines via Aerobic Oxidative Aromatization from Simple Alcohols and Anilines / J. Li, J. Zhang, H. Yang, G. Jiang. DOI 10.1021/acs.joc.6b03064 // The Journal of Organic Chemistry. 2017. V. 82, № 6. P. 3284-3290.
- 83.Makhmutov, A. R. Single-Pot Synthesis of Alkyl-Substituted Quinolines and Indoles via Photoinduced Oxidation of Primary Alcohols / A. R. Makhmutov. DOI 10.1134/S1070363218050080 // Russian Journal of General Chemistry. 2018. V. 88, № 5. P. 892-897.
- 84.Makhmutov, A. R. Synthesis of Alkylquinolines by the Reaction of Aniline with Photooxidation Alcohols in the Presence of FeCl₃·6H₂O / A. R. Makhmutov. – DOI 10.17516/1998-2836-0014 // Journal of Siberian Federal University. Chemistry. – 2017. – V. 10. – P. 154-164.
- 85.Makhmutov, A. R. One-Pot Oxidative Synthesis of Substituted Quinolines from Alcohols and Arylamines Catalyzed by Fe(CrO₂)₂ in Water Medium / A. R. Makhmutov. DOI 10.1134/S1070428018080080 // Russian Journal of Organic Chemistry. 2018. V. 54, № 8. P. 1166-1172.
- 86.Masaki, M. Preparation of 2-Alkyiquinolines by TiO₂-photocatalyzed Reaction of Arylamines in Alcohols / M. Masaki, F. Kohji, Sh. Katsuyoshi. DOI 10.4011/shikizai1937.75.319 // J. Jpn. Soc. Colour Mater. 2002. V. 75, № 7. C. 319-323.
- 87.Selvam, K. Au-doped TiO₂ nanoparticles for selective photocatalytic synthesis of quinaldines from anilines in ethanol / K. Selvam, M. Swaminathan. DOI 10.1016/j.tetlet.2010.07.071 // Tetrahedron Letters. 2010. V. 51, № 37. P. 4911-4914.
- 88.Сендеров, Е. Е. Цеолиты, их синтез и условия образования в природе /
 Е. Е. Сендеров. Москва : Наука, 1970. 292 с.
- 89.Zn-promoted Hβ zeolite for gas-phase catalyzed aza-heterocyclic-aromatization of acrolein dimethyl acetal and aniline to quinolines / A. Li, C. Luo, Y. Liu [et al.] DOI 10.1016/j.mcat.2020.110833 // Molecular Catalysis. 2020. V. 486. P. 110833.

- 90.Synthesis of quinolines from aniline and propanol over modified USY zeolite: catalytic performance and mechanism evaluated by in situ Fourier transform infrared spectroscopy / C. Huang, A. Li, L.J. Li, Z.S. Chao. – DOI 10.1039/C7RA04526C // RSC Advances. – 2017. – V. 7, № 40. – P. 24950-24962.
- 91.Synthesis of quinoline derivatives from anilines and aldehydes catalyzed by Cp₂ ZrCl₂ and recyclable Cp₂ZrCl₂/MCM-41 system / Q. Guo, L. Liao, W. Teng [et al.] – DOI 10.1016/j.cattod.2015.08.035 // Catalysis Today. – 2016. – V. 263. – P. 117-122.
- 92.Khorshidi, A. Ruthenium-exchanged FAU-Y zeolite catalyzed improvement in the synthesis of 6H-indolo[2,3-b]quinolines / A. Khorshidi, K. Tabatabaeian. DOI 10.1016/j.molcata.2011.05.010 // Journal of Molecular Catalysis A: Chemical. 2011. V. 344, № 1-2. P. 128-131.
- 93.Патент № 5700942A USA, IPC C07D215/06. Process for preparing quinoline bases: № US104995P : заявл. 11.07.1995 : опубл. 23.12.1997 / McAteer C. H., Davis R. D. Sr, Calvin J. R. ; заявитель и патентообладатель REILLY IND INC. 16 с.
- 94.High efficiency microwave-assisted synthesis of quinoline from acrolein diethyl acetal and aniline utilizing Ni/Beta catalyst / A. Li, Z. Yang, T. Yang [et al.] DOI 10.1016/j.catcom.2018.06.024 // Catalysis Communications. 2018. V. 115. P. 21-25.
- 95.Huang, C. Heterogeneous catalytic synthesis of quinoline compounds from aniline and C₁ –C₄ alcohols over zeolite-based catalysts / C. Huang, A. Li, Z.S. Chao. – DOI 10.1039/C7RA08442K // RSC Adv. – 2017. – V. 7, № 76. – P. 48275-48285.
- 96.A novel approach to vapor-phase synthesis of 2- and 4-methylquinoline from lactic acid and aniline / A. Li, C. Huang, C.W. Luo [et al.] DOI 10.1016/j.catcom.2017.02.005 // Catalysis Communications. 2017. V. 98. P. 13-16.
- 97.Teimouri, A. A mild and highly efficient Friedländer synthesis of quinolines in the presence of heterogeneous solid acid nano-catalyst / A. Teimouri, A. Najafi

Chermahini. – DOI 10.1016/j.arabjc.2011.05.018 // Arabian Journal of Chemistry. – 2016. – V. 9. – P. 433-439.

- 98.Microporous and Hierarchical ZSM-5 Zeolites in Friedländer Synthesis / N. G. Grigor'eva, S. V. Bubennov, A. S. Artem'eva [et al.] DOI 10.1134/S0965544123050092 // Petroleum Chemistry. 2023. V. 63, № 7. P. 759-768.
- 99.Zeolites in the synthesis of quinolines by the Skraup reaction / N. G. Grigor´eva,
 A. V. Bayburtli, R. Z. Kuvatova [et al.] DOI 10.1007/s11172-020-2793-8 //
 Russian Chemical Bulletin. 2020. V. 69, № 3. P. 525-528.
- 100. Zeolites Promoting Quinoline Synthesis via Friedländer Reaction / J. López-Sanz,
 E. Pérez-Mayoral, D. Procházková [et al.] DOI 10.1007/s11244-010-9603-8 //
 Topics in Catalysis. 2010. V. 53, № 19-20. P. 1430-1437.
- 101. High-efficiency catalytic performance over mesoporous Ni/beta zeolite for the synthesis of quinoline from glycerol and aniline / A. Li, C. Huang, C.W. Luo [et al.]
 DOI 10.1039/C6RA26736J // RSC Advances. 2017. V. 7, № 16. P. 9551-9561.
- 102. База данных структур цеолитов: сайт. URL:http://www.izastructure.org/databases/ (дата обращения 21.12.2023).
- 103. Aluminosilicates with Different Porous Structures in the Synthesis of 2-Ethyl-3-Methylquinoline / N. G. Grigor'eva, S. A. Kostyleva, A. R. Gataulin [et al.] – DOI 10.1134/S0965544119070065 // Petroleum Chemistry. – 2019. – V. 59, № 7. – P. 719-725.
- 104. Vapor-phase synthesis of 3-methylindole from glycerol and aniline over zeolitessupported Cu-based catalysts / Y. Cui, X. Zhou, Q. Sun, L. Shi. – DOI 10.1016/j.molcata.2013.06.015 // Journal of Molecular Catalysis A: Chemical. – 2013. – V. 378. – P. 238-245.
- Hakim Siddiki, S. M. A. Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts / S. M. A. Hakim Siddiki, T. Toyao, K. Shimizu. DOI 10.1039/C8GC00451J // Green Chemistry. 2018. V. 20, № 13. P. 2933-2952.

- 106. Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols / M. Maji, D. Panja, I. Borthakur, S. Kundu. DOI 10.1039/D0QO01577F // Organic Chemistry Frontiers. 2021. V. 8, № 11. P. 2673-2709.
- 107. Subaramanian, M. Recent advances in nickel-catalyzed C–C and C–N bond formation *via* HA and ADC reactions / M. Subaramanian, G. Sivakumar, E. Balaraman. DOI 10.1039/D1OB00080B // Organic & Biomolecular Chemistry. 2021. V. 19, № 19. P. 4213-4227.
- 108. Hofmann, N. Borrowing Hydrogen and Acceptorless Dehydrogenative Coupling in the Multicomponent Synthesis of N-Heterocycles: A Comparison between Base and Noble Metal Catalysis / N. Hofmann, K. C. Hultzsch. – DOI 10.1002/ejoc.202100695 // European Journal of Organic Chemistry. – 2021. – V. 2021, № 46. – P. 6206-6223.
- 109. Influence of Granulated Hierarchical Zeolite ZSM-5 Physicochemical Properties on Its Catalytic Performance in Skraup Synthesis of Quinolines / O. S. Travkina, A. S. Artem'eva, A. Kh. Ishkildina [et al.] DOI 10.1134/S0965544124030022 // Petroleum Chemistry. 2024. V. 64, № 2. P. 245-257.
- 110. Treacy, M.M.J. Collection of Simulated XRD Powder Patterns for Zeolites / M.M.J. Treacy, John. B. Higgins, J.B. Higgins. London : Elsevier, 2001. 380 c. ISBN 978-0-444-50702-0.
- 111. Gregg, S. J. Adsorption, surface area, and porosity / S. J. Gregg, K. S. Sing. –
 London : Academic Press, 1995. 371 c.
- 112. Emeis, C. A. Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts / C. A. Emeis. – DOI 10.1006/jcat.1993.1145 // Journal of Catalysis. – 1993. – V. 141, № 2. – P. 347-354.
- 113. Crystalline and amorphous aluminosilicates with varying pore structures in the synthesis of 1,5-benzodiazepine / N. G. Grigorieva, S. V. Bubennov, N. A. Filippova [et al.] DOI 10.1007/s11172-023-4033-5 // Russian Chemical Bulletin. 2023. V. 72, № 10. P. 2357-2365.

- 114. Nanosized ZnO confined inside a Faujasite X zeolite matrix: Characterization and optical properties / C. Bouvy, W. Marine, R. Sporken, B. L. Su. DOI 10.1016/j.colsurfa.2006.12.043 // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007. V. 300, № 1-2. P. 145-149.
- 115. Handbook of Heterogeneous Catalysis: Online. Handbook of Heterogeneous Catalysis / eds. G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp. – Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2008. – 3865 p. – ISBN 9783527312412.
- 116. Synthesis, microstructures and UV–vis absorption properties of β-Ni(OH)₂ nanoplates and NiO nanostructures / Y. Qi, H. Qi, J. Li, C. Lu. DOI 10.1016/j.jcrysgro.2008.06.047 // Journal of Crystal Growth. 2008. V. 310, № 18. P. 4221-4225.
- 117. Attia, Y. A. Nano-Co₃O₄-catalyzed microwave-assisted one-pot synthesis of some seleno [2, 3-b] pyridine/quinoline derivatives / Y. A. Attia, S. H. Abdel-Hafez. DOI 10.1007/s11164-021-04478-8 // Research on Chemical Intermediates. 2021. V. 47, № 9. P. 3719-3732.
- 118. Investigation of structural, optical and electrical properties of Co₃O₄ nanoparticles
 / R. Bhargava, S. Khan, N. Ahmad, M. M. N. Ansari. DOI 10.1063/1.5032369 //
 AIP Conference Proceedings (ICC 2017). 2018. V. 1953, № 1. C. 030034.
- 119. Tuning Y-zeolite based catalyst with copper for enhanced activity and selectivity in vapor phase hydrogenolysis of glycerol to 1,2-propanediol / H. Mitta, P. K. Seelam, S. Ojala [et al.] DOI 10.1016/j.apcata.2017.10.019 // Applied Catalysis A: General. 2018. V. 550. P. 308-319.
- 120. Cobalt speciation in cobalt oxide-apatite materials: structure–properties relationship in catalytic oxidative dehydrogenation of ethane and butan-2-ol conversion / K. El Kabouss, M. Kacimi, M. Ziyad [et al.] DOI 10.1039/B602514E // J. Mater. Chem. 2006. V. 16, № 25. P. 2453-2463.
- Possibilities of Microporous and Hierarchical MFI Zeolites in the Synthesis of Nitrogen Heterocyclic Compounds / N. G. Grigorieva, O. S. Travkina,

S. V. Bubennov [et al.] – DOI 10.1134/S0023158422060052 // Kinetics and Catalysis. – 2022. – V. 63, № 6. – P. 781-792.

- 122. Synthesis of Quinolines by the Skraup Reaction: Hierarchical Zeolites vs Microporous Zeolites / N. G. Grigorieva, A. V. Bayburtli, O. S. Travkina [et al.] – DOI 10.1002/slct.202103532 // ChemistrySelect. – 2022. – V. 7, № 11. – P. e202103532.
- 123. Kim, Y. T. Gas-phase dehydration of glycerol over ZSM-5 catalysts / Y. T. Kim, K.D. Jung, E. D. Park. – DOI 10.1016/j.micromeso.2009.11.037 // Microporous and Mesoporous Materials. – 2010. – V. 131, № 1-3. – P. 28-36.
- 124. High-efficiency catalytic performance over mesoporous Ni/beta zeolite for the synthesis of quinoline from glycerol and aniline / A. Li, C. Huang, C.W. Luo [et al.]
 DOI 10.1039/C6RA26736J // RSC Advances. 2017. V. 7, № 16. P. 9551-9561.
- 125. Kim, Y. T. A comparative study for gas-phase dehydration of glycerol over Hzeolites / Y. T. Kim, K.D. Jung, E. D. Park. – DOI 10.1016/j.apcata.2010.12.007 // Applied Catalysis A: General. – 2011. – V. 393, № 1-2. – P. 275-287.
- 126. Argyle, M. Heterogeneous Catalyst Deactivation and Regeneration: A Review / M. Argyle, C. Bartholomew. DOI 10.3390/catal5010145 // Catalysts. 2015. V. 5, № 1. P. 145-269.
- 127. The Synthesis of (2S, 3S, 4R)-2,3-Dialkyl-N-Phenyl-1,2,3,4-Tetrahydro-4-Quinolinamines in the Presence of Crystalline and Amorphous Aluminosilicates / N. G. Grigor'eva, S. A. Kostyleva, A. S. Artem'eva [et al.] DOI 10.1134/S0965544120040088 // Petroleum Chemistry. 2020. V. 60, № 4. P. 525-531.
- 128. Патент № 2803740 Российская Федерация, МПК С07D 215/04 (2006.01). Способ получения 3-метил-2-этилхинолина: № 2023104340 : заявл. 22.02.2023
 : опубл. 19.09.2023 / Кутепов Б.И., Григорьева Н.Г., Артемьева А.С., Бубеннов С.В. ; заявитель и патентообладатель УФИЦ РАН. – 7 с.
- 129. Патент № 2830162 Российская Федерация, МПК С07D 207/323 (2006.01). Способ получения 3,4-диметил-1-фенилпиррола: № 2023126350 : заявл.

13.10.2023 : опубл. 14.11.2024 / Кутепов Б. И., Григорьева Н. Г., Артемьева А.
С., Травкина О.С., Бубеннов С.В. ; заявитель и патентообладатель УФИЦ РАН. – 8 с.

- 130. Патент № 2831365 Российская Федерация, МПК С07D 209/08 (2006.01). Способ получения 2-метил-3-пропилиндола: № 2024112475 : заявл. 07.05.2024
 : опубл. 04.12.2024 / Кутепов Б. И., Григорьева Н. Г., Артемьева А. С., Бубеннов С.В., Бикбаева В.Р., Филиппова Н.А. ; заявитель и патентообладатель УФИЦ РАН. – 8 с.
- 131. Патент № 2808560 Российская Федерация, МПК С07D 215/04 (2006.01). Способ получения З-метил-2-этил-N-фенил-1,2,3,4-тетрагидрохинолин-4амина: № 2023112114 : заявл. 11.05.2023 : опубл. 29.11.2023 / Кутепов Б.И., Григорьева Н.Г., Артемьева А.С., Бубеннов С.В., Филиппова Н.А. ; заявитель и патентообладатель УФИЦ РАН. – 7 с.
- 132. Granulated hierarchical zeolites novel pathways for utilizing bio-1,2-propanediol in the synthesis of practically important N-heterocycles / A. S. Artem'eva, N. G. Grigoreva, O. S. Travkina [et al.] DOI 10.1016/j.micromeso.2024.113478 // Microporous and Mesoporous Materials. 2025. V. 386. P. 113478.
- 133. Reaction pathway in the vapour-phase synthesis of indole and alkylindoles / M. Campanati, S. Franceschini, O. Piccolo, A. Vaccari. DOI 10.1016/j.jcat.2005.02.014 // Journal of Catalysis. 2005. V. 232, № 1. P. 1-9.
- 134. Zhang, D. Dehydration of 1,2-propanediol to propionaldehyde over zeolite catalysts / D. Zhang, S. A. I. Barri, D. Chadwick. DOI 10.1016/j.apcata.2011.04.028 // Applied Catalysis A: General. 2011. V. 400, № 1-2. P. 148-155.
- 135. Removal of C_3 - C_4 diols in ethylene glycol via selective dehydration reactions over Beta zeolite with acidity tailored / S. Ai, Y. Qin, Y. Hong [et al.] DOI 10.1016/j.jcat.2022.07.034 // Journal of Catalysis. 2022. V. 413. P. 870-879.
- 136. Левеншпиль, О. Инженерное оформление химических процессов /
 О. Левеншпиль; пер. М. Г. Слинько. Москва : Химия, 1969. 624 с.

- 137. Плотников, В. Ф. Ароматические азотсодержащие соединения. Амины. Методические указания / В. Ф. Плотников; ред. Г. М. Васильева. – Санкт-Петербург : ИК «Синтез», 2000. – 28 с.
- 138. Zirconia-supported niobia catalyzed formation of propanol from 1,2-propanediol via dehydration and consecutive hydrogen transfer / G. Peng, X. Wang, X. Chen [et al.] DOI 10.1016/j.jiec.2013.11.042 // Journal of Industrial and Engineering Chemistry. 2014. V. 20, № 5. P. 2641-2645.
- 139. Патент № 2697876 Российская Федерация, МПК С07D 215/04, СО7С 211/00. Способ получения 2,3-диалкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов:
 № 2018144397 : заявл. 14.12.18 : опубл. 21.08.19 / Джемилев У.М., Кутепов Б.И., Григорьева Н.Г., Костылева С.А., Гатаулин А.Р., Артемьева А.С., Нарендер Нама, Венугопал Акула ; заявитель и патентообладатель УФИЦ РАН. 11 с.
- 140. Synthesis of Quinolines from Aniline and N-Propanol over Hierarchical Granular Y_h Zeolites Modified with Metal Oxides / N. G. Grigor'eva, A. S. Artem'eva, S. V. Bubennov [et al.] DOI 10.1134/S0965544123020147 // Petroleum Chemistry. 2023. V. 63. P. 201-211.
- 141. Stabilizing copper species using zeolite for ethanol catalytic dehydrogenation to acetaldehyde / D. Yu, W. Dai, G. Wu [et al.] DOI 10.1016/S1872-2067(19)63378-4 // Chinese Journal of Catalysis. 2019. V. 40, № 9. P. 1375-1384.
- 142. Catalytic Performance and Reaction Pathways of Cu/SiO₂ and ZnO/SiO₂ for Dehydrogenation of Ethanol to Acetaldehyde / M. Ohira, H. Liu, D. He [et al.] DOI 10.1627/jpi.61.205 // Journal of the Japan Petroleum Institute. 2018. V. 61, № 4. P. 205-212.
- 143. 10-P-05 Non-acidic zinc zeolite systems: preparation methods, formation processes and catalytic properties in dehydrogenation of methanol / N. Y. Usachev, E. P. Belanova, A. V. Kazakov [et al.] DOI 10.1016/S0167-2991(01)81406-3 // Studies in Surface Science and Catalysis. 2001. V. 135. P. 206.
- 144. Gulková, D. Dehydrogenation of Substituted Alcohols to Aldehydes on Zinc
 Oxide-Chromium Oxide Catalysts / D. Gulková, M. Kraus. DOI

10.1135/cccc19922215 // Collection of Czechoslovak Chemical Communications. – 1992. – V. 57, № 11. – P. 2215-2226.

- 145. Mixed alcohol dehydration over Brønsted and Lewis acidic catalysts / C. P. Nash,
 A. Ramanathan, D. A. Ruddy [et al.] DOI 10.1016/j.apcata.2015.11.019 // Applied
 Catalysis A: General. 2016. V. 510. P. 110-124.
- 146. Rammohan, N. Studies on the alkylation of aniline with n-propanol and isopropanol on ion-exchanged zeolites / N. Rammohan, V. G. Kumar Das, R. B. C. Pillai // Hungarian journal of industrial chemistry Veszprem. 1999. V. 27. P. 13-16.
- 147. Паченков, Г. М. Химическая кинетика и катализ / Г. М. Паченков, В. П. Лебедев. – М : Химия, 1985. – 592 с.
- 148. DeWilde, J. F. Ethanol Dehydration and Dehydrogenation on γ-Al₂O₃: Mechanism of Acetaldehyde Formation / J. F. DeWilde, C. J. Czopinski, A. Bhan. – DOI 10.1021/cs501239x // ACS Catalysis. – 2014. – V. 4, № 12. – P. 4425-4433.
- 149. Synthesis of ultrafine and binder-free granular zeolite Y from kaolin / M. L. Pavlov, O. S. Travkina, A. N. Khazipova [et al.] DOI 10.1134/S0965544115070105 // Petroleum Chemistry. 2015. V. 55, № 7. P. 552-556.
- 150. Патент № 2739350 Российская Федерация, МПК В01Ј2/00. Гранулированный цеолит ZSM-5 без связующего и способ его получения: № 2019142040 : заявл. 16.12.19 : опубл. 23.12.20 / Травкина О.С., Куватова Р.З., Кутепов Б.И, Аглиуллин М.Р, Павлова И.Н. ; заявитель и патентообладатель УФИЦ РАН. – 12 с.
- 151. Патент РФ № 2713449 Российская Федерация, МПК В01Ј2/00. Гранулированный цеолит ZSM-5 без связующего и способ его получения : № 2019111771 : заявл. 18.04.19 : опубл. 05.02.20 / Травкина О.С., Кутепов Б.И., Павлов М.Л., Басимова Р.А., Шавалеев Д.А. ; заявитель и патентообладатель УФИЦ РАН. – 8 с.
- 152. High-Crystallinity Granular Zeolites of LTA, FAU, and MOR Structural Types with Hierarchical Porous Structure: Synthesis and Properties / B. I. Kutepov,

O. S. Travkina, M. R. Agliullin [et al.] – DOI 10.1134/S0965544119030095 // Petroleum Chemistry. – 2019. – V. 59, № 3. – P. 297-309.

- 153. Sivaprasad, G. Synthesis of quinaldines and lepidines by a Doebner–Miller reaction under thermal and microwave irradiation conditions using phosphotungstic acid / G. Sivaprasad, R. Rajesh, P. T. Perumal – DOI 10.1016/j.tetlet.2006.01.034 // Tetrahedron Letters. – 2006. – V. 47, № 11. – P. 1783-1785.
- 154. Assembly of Substituted 2-Alkylquinolines by a Sequential Palladium-Catalyzed C-N and C-C Bond Formation / Y. Matsubara, S. Hirakawa, Y. Yamaguchi, Z. Yoshida. DOI 10.1002/anie.201102076 // Angewandte Chemie International Edition. 2011. V. 50. № 33. P. 7670-7673.
- 155. Yadav, D. K. T. Rhodium-catalyzed synthesis of quinolines and imines under mild conditions / D. K. T. Yadav, B. M. Bhanage. – DOI 10.1039/C5RA08887A // RSC Advances. – 2015. – V. 5, № 64. – P. 51570-51575.
- 156. Funabashi, M. Configuration and Conformation of So-called Bis(alkylidenearylamines) / M. Funabashi, M. Iwakawa, J. Yoshimura. DOI 10.1246/bcsj.42.2885 // Bulletin of the Chemical Society of Japan. 1969. V. 42, № 10. P. 2885-2894.
- 157. Radical cation salt induced tandem cyclization between anilines and N-vinyl amides: synthesis of 2-methyl-4-anilino-1,2,3,4-tetrahydroquinoline derivatives / X. Jia, Y. Ren, C. Huo [et al.] DOI 10.1016/j.tetlet.2010.10.106 // Tetrahedron Letters. 2010. V. 51, № 51. P. 6779-6782.
- 158. Joh, T. Reactions of Schiff Bases and Alkyl Vinyl Ethers Catalyzed by Co₂(CO)₈ or Ni(CO)₄ / T. Joh, N. Hagihara. DOI 10.1246/nikkashi1948.91.4_378 // Nippon kagaku zassi. 1970. V. 91, № 4. C. 378-383.
- 159. Sequential Photoredox Catalysis for Cascade Aerobic Decarboxylative Povarov and Oxidative Dehydrogenation Reactions of N -Aryl α-Amino Acids / T. Shao, Y. Yin, R. Lee [et al.] DOI 10.1002/adsc.201800135 // Advanced Synthesis & Catalysis. 2018. V. 360, № 9. P. 1754-1760.

- 160. Chiurchiù, E. 3-Alkylated indoles by reduction of sulfonyl indoles under flow chemical conditions / E. Chiurchiù, A. Palmieri, M. Petrini. DOI 10.24820/ark.5550190.p010.882 // Arkivoc. 2019. V. 2019, № 4. P. 69-79.
- 161. Copper-catalyzed pyrrole synthesis from 3,6-dihydro-1,2-oxazines /
 N. Yasukawa, M. Kuwata, T. Imai [et al.] DOI 10.1039/C8GC01373J // Green Chemistry. 2018. V. 20, № 19. P. 4409-4413.

Приложение А

Размеры молекул реагентов и продуктов

Расчет размеров молекул осуществлен в программе ACD/3DViewer (Таблица А.1).

Таблица А.1 – Размеры молекул реагентов и продуктов

	Обозначение		Размер	
N⁰		Название соединения	молекулы,	
			HM	
1	- 1,2-пропандиол		0,53 x 0,41	
2	-	Анилин	0,60 x 0,51	
3	1 a	Хинолин	0,67 x 0,51	
4	1b	2-Метилхинолин	0,79 x 0,51	
5	1c	4-Метилхинолин	0,67 x 0,57	
6	1d 3-метил-2-этилхинолин		0,96 x 0,51	
7	1e 6-хлоро-3-метил-2-этилхинолин		1,02 x 0,51	
8	1f 3,6-диметил-2-этилхинолин		1,05 x 0,51	
9	1g	6-метокси-3-метил-2-этилхинолин	1,17 x 0,51	
10	1h	7-метокси-3-метил-2-этилхинолин	1,13 x 0,51	
11	1i	2-пропил-3-этилхинолин	1,01 x 0,69	
12	2а и 2а`	<i>Cis</i> - и <i>trans</i> -2-метил-N-фенил-1,2,3,4-	1,13 x 0,71	
		тетрагидрохинолин-4-амины		
13	2b	(2 <i>S</i> , 3 <i>S</i> , 4 <i>R</i>)-3-метил-2-этил- <i>N</i> -фенил-	1,13 x 0,96	
		1,2,3,4-тетрагидрохинолин-4-амин		
14	5	5 <i>N</i> -пропиланилин		
15	-	Кротоновый альдегид	0,54 x 0,31	

Приложение Б

Превращение 1,2-пропандиола на цеолитных катализаторах

Исследование превращения 1,2-пропандиола осуществляли в автоклаве при 260 °С, в присутствии 10 % цеолита, в течение 0,25-6 ч, в хлорбензоле. После проведения реакции автоклав охлаждали комнатной температуры, до реакционную массу экстрагировали диэтиловым эфиром с поверхности катализатора, фильтровали, отгоняли растворитель, анализировали методом хроматомасс-спектрометрии на приборе SHIMADZU GCMS-QP2010Ultra (фаза SPB-5, стеклянная капиллярная колонка 30 м × 0,25 мм, программируемый нагрев от 35 (3 мин.) до 130 °C со скоростью 5 °C/мин, температура ионного источника 200°С). Газовая часть отсутствовала.

Превращение 1,2-пропандиола на цеолитах в изученных условиях протекает с образованием пропионового альдегида (6), *н*-пропанола (7), 2-этил-4-метил-1,3диоксолана (8), 2-метил-2-пентеналя (9), а также ацеталя пропаналя (6) с нпропанолом (7), 2,3,4,5-тетраметил-2-циклопентенона, гидроксиацетона, ароматических углеводородов (Рисунок Б.1). Кроме указанных соединений, в продуктах реакции в следовых количествах обнаружены аллиловый спирт, ацетон, олигомеры 1,2-пропандиола, диоксаны и диоксаланы, обозначенные как «другие». Результаты превращения 1,2-пропандиола на цеолитах H-ZSM-5_h и H-Y_h приведены на рисунке Б.2.

Изучение влияния времени реакции на концентрацию 1,2-пропандиола и продуктов его превращения (Рисунок Б.2) установлено, что в начале реакции наблюдается практически полная конверсия диола на обоих образцах. Активно протекает его дегидратация с образованием пропаналя (**6**), который вступает в реакцию с 1,2-пропандиолом с образованием 2-этил-4-метил-1,3-диоксолана (**8**). Наиболее селективно соединение (**8**) образуется на цеолите H-ZSM-5_h (90 %), в присутствии цеолита H-Y_h его концентрация меньше (59 %).

Рисунок Б.1 – Маршруты превращения 1,2-пропандиола на цеолитных

катализаторах

100

Рисунок Б.2 – Превращение 1,2-пропандиола на иерархических цеолитах а) H-ZSM-5_h; б) H-Y_h («другие» не показаны)

136

В ходе реакции постепенно начинает доминировать обратная реакция гидратации 1,3-диоксолана (8) с образованием пропаналя (6) и диола. Под действием иерархического цеолита H-ZSM- 5_h концентрация 1,3-диоксолана (8) снижается с 90 до 20 % за 3 ч реакции, на цеолите H- Y_h - с 59 до 20 % за 1 ч.

Концентрация пропаналя (6) достигает 32 % за 9 часов реакции в присутствии цеолита H-ZSM- 5_h , на цеолите H- Y_h она достигает максимума через 1 ч реакции (32 %), далее снижается до 23 % через 9 ч.

Отличия в каталитической активности иерархических цеолитов в дегидратации 1,2-пропандиола можно объяснить разницей в кислотности и пористой структуре катализаторов. За счет высокой концентрации кислотных центров цеолит H-Y_h активно катализирует как дегидратацию спирта, так и конденсацию пропаналя (**6**), реакции ароматизации и коксообразования. Кроме того, наличие большой доли микропор (51 %) создает условия для образования локальных высоких концентраций реакционноспособного пропаналя, что также способствует ускорению побочных реакций и быстрой дезактивации катализатора в исследованных условиях.

Иерархический цеолит H-ZSM- 5_h позволяет связывать образующийся пропаналь (6) с 1,2-пропандиолом в 1,3-диоксалан (8), что позволяет снизить концентрацию альдегида (6) в порах цеолита и уменьшить вероятность его поликонденсации с дальнейшим коксообразованием. Этому же способствует высокая доля мезопор (31 %).

Приложение В

Превращение *н*-пропанола на цеолитных катализаторах

Исследование превращений *н*-пропанола осуществляли в проточном реакторе с неподвижным слоем катализатора (1.5 г), с объемной скоростью подачи спирта 0.5 ч⁻¹ при температуре 450 °C, в течение 3 ч, в токе азота с объемным расходом 1 л/ч, при атмосферном давлении. Жидкие продукты и непрореагировавший *н*-пропанол собирали в охлаждаемой ловушке, экстрагировали диэтиловым эфиром и анализировали методом хроматомасс-спектрометрии на приборе SHIMADZU GCMS-QP2010Ultra (фаза SPB-5, стеклянная капиллярная колонка 30 м × 0,25 мм, программируемый нагрев от 35 (3 мин.) до 130 °C со скоростью 5 °C/мин, температура ионного источника 200 °C). Газовую часть собирали в газовый пробоотборник и анализировали методом ГХ на хроматографе Кристаллюкс-4000М (ООО НПФ «Мета-хром», Россия) (фаза НауеSep T, насадочная колонка 2 м × 0,3 мм, программируемый нагрев от 60 до 155 °C со скоростью 4 °C/мин, детектор по теплопроводности).

Изучение каталитических свойств цеолитов Na-Yh, H-Yh и ZnO/Na-Yh в превращении *н*-пропанола показало (Таблица В.1), что в присутствии образцов, обладающих только кислотной функцией (Na-Y_h, H-Y_h), протекает дегидратация н-пропанола. Основными продуктами реакции являются олефины C_2-C_4 линейного и разветвленного строения (с преобладанием во фракции пропилена). Кроме того, в газовой фазе обнаружены H₂ и CH₄. В составе жидких продуктов, соединения помимо основного _ непрореагировавшего н-пропанола, идентифицировано незначительное количество олефинов С₅₊ и ароматических углеводородов С₉₊. Кроме того, детектированы алканы С₄₊. Пропаналь (7) в продуктах превращения *н*-пропанола на цеолитах $Na-Y_h$ и $H-Y_h$ не обнаружен.

Конверсия *н*-пропанола на образце $H-Y_h$ составила 97 %. Цеолит Na- Y_h был менее активен в реакции (25 %), что связано с меньшей концентрацией кислотных центров в нем.

Таблица В.1 – Превращение *н*-пропанола в присутствии цеолита Y_h в Na-, H- и ZnO/Na-формах

	Кон-	Селективность, %							
	версия	H ₂ +CH ₄	Олефины С ₂ -С ₄	Пропаналь (7)	Олефины С ₅₊	Аромати-			
Катали-	H-					ческие			
затор	пропа-					углево-	10-12		
	нола,					дороды			
	%					C_{9+}			
Na-Y _h	25	4	92	0	1	3	0		
H-Y _h	97	6	88	0	2	4	0		
ZnO/Na- Y _h	95	10	36	48	1	0	5		

Условия: объемная скорость подачи *н*-пропанола 0,5 ч⁻¹, 450°С, 3 ч.

в цеолит Na-Y_h привело к появлению Введение оксида цинка дегидрирующих свойств у образца ZnO/Na-Y_h и снижению дегидратирующей функции. В продуктах превращения *н*-пропанола, наряду с олефинами С₂-С₄, H₂ и СН₄, обнаружен пропаналь (7), который образуется с селективностью 48 % (Таблица В.1). Кроме соединения (7), идентифицированы продукты его превращения и взаимодействия с *н*-пропанолом: 2-метил-2-пентеналь (10), пропиловый эфир пропиловой кислоты (11), 1,1-дипропоксипропан (12). Маршруты превращения *н*-пропанола в присутствии цеолита $ZnO/Na-Y_h$ представлены на рисунке В.1.

Состав полученных продуктов свидетельствует о том, что существует два основных маршрута превращения *н*-пропанола на модифицированных оксидами металлов цеолитах. В первом случае (маршрут А) *н*-пропанол дегидрируется в пропаналь (7), который далее вступает в альдольно-кротоновую конденсацию с другой молекулой альдегида, образуя димер (10), или взаимодействует с двумя молекулами *н*-пропанола, давая ацеталь (12). Окисление альдегида (7) приводит к получению кислоты, вступающей в реакцию этерификации с образованием сложного эфира (11).

Рисунок В.1 – Схема превращения н-пропанола на металлсодержащих цеолитах

Согласно второму маршруту (Б), протекает дегидратация *н*-пропанола на кислотных центрах с образованием пропилена (**13**), который вступает в реакции олигомеризации и ароматизации. На цеолитах Na-Y_h и H-Y_h в изученных условиях *н*-пропанол превращается исключительно по маршруту (Б).