Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное научное учреждение Уфимский федеральный исследовательский центр Российской академии наук (УФИЦ РАН)

Институт нефтехимии и катализа – обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук (ИНК УФИЦ РАН)

На правах рукописи

РЯЗАНОВ КИРИЛЛ СЕРГЕЕВИЧ

НОВЫЙ ОДНОРЕАКТОРНЫЙ МЕТОД СИНТЕЗА БОРИРАНОВ РЕАКЦИЕЙ ОЛЕФИНОВ С ГАЛОГЕНИДАМИ БОРА, КАТАЛИЗИРУЕМОЙ Cp_2TiCl_2

1.4.3. Органическая химия

ДИССЕРТАЦИЯ на соискание ученой степени кандидата химических наук

Научный руководитель: кандидат химических наук, **Тулябаева Л.И.**

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ
ГЛАВА 1 ЛИТЕРАТУРНЫЙ ОБЗОР «ТРЕХЧЛЕННЫЕ БОРАЦИКЛАНЫ – БОРИРАНЫ И БОРИРЕНЫ. СИНТЕЗ, СВОЙСТВА И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ»
1.1 Борираны и боратираны 11
1.1.1 Первые примеры синтеза бориранов
1.1.2 Синтез бор(ат)иранов фотоизомеризацией органоборанов
1.1.3 Синтез боратиранов реакцией [2 + 1]-циклоприсоединения непредельных соединений к бориленам [RB:]
1.1.4 Синтез боратиранов реакцией двойного гидроборирования ацетиленов с помощью имидазол-2-илиденборанов
1.2 Борирены и боратирены
1.2.1 Первые примеры синтеза бориренов
1.2.2 Синтез бор(ат)иренов фотоизомеризацией алкинилборанов 56
1.2.3 Синтез бориренов реакцией [2+1]-циклоприсоединения ацетиленов к бориленам [RB:]
1.2.4 Методы синтеза бензобориренов
1.3 Заключение по литературному обзору
ГЛАВА 2 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
2.1 Циклоборирование α-олефинов с помощью BCl ₃ ·SMe ₂ , катализируемое Cp ₂ TiCl ₂
2.2 Циклоборирование α-олефинов с помощью BF_3 · $TΓΦ$, катализируемое Cp_2TiCl_2
2.3 DFT-исследование механизма реакции переметаллирования
титанациклопропана хлоридом бора как ключевой стадии циклоборирования α-олефинов хлоридом бора, катализируемого Cp ₂ TiCl ₂ 93

СПИСОК ЛИТЕРАТУРЫ 152
СПИСОК СОКРАЩЕНИЙ150
ВЫВОДЫ 148
ЗАКЛЮЧЕНИЕ 147
3.15 Квантовохимические расчеты
3.14 Синтез <i>транс</i> -1-алкенил(хлордиизопропиламино)боран
3.13 Синтез дициклоалкилборанатов
3.12 Синтез 1,2-диалкилбориранов
3.11 Синтез 1-этил-2-алкилбориранов
3.10 Синтез диметилсульфидных комплексов дихлорборанов
3.9 Синтез 2-гексил-1-фенилборирана в ТГФ129
3.8 Синтез пиридиния 2-гексил-1-фенилбориран-1-ида128
3.7 Синтез 2-арил(бензил)-1-фенилбориранов
3.6 Синтез 2-алкил-1-фенилбориранов
3.5 Общая методика синтеза 1-фтор-2-алкилбориранов121
3.4 Синтез 1,1'-бис(2-алкилбориран)оксидов
3.3 Синтез 2-алкилбориран-1-олов
3.2 Синтез 2-алкил(арил)-1-хлорбориранов
3.1 Очистка исходных реагентов и растворителей
ГЛАВА З ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ115
2.5 Катализируемое Cp_2TiCl_2 взаимодействие $lpha$ -олефинов с аминодихлорборанами
$2.4~{ m Ka}$ тализируемое ${ m Cp}_2{ m Ti}{ m Cl}_2$ циклоборирование олефинов с помощью ${ m RBCl}_2$ (R = Ar, Alk, ${ m cyclo}$ -Alk)99

ВВЕДЕНИЕ

Актуальность работы. На сегодняшний день химия борорганических соединений является обширной и успешно развивающейся областью науки. Гетероциклические соединения с атомами бора и углерода в цикле теоретическом, интересны как так И практическом отношении. Повышенный интерес химиков-синтетиков к циклическим борорганическим соединениям вызван не только особенностями их строения, но и все возрастающим прикладным значением, в том числе в качестве новых антибактериальной, противовирусной лекарственных препаратов cпротивогрибковой активностью, а также функциональных материалов для электроники.

Особый интерес исследователей вызывает тема химии трехчленных борсодержащих циклов — бориранов и бориренов. Интерес к этим достаточно редким соединениям обусловлен высокой внутренней энергией, связанной с угловым напряжением, природой заместителей, способных стабилизировать напряженный цикл и свойством атома бора за счет вакантной p-орбитали легко переходить из sp^2 - в sp^3 -гибридное состояние.

Теоретические и экспериментальные исследования химии бориранов и бориренов были начаты в конце XX века такими исследователями как Berndt, Denmark, Eisch, Schuster, Schleyer. Высокая нестабильность этих соединений при взаимодействии с кислородом воздуха или хранении при комнатной температуре чрезвычайно ограничивало исследование свойств и области их практического применения. Существенный вклад развитие В ЭТОГО направления в последние 15 лет внесли работы Wang, Braunschweig, Curran, Bettinger. Были разработаны удобные для практического применения методы получения стабильных и достаточно устойчивых форм трехчленных борсодержащих циклов. К числу наиболее многообещающих результатов ЭТИХ исследований следует назвать реакцию фотоизомеризации хелатированных органоборанов в соответствующие борираны, которая открывает возможности для ее использования в области фотоуправляемых молекулярных переключателей. Интерес исследователей к химии ненасыщенных трехчленных борацикланов (бориренов) связан с возможностью практического использование их в качестве π -сопряженных борсодержащих функциональных материалов в физических устройствах.

Основные подходы к синтезу бориранов представлены реакциями фотохимической изомеризации органоборанов, [2+1]-циклоприсоединения бориленов (:B-R) к непредельным соединениям и двойного гидроборирования ацетиленов с помощью имидазол-2-илиденборанов. Однако на сегодняшний день сведения об использовании катализаторов в синтезе этих соединений в мировой литературе совершенно отсутствовали.

Учитывая практическую ценность трехчленных циклических борорганических соединений, исследование, направленное на разработку нового каталитического препаративного метода синтеза бориранов, является важной и актуальной задачей.

Цель работы. Разработка нового однореакторного каталитического метода синтеза замещенных бориранов, основанного на реакции α -олефинов с BX_3 (X = F, Cl) или RBX_2 (R =алкил, циклоалкил, арил, диалкиламин, X=Cl) под действием катализатора Cp_2TiCl_2 в присутствии Mg (акцептор ионов галогена).

В соответствии с целью работы поставлены следующие задачи:

- 1. Разработка однореакторного метода синтеза 1-галоген-2-замещенных бориранов, основанного на взаимодействии α -олефинов с BX_3 (X = Cl, F) в присутствии катализатора Cp_2TiCl_2 и акцептора ионов галогена (металлического Mg).
- 2. Квантовохимическое исследование механизма реакции циклоборирования α -олефинов галогенидами бора, катализируемой Cp_2TiCl_2 , на примере взаимодействия пропена с хлоридом бора методом теории функционала плотности (DFT).

- 3. Разработка однореакторного метода синтеза 1-фенил-2-замещенных бориранов реакцией циклоборирования α-олефинов с помощью PhBCl₂ в присутствии катализатора Cp₂TiCl₂ и Mg.
- 4. Синтез новых реагентов $RBCl_2$ (R = Alk, Ar, Cycloalk, Alk_2NBCl_2 ,) для осуществления реакций каталитического циклоборирования α -олефинов с целью разработки метода синтеза 1-алкил(арил,циклоалкил,амино)бориранов.
- 5. Исследование влияния природы заместителя R при атоме бора в дигалогенборанах RBCl₂ на выход и селективность образования целевых бориранов в реакциях с олефинами, катализируемых Cp₂TiCl₂.
- 6. Исследование взаимодействия циклических олефинов с $RBCl_2$ в присутствии катализатора Cp_2TiCl_2 .

Научная новизна. Разработан новый однореакторный метод синтеза бориранов, основанный на взаимодействии α -олефинов с галогенидами бора BX_3 (X = F,Cl) или $RBCl_2$ (R = алкил, циклоалкил, арил), в присутствии катализатора Cp_2TiCl_2 и металлического Mg (акцептор ионов галогена).

Впервые взаимодействием α -олефинов с $BCl_3 \cdot SMe_2$ (или $BF_3 \cdot T\Gamma\Phi$) в присутствии катализатора Cp_2TiCl_2 и Mg получены ранее неизвестные 1-хлор(фтор)-2-алкилзамещенные борираны в виде комплексов с SMe_2 (или BF_3).

Разработан эффективный метод синтеза ранее неописанных производных бориновой кислоты — 1-гидроксибориранов взаимодействием 1-фтор(хлор)-2-алкилзамещенных бориранов с H_2O .

На основе расчетов термодинамических и активационных параметров возможных маршрутов реакции методом квантовохимического DFT-исследования предложен теоретически обоснованный механизм реакции циклоборирования α -олефинов на примере взаимодействия пропена с BCl₃ катализируемого Cp₂TiCl₂.

Изучено влияние структуры исходных дихлорборанов (EtBCl₂, n-PentBCl₂, n-HexBCl₂, cyclo-OctBCl₂, NorbBCl₂, PhBCl₂, Ph(CH₂)₂BCl₂, Naphth(CH₂)₂BCl₂) в реакции с α -олефинами на выход и селективность образования целевых бориранов.

Разработан новый селективный метод синтеза mpanc-1-алкенилборанов взаимодействием аминодихлорборанов (i-Pr₂NBCl₂ и n-Pr₂NBCl₂) с α - олефинами.

Показано, что в отличие от ациклических α -олефинов циклические олефины вовлекаются в катализируемую Cp_2TiCl_2/Mg реакцию с $RBCl_2$ (R=Et, n-Pent) с образованием продуктов гидроборирования. На основе этих реакций разработан новый метод получения дициклоалкилборонатов.

Теоретическая и практическая значимость работы. Разработан новый эффективный каталитический метод синтеза бориранов, основанный на реакции циклоборирования олефинов с помощью галогенидов бора под действием катализатора Cp₂TiCl₂, который позволяет синтезировать ранее И труднодоступные трехчленные борацикланы 1неописанные фтор(хлор, гидрокси, алкил, циклоалкокси)-2-замещенные борираны. Разработанные в диссертационной работе методы и подходы к синтезу замещенных бориранов обладают высокой степенью новизны, широким синтетическим потенциалом и перспективны не только в лабораторной практике, но и для разработки современных медицинских препаратов, а также для создания уникальных по своим свойствам борсодержащих функциональных материалов.

Методология и методы исследования. При выполнении исследования были использованы современные методы органической и борорганической химии, металлокомплексного катализа. Выделение и очистка продуктов проводились методами перегонки, возгонки, колоночной хроматографии. Для установления строения борорганических соединений использовались физико-химические методы: одномерная (¹H, ¹³C, ¹⁹F, ¹¹B), гомо- (COSY) и

гетероядерная (HSQC, HMBC) спектроскопия ЯМР, масс-спектрометрия). Квантовохимические расчеты проводили с использованием программы Природа 6.0 на DFT уровне методом РВЕ (базис 3ζ). Квантовохимические данные визуализировали с помощью программы Chemcraft.

Положения, выносимые на защиту:

- 1. Новая каталитическая реакция циклоборирования α -олефинов с $BCl_3 \cdot SMe_2$ (или $BF_3 \cdot T\Gamma\Phi$) под действием Cp_2TiCl_2 и Mg путь к труднодоступным 1-галогензамещенным бориранам.
- 2. Синтез новых циклических производных бориновой кислоты 1-гидроксибориранов взаимодействием 1-хлор(фтор)-2-алкилбориранов с водой.
- 3. Дихлорбораны RBCl₂ (EtBCl₂, PentBCl₂, HexBCl₂, Ph(CH₂)₂BCl₂, Naphth(CH₂)₂BCl₂, cyclo-OctBCl₂, NorbBCl₂) как эффективные реагенты Ті-катализируемого циклоборирования α -олефинов для получения 1-алки(арил,циклоалкил)бориранов.
- 4. Новый метод синтеза циклоалкил(хлор)алкилборанов взаимодействием циклических олефинов с $RBCl_2$ (R = Et, n-Pent) под действием Cp_2TiCl_2 в условиях реакции каталитического циклоборирования.
- 5. Оригинальный каталитический метод синтеза 1-алкенилборанов реакцией аминодихлорборанов (i-Pr₂NBCl₂ и μ -Pr₂NBCl₂) с α -олефинами, разработанный в условиях реакции циклоборирования.

Степень достоверности результатов. Высокая достоверность полученных результатов достигнута в результате применения для идентификации синтезированных соединений одномерной (¹H, ¹³C, ¹¹B, ¹⁹F) и двумерной гомо- (COSY) и гетероядерной (HSQC, HMBC) спектроскопия ЯМР, масс-спектрометрии.

Апробация результатов. Материалы, изложенные в диссертационной работе, докладывались и обсуждались на конференциях:

- 1. XX Всероссийская конференция молодых ученых-химиков (Нижний Новгород 2017);
- 2. III «Всероссийская молодежная конференция «Достижения молодых ученых: химические науки»», посвящается памяти академика АН РБ, д.т.н., профессора Р.Н. Гимаева и д.х.н., профессора Ф.Х. Кудашевой (Уфа 2017);
- 3. III «Всероссийской молодёжной конференции-школы с международным участием», посвященной 75-летию академика АН РБ и. Б. Абдрахманова (Уфа 2017);
- 4. IX молодежная конференция «Инновации в химии: достижения и перспективы 2018» (Москва 2018);
- 5. VII Всероссийская конференция с международным участием (Чебоксары 2018);
- 6. V Междисциплинарная конференция «Молекулярные и Биологические аспекты Химии, Фармацевтики и Фармакологии» (Судак 2019).

Личный вклад автора. Личный вклад автора состоит в анализе литературных данных по теме диссертации, планировании и непосредственном проведении экспериментальных работ, обсуждении и оформлении полученных результатов исследований, подготовке статей и апробации работы. В совместных публикациях автору принадлежат все результаты и выводы, посвященные разработке нового однореакторного метода синтеза бориранов реакцией α-олефинов с галогенидами бора, катализируемой Cp₂TiCl₂.

Публикации. По материалам диссертационной работы опубликовано 14 научных трудов, из них 5 статей и 1 обзор в рецензируемых изданиях, рекомендованных ВАК и цитируемых в системах Scopus и Web of Science, а также тезисов 6 докладов на конференциях, получено 2 патента Российской Федерации.

Соответствие паспорту заявленной специальности. Тема и содержание диссертационной работы соответствуют паспорту специальности

1.4.3. Органическая химия ВАК РФ: п. 1 (выделение и очистка новых соединений), п. 2 (открытие новых реакций органических соединений и методов их исследования).

Объем и структура работы. Диссертационная работа состоит из введения, литературного обзора на тему «Трехчленные борацикланы — борираны и борирены. Синтез, свойства и перспективы применения», обсуждения результатов, экспериментальной части, выводов, списка литературы (133 наименований). Материал диссертационной работы изложен на 171 страницах компьютерного набора (формат А4), включает 3 таблицы, 27 схем и 8 рисунков (95 схем и 4 рисунка лит. обзора).

Работа выполнена в лаборатории каталитического синтеза Федерального государственного бюджетного учреждения науки Института нефтехимии и катализа Российской академии наук в соответствии с научным направлением Института по теме «Металлокомплексные катализаторы в регио- и стереоселективном органическом и металлоорганическом синтезе» (№ Гос. Регистрации 01.20.201.460328) а также при поддержке гранта РНФ № 17-73-10124 «Новое в синтезе и применении бориранов и бориренов — основа для создания современных противовирусных, антибактериальных и противогрибковых препаратов».

Благодарности. Автор выражает искреннюю благодарность чл.-корр. РАН Джемилеву У.М. за помощь при выборе направления исследования; к.х.н., доценту Хафизовой Л.О. за приобретение ценного исследовательского опыта и помощь при обсуждении результатов исследований; к.х.н. доценту Тюмкиной Т.В. за проведение ЯМР экспериментов, квантовохимических исследований и помощь при обсуждении результатов работы.

ГЛАВА 1 ЛИТЕРАТУРНЫЙ ОБЗОР «ТРЕХЧЛЕННЫЕ БОРАЦИКЛАНЫ – БОРИРАНЫ И БОРИРЕНЫ. СИНТЕЗ, СВОЙСТВА И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ»

Фундаментальные и прикладные исследования в области трехчленных карбо- и гетерокарбоциклов — циклопропанов, оксиранов, азиридинов, фосфиранов, тииранов и силиранов широко освещены в мировой литературе. На основе указанных классов соединений разработаны и внедрены уникальные материалы, высокоэнергетические топлива, лекарственные препараты, инактиваторы вирусов для изготовления вакцин, биорегуляторы для сельского хозяйства, эффективные смазочные материалы и другие ценные вещества. Среди указанных классов малых гетероциклов борсодержащие аналоги менее изучены.

Известные в литературе методы синтеза бориранов основаны на применении реакции фотохимической изомеризации различных по своей структуре органоборанов и реакции [2+1]-циклоприсоединения олефинов (или аренов) к генерируемым различными способами бориленам. Также заслуживает внимания новый метод получения бориранов путем двойного гидроборирования диалкилацетилендикарбоксилатов с помощью имидазол-2-илиденборанов. Их ненасыщенные аналоги — борирены получают в основном [2+1]-циклоприсоединения ацетиленов к бориленам.

В данном литературном обзоре систематизированы и обобщены методы синтеза, физико-химические свойства и перспективы применения трехчленные циклы с одним атомом бора.

1.1 Борираны и боратираны

Циклопропаны привлекают особое внимание исследователей благодаря их повышенной реакционной способности за счет раскрытия или расширения цикла. Борные аналоги циклопропанов — борираны — представляют собой трехчленный циклы, содержащие один атом бора и два атома углерода.

Среди других аналогов гетероциклических трехчленных циклических систем, например, оксиранов, азиридинов, фосфиранов, тииранов и силиранов, борираны наиболее реакционноспособны. Гетероатомы в указанных циклопропанах, за исключением кремния, оказывают значительные π -основные эффекты (π -basic effects) по отношению к атомам углерода. Примеры обратной полярности в трехчленных гетероциклах с π -кислотными атомами очень редки. Благодаря наличию электронодефицитного атома бора борираны являются единственными примерами таких насыщенных систем с π -кислотным гетероатомом в цикле, что значительно увеличивает их высокореакционную способность по сравнению с другими аналогами циклопропанов.

Боратираны — стабилизированные с помощью оснований Льюиса борираны. Основания Льюиса, координируясь с кислотным атомом бора, понижают его высокую электрофильность, тем самым, стабилизируя эти боракарбоциклы.

1.1.1 Первые примеры синтеза бориранов

Первое упоминание о возможности образования бориранов появилось в 1973 г. в работах английского исследователя Timms P. [1]. Он предположил, что промежуточным интермедиатом при образовании борзамещенного циклогексадиена 2 в реакции пропилена с субгалогенидом бора ВСІ, генерируемым в вакууме при высоких температурах в газовой фазе из тригалогенида бора ВСІ₃, является нестабильный борациклопропан 1 (Схема 1.1.1.1). Однако спектральные данные, подтверждающие образование в этой реакции бориранов, в работе не приводятся.

Схема 1.1.1.1 – Взаимодействие пропилена с ВСІ в газовой фазе

Впервые индивидуальные борираны были синтезированы и выделены немецкими исследователями Berndt H. и Klusik A. 1983 г. [2]. Так, взаимодействием 1,1-бис(*трет*-бутилхлороборил)-2,2-бис(триметилсилил)этилена 3 со сплавом К\Nа в кипящем пентане был получен бориран 4 с выходом 60% (Схема 1.1.1.2). Согласно теоретическим и экспериментальным данным образование альтернативного замещенного диборациклопропана 5 в результате дегалогенирования соединения 3 невозможно [3, 4].

Схема 1.1.1.2 – Получение борирана **4** реакцией 1,1-бис(*трем*-бутилхлороборил)-2,2-бис(триметилсилил)этилена **3** со сплавом К\Na

Структура борирана **4** подтверждена с помощью данных ЯМР ¹H, ¹³C, ¹¹В и масс-спектрометрии. Синтез может быть осуществлен также под действием ультразвука с использованием других щелочных и щелочноземельных металлов (Li, Cs, Mg) [5]. В отсутствии кислорода и влаги бориран **4** может храниться в течение нескольких месяцев. Кроме того, он не

разрушается при нагревании до 100 °C в течение 1 часа. Стабильность этого обусловлена наличием объемных соединения триметилсилильных заместителей структуре молекулы. При замене только одной триметилсилильной группы на метильную замещенный бориран трансформируется в димер. Позже были получены и охарактеризованы другие аналогичные по структуре борираны 6a,b (Рисунок 1.1.1.1) [2–11].

Рисунок 1.1.1.1 – В-арилзамещенные борираны **6а,b**

Взаимодействие борирана **6a** с пространственно-затрудненными ароматическими спиртами сопровождается разрывом связи B–C(TMS)₂ в борирановом цикле и образованием продуктов алкоголиза **7a,b**. [8, 9] При этом боковая двойная связь B=C сохраняется (Схема 1.1.1.3).

Схема 1.1.1.3 – Взаимодействие борирана **ба** со спиртами.

При взаимодействии бориранов **4** и **6a** с этилвиниловым эфиром образуются 2,3-дигидроборолы **9a,b** (Схема 1.1.1.4) [10]. Как предполагают авторы, промежуточными соединениями в этой реакции являются винилборираны **8a,b**. Соединения **9a,b** выделены в виде бесцветных кристаллов и охарактеризованы с помощью рентгеноструктурного анализа.

Схема 1.1.1.4 – Взаимодействие бориранов 4,6а с этилвиниловым эфиром

Наряду с указанными выше реагентами борираны **4**, **6а** взаимодействуют с HN(SiMe₃)₂ или HCl с образованием бориранов **10а,b** (Схема 1.1.1.5) [10]. Соединение **10b** реагирует с MeLi с образованием борирана **10c**. Структура бориранов **10a,c** доказана с помощью рентгеноструктурного анализа и ЯМР спектроскопии.

Схема 1.1.1.5 – Реакции бориранов 4, 6a с HX (X = N(SiMe₃)₂, Cl)

Кипячение борирана **10**а в хлороформе в течение 46 часов сопровождается разрывом связи С–С бориранового цикла и образованием *С*-бориламинометиленборана **11** (Схема 1.1.1.6) [10].

Схема 1.1.1.6 – Термическое раскрытие трехчленного цикла борирана 10а

При кипячении борирана **10c** в толуоле в течение 4 ч в результате внутримолекулярной перегруппировки образуется 1,2,3,4-тетрагидро-1,3-диборанафталин **12** (Схема 1.1.1.7) [10].

Схема 1.1.1.7 – Внутримолекулярная перегруппировка борирана **10с** при кипячении в толуоле

Выше приведены примеры синтеза бориранов с л-кислотным атомом бора в кольце. Подобные свободные борираны встречаются крайне редко, малостабильны поскольку они И легко претерпевают скелетные превращения. Одним способов стабилизации борсодержащих ИЗ гетероциклов является использование оснований Льюиса (LB) (Схема 1.1.1.8), которые при координации с кислотным атомом бора понижают его высокую электрофильность, стабилизируя боракарбоциклы.

Схема 1.1.1.8 – Стабилизация борирана основанием Льюиса

Стабилизированный тетрагидрофураном борирансодержащий аддукт **16** впервые получен Berndt A. с соавт. [12] в 1992 г (Схема 1.1.1.9). В результате реакции 1,1-*бис*(борил)этилена **13** с МgС₁₄Н₁₀·3ТГФ (магний-антраценовая система Богдановича) образуется карбоборан **14**. Авторы предполагают, что карборан **14** находится в равновесии с производным борирана **15**. Из раствора тетрагидрофурана бориран был выделен в виде комплекса **16** кристаллической структуры, строение которого подтверждено с помощью рентгеноструктурного анализа.

TMS
$$B-CI$$
 Mg^* Mes Mes

Схема 1.1.1.9 — Образование стабилизированного тетрагидрофураном борирана **16** реакцией 1,1-бис(борил)этилена с $MgC_{14}H_{10}$ · $3T\Gamma\Phi$

1.1.2 Синтез бор(ат)иранов фотоизомеризацией органоборанов

Впервые синтез стабилизированных основаниями бориранов в виде аддуктов с пиридином и (S)-никотином путем фотооблучения боратов осуществил в 1991 г. Denmark с соавт. [13] Так, в результате фотооблучения пиридината дифенил((E)-2-фенилэтенил)бора **17** в ТГФ был получен пиридинат mpanc-1,2,3-трифенилборирана **18**, выделенный в виде кристаллов красно-желтого цвета с выходом 58% (схема 1.1.2.10).

Схема 1.1.2.10 – Синтез пиридината *транс*-1,2,3-трифенилборирана **18**

Облучение хирального борана **19** приводит к смеси диастереомеров комплексов борирана **20a** и **20a'** (1:1) (Схема 1.1.2.11). Диастереомер **20a** выделен путем перекристаллизации из толуола, а его абсолютная конфигурация (2S,3S) подтверждена с помощью рентгеноструктурного анализа.

Схема 1.1.2.11 – Образование дистереомерных никотиновых комплексов борирана **20a** и **20a'**

(*S*)-Никотиновый аддукт борирана **20a** в растворе пиридина при повышенной температуре может трансформироваться в пиридиновый аддукт **18**. Так, при нагревании **20a** в пиридине в запаянной ампуле при 100 °C в течение 3 дней (или при 150 °C в течение получаса) образуется пиридинат борирана **18** с выходами (после перекристаллизации) 35–45%. В процессе лигандного обмена борирановый цикл сохраняет свою конфигурацию.

Окислением **18** и **20а** с помощь *мета*-хлорнадбензойной кислоты получен соответствующий спирт (S)-(+)-**21** с сохранением (100%) конфигурации гидроксильной группы (Схема 1.1.2.12).

Схема 1.1.2.12 – Окисление 1,2,3-трифенилборатиранов **20a** и **18**

Авторы работ [14–17] внесли вклад в исследования фотохимических превращений с использованием аммониевых солей боратов, приводящих к получению соответствующих боратиранов. Под действием УФ-облучения из аммониевой соли (пара-бифенилил)трифенилбората) 22 в растворе сухого ацетонитрила при 0 °С за 2 часа образуется аннелированный бориран – 2,5,7,7-тетрафенил-7-боратабицикло[4.1.0]гепта-2,4-диен 23, который выделен в виде кристаллов красного цвета и охарактеризован с помощью

данных ЯМР спектроскопии и рентгеноструктурного анализа (Схема 1.1.2.13).

Схема 1.1.2.13 – Фотоизомеризация бората 22 в боратаноркарадиен 23

При облучении бората **22** необходимо использовать сухой ацетонитрил, не содержащий следов кислорода. В противном случае образуется смесь бифинила и *пара*-трифенила (Схема 1.1.2.14) [17].

22
$$\frac{hv}{CH_3CN, O_2}$$
 + Ph—Ph

Схема 1.1.2.14 — Фотохимическая трансформация бората **22** в присутствии кислорода

Фотооблучением аммониевой соли трифенилстерилбората **24** получен *транс*-1,1,2,3-тетрафенилборатиран **25** в виде соответствующей соли (Схема 1.1.2.15) [18, 19].

$$\begin{bmatrix} Ph_3B & Ph \end{bmatrix} - \frac{h\nu}{CH_3CN} & \begin{bmatrix} H & Ph \\ Ph & H \\ Ph & B \end{pmatrix} - \frac{25}{CH_3CN} = \frac{25}{CH_3CN$$

Схема 1.1.2.15 — Фотохимическая трансформация трифенилстерилбората **24** в *транс*-1,1,2,3-тетрафенилборатиран **25**

Тетраметиламмониевая соль боратирана **25** не образует стабильных для рентгеноструктурного анализа кристаллов. Для этой цели были получены тетрабутиламмонивая или тетрафениларсониевая соли боратирана **25** в виде бесцветных и стабильных кристаллов.

Взаимодействием боратирана **25** с кислородом в растворе ацетонитрила получена смесь продуктов, состоящая из боратолана **27** (20%), *транс*стильбеноксида **28** (45%) и следовых количеств *транс*стильбена (5%) (Схема 1.1.2.16). Предположительно, эти соединения образуются из интермедиатного пероксиборолана **26** [18, 19].

Схема 1.1.2.16 – Окисление *тан*с-1,1,2,3-тетрафенилборатирана **25**

Аналогично аммониевой соли трифенилстерилбората **24** при облучении цезиевой соли фенил(mpanc-стерил)диметилбората **29** в растворе ТГФ образуется B,B-диметил-2,3-дифенилборатиран **30**, который был идентифицирован лишь по продукту дейтеролиза **31** (Схема 1.1.2.17) [19].

Схема 1.1.2.17 — Фотооблучение цезиевой соли фенил(*транс*стерил)диметилбората **29**

Группой канадских ученых под руководством профессора Wang S. УФ-облучением осуществлен боратиранов димезитилборанов, синтез хелатированных различными биарильными группами [20-22]. В результате УФ-облучения изомеризации действием N, C-хелатированных ПОД димезитилборанов типа $B(ppy)Mes_2$ (ppy = 2-фенилпиридил, Mes = мезитил) образуются боратираны, построенные из нескольких сочлененных колец. Например, фотооблучением (365 нм) мезитилборанов **32a**-**f** в инертной атмосфере получены производные боратирана – боратаноркарадиены 33а-f (Схема 1.1.2.18). Важно, что N, C-хелаты играют ключевую роль в обеспечении процесса изомеризации, который включает разрушение/формирование В–С и С–С связей и сопровождается изменением цвета образующихся соединений.

Схема 1.1.2.18 – Обратимая фотоизомеризация димезитилборанов 32а-f

Полученные соединения являются первым примером фотохромных систем с «переключением» исключительно на борном центре. Повышенный интерес к таким соединениям обусловлен перспективами их использования в фотонике [23]. молекулярной электронике И Однако высокая соединений кислороду чувствительность ЭТИХ К ограничивает использование в электронных устройствах. Так, в присутствии кислорода борацикланы 33a-f достаточно быстро разрушаются до соответствующих соединений **34a**—**f** и (MesBO)₃ (Схема 1.1.2.18).

Для исследования влияния нескольких фотохромных центров бора в молекуле на возможность одновременной фотоизомеризации [24, 25] были синтезированы новые π-сопряженные ди-, три- и полибораны. Исследование показало, что изомеризация одного хромофора предотвращает изомеризацию других. Процесс фотоизомеризации контролировали с помощью ЯМР ¹Н спектроскопии, флуоресцентной и УФ-спектроскопии.

Так, при облучении *бис*-борана **35** [24], содержащего два разделенных диацетиленовым мостиком борановых фрагмента, изомеризуется до *моно*-боратирана **36** (Схема 1.1.2.19).

$$\frac{\text{hv, C}_6\text{H}_6}{35\,^{\circ}\text{C, C}_6\text{H}_6}$$

Схема 1.1.2.19 – Обратимая фотоизомеризация бис-борана 35

Бис-боран **37**, содержащий кремниевый мостик в качестве спейсера, также изомеризуется в *моно*-боратиран **38** (Схема 1.1.2.20).

$$\frac{\text{hv, C}_6\text{H}_6}{35\,^\circ\text{C, C}_6\text{H}_6}$$

Схема 1.1.2.20 – Обратимая фотоизомеризация бис-борана 37

В аналогичных условиях на основе триборана **39** получен боратиран **40**, тоже содержащий только один боратирановый фрагмент (Схема 1.1.2.21) [24].

$$\frac{\text{hv, C}_6\text{H}_6}{35\,^{\circ}\text{C, C}_6\text{H}_6}$$

Схема 1.1.2.21 – Обратимая фотоизомеризация триборана **39** в *моно*боратиран **40**

Увеличение длительности облучения не приводит к повышению числа боратирановых фрагментов. Аналогично ди- и триборанам при облучении

гексаборана **41** только одна борановая группа в структуре молекулы подвергается фотоизомеризации с образованием соединения **42** (Схема 1.1.2.22).

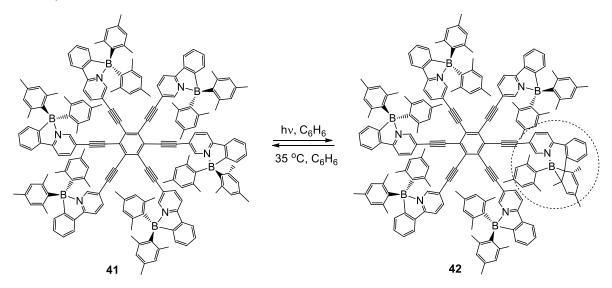


Схема 1.1.2.22 – Обратимая фотоизомеризация гексаборана **41** в *моно*боратиран **42**

Кроме того, авторы обнаружили, что полибораны соединения при УФоблучении изомеризуются быстрее моноборанов. Этот результат можно объяснить «эффектом антенны» [26], когда множественные хромофоры бора «собирают» больше фотонов при заданной концентрации, что ускоряет процесс фотоизомеризации за счет внутримолекулярного переноса энергии с образованием боратиранового фрагмента.

При изучении фотохромных свойств *N*,*C*-хелатных четырехкоординированных соединений бора, которые содержат фрагмент B(ppy)Mes₂, синтезированы [27] новые фотохромные соединения с двумя линейно сопряженными 2-фенилпиридильными звеньями. Так, боран **43** под воздействием фотооблучения обратимо изомеризуется в боратиран **44** с высоким квантовым выходом (Схема 1.1.2.23).

hv,
$$C_6H_6$$
35 °C, C_6H_6
44

Схема 1.1.2.23 – Обратимая фотоизомеризация борана 43 в боратиран 44

Для оценки влияния ковалентно-связанного иона переходного металла на фотохромные свойства этих соединений на основе борана **43** были синтезированы циклометаллированные *N,C*-хелаты платины (II) **45** и **47а,b** [27]. С помощью спектральных методов установлено, что хромофорный фрагмент B(ppy)Mes₂ во всех трех соединениях (**45** и **47а,b**) подвергается фотоизомеризации с образованием боратирансодержащих аддуктов **46** и **48а,b** аналогично соединению **43**, но с существенно меньшим квантовым выходом (Схема 1.1.2.24).

Схема 1.1.2.24 — Фотоизомеризация боранов **45**, **47а**,**b** в соответствующие боратираны **46**, **48а**,**b**

В присутствии кислорода боратиран 44 подвергается процессу деборирования, образуя соединение 49 и тримезитилбороксин 50 (Схема 1.1.2.25).

Схема 1.1.2.25 – Деборирование борирана 44 в присутствии кислорода

При УФ-облучении (365 нм) фотохромные *N,C*-хелатные органобораны **51а-с** с бензофурильным, бензотиенильным или *N*-фенилиндолильным фрагментами [28,29] изомеризуются в соответствующие боратираны **52а-с** (Схема 1.1.2.26), что сопровождается изменением цвета образующихся соединений от светло-желтого до темно-синего или зеленого.

Схема 1.1.2.26 – Фотоизомеризация боранов **51а–с** с бензофурильным, бензотиенильным или *N*-фенилиндолильным фрагментами

Впервые для одного из синтезированных боратиранов, а именно для соединения **52c**, были получены стабильные монокристаллы, что позволило установить его структуру с помощью метода РСА, а также дополнительно подтвердить полученные ранее с помощью ЯМР спектроскопии и расчетных компьютерных данных сведения о формировании боратиранового фрагмента в структуре этих соединений.

В продолжение этих исследований авторами [30] синтезирован ряд *N,C*-хелатированных моно- и диборанов **53–57** (Рисунок 1.1.2.2), содержащих в своей структуре один или два тиенильных фрагмента.

Рисунок 1.1.2.2 – Моно- и дибораны **53–57** с тиенильными фрагментами Как выяснилось, только монотиенильные бораны **53**, **54** обратимо фотоизомеризуются до боратиранов **58**, **59** (Схема 1.1.2.27).

Схема 1.1.2.27 — Фотоизомеризация монотиенильных боранов **53**, **54** в боратираны **58**, **59**

Изомеризация борана **54** проходит с гораздо меньшим квантовым выходом по сравнению с соответствующим превращением борана **53** и трансформацией соединения **32a**, описанной в работе [20]. Такое поведение указанных боранов может быть следствием увеличения системы π-сопряжения в хелате **54** по сравнению с соединениями **53** и **32a**. Методом спектроскопии ЯМР показано, что фотоизомеризация боранов **53** и **54** в соответствующие борираны **58** и **59** полностью термически обратима [30].

Обнаружено, что N, C-хелатные монобораны и дибораны **55–57**, содержащие в своей структуре дитиенильный фрагмент, проявляют повышенную устойчивость к фотооблучению. Согласно данным флуоресценции и квантово-химических расчетов методом нестационарной теории функционала плотности (TD-DFT) показано, что введение в молекулу дополнительного дитиенильного звена вызывает появление новых фотофизических каналов дезактивации поглощенной энергии флуоресценции и переноса заряда, которые конкурируют с процессом фотоизомеризации.

N,C-Хелатные димезитилбораны **60а**–**c** с бензотиазолильным (**a**), бензоксазолильным (**b**), бензимидазолильным (**c**) фрагментами под действием УФ-облучения изомеризуются в соответствующие боратираны **61а**–**c** (Схема 1.1.2.28), при изучении термических превращений которых получены интересные результаты [31].

Схема 1.1.2.28 – Фотоизомеризация димезитилборанов **60а-с** в боратираны **61а-с**

Так, при нагревании боратираны **61а**—**с** претерпевают мультиструктурные преобразования и последовательно продуцируют изомеры **A**, **B** и **C** (Схема 1.1.2.29). Образованию изомера **A** способствует довольно редкий термический внутримолекулярный перенос протона от метильной группы мезитильного фрагмента с одновременным восстановлением азольного цикла. В дальнейшем за счет сдвига 1,3-борильной группы изомер **A** превращается в изомер **B**. Примечательно, что изомер **B** может быть количественно преобразован путем нагрева в его диастереомер **C**, а последний может быть обратно превращен в изомер **B** при УФ-облучении

(300 нм). Структура изомеров **В** и **С** была установлена методами ЯМР-спектроскопии и РСА. Механистические пути этих трансформаций установлены с помощью DFT и TD-DFT расчетов [31].

Схема 1.1.2.29 – Схема термических превращений боратиранов 61а-с

Впервые трициклические 1,2-азаборатабисноркадиены 63a,b, содержащие В своей структуре борирановые фрагменты, получены фотоизомеризацией *N*-метил-2-фенилимидазолил-хелатированных димезитилборанов **62а,b** (Схема 1.1.2.30). [32] Дальнейшее их облучение при 350 нм, сопровождающееся отчетливым изменение цвета, приводит к образованию изомеров 1,2-азаборабензотропилиденов 64а,b. Соединения 64а, в содержат сопряженное алкилиденборановое звено и при температуре 80 °C могут быть полностью превращены в соединения 63a,b, а при 110 °C – в исходные бораны 62а, b.

Схема 1.1.2.30 — Последовательная фотоизомеризация *N*-метил-2-фенилимидазолил-хелатированных димезитилборанов **62a,b** до азаборепинов **64a,b**

Описанный выше метод получения боратиранов *N.C*димезитилборанов, основанный хелатированных на деароматизации мезитильного фрагмента при атоме бора под действием УФ-облучения, оказался весьма эффективным и получил дальнейшее развитие. Так, при УФоблучении димезитилборанов 65а-с с двумя хромофорами показано, что процесс фотоизомеризации с образованием боратиранов 66а-с происходит через триплетно-возбужденное состояние (Схема 1.1.2.31) [33].

Схема 1.1.2.31 — Фотоизомеризация Si-содержащих боранов **65а-с** с двумя хромофорами

Данный вывод имеет важное практическое значение при разработке новых фотохромных материалов на основе комплексов бора, поскольку предварительная оценка энергии триплетного уровня заместителя (нафталин,

пирен, антрацен и др.) у атома бора позволяет предсказать эффективность протекания процесса фотоизомеризации.

С целью изучения влияния ацетиленидов металлов в структуре *N*, *C*-хелатированных органоборанов на образование боратиранов под действием облучения были синтезированы соответствующие борорганические соединения **67–69** (Рисунок 1.1.2.3) [34].

Рисунок 1.1.2.3 – Бораны 67–69 с фрагментами ацетиленидов металлов

Так, в результате фотоизомеризации бораны **67** и **68**, содержащие фрагменты Au(PPh₃)(C≡C) и *транс*-Pt(PPh₃)₂(C≡C)₂), превращаются в боратираны **70**, **71** (Схема 1.1.2.32). При этом Au-содержащий *N,C*-хелатированный боран **67** полностью трансформируется в боратиран **70** за 15 минут, в то время как Pt-содержащий *бис*-боран **68** превращается в боратиран **71** в течение суток. Установлено, что боран **69**, содержащий ацетиленид рения, не проявляет фотоактивность при УФ-облучении и, стало быть, не изомеризуется до соответствующего боратирана.

Схема 1.1.2.32 — Фотоизомеризация боранов **67**, **68**, содержащих ацетилениды металлов (Au, Pt)

Ключевым фактором, влияющим на фотоизомеризацию рассматриваемых борорганических соединений, является процесс переноса заряда от мезитильной группы на хелатированную часть молекулы борана. В случае рений- и платиносодержащих (в меньшей степени) хелатных единиц в структуре боранов ведущую роль играют низколежащие триплетные состояния. Эти состояния препятствуют переносу заряда от мезитильной группы, вызывая гашение процесса фотоизомеризации [27].

Накопленный опыт в области фотоизомеризации боранов, позволил авторам [35] разработать синтез фотохромных полимеров. С этой целью в результате многостадийного 6ситнеза получен мономер $[B(ppy)Mes_2]$ оксигексилметакрилат (BHMA) 72, который изомеризуется до боратирана 73. Взаимодейстием ВНМА 72 с трет-бутилметакрилатом и метиловым эфиром 2-бром-2-метилпропионовой кислоты впервые получены фотохромных полимеров 74(Р1-Р5) [35]. При УФ-облучении борановые фрагменты в этих полимерах 74(Р1-Р5) подвергаются фотоизомеризации до боратирановых фрагментов c образованием соответствующих боратирансодержащих полимеров 75(Р1–Р5) (Схема 1.1.2.33).

Схема 1.1.2.33 — Синтез фотохромных боратирансодержащих полимеров **75(P1–P5)**

Новые полимеры на основе борорганических соединений могут эффективно использоваться в качестве фотохромных переключателей, в которых происходит обратимая фотохимическая реакция образования/раскрытия трехчленного бориранового цикла.

Для понимания этого необычного явления обратимого фотохромного переключения через образование/разрыв связи C-C в N, C-хелатных органоборанах типа B(ppy)Mes₂ с четырехкоординированным атомом бора образовании соответствующих боратиранов, сопровождающегося изменением пвета от бесцветного темно-синего, ДО авторами исследовано поведение различных диарилборанов B(ppy)Ar₂. Показано, что фотохромное переключение с образованием боратирана возможно только в случае наличия в структуре молекулы громоздких мезитильных групп. Так, для соединения $B(ppy)Ph_2$ **76**, содержащего вместо мезитильных две фенильные группы при атоме бора, процесс фотоизомеризации наблюдается (Схема 1.1.2.34).

Схема 1.1.2.34 – Влияние структуры заместителей при атоме бора на фотохромное переключение

Указанные свойства этих боранов авторы объясняют различием в длинах связей B—Ph и B—Mes. Связь B—Mes намного длиннее связи B—Ph. А наличие в арильном заместителе электронодонорных метильных групп способствует низкоэнергетическому переносу заряда Mes \rightarrow ppy, который отвечает за фотохромные свойства указанных борорганических N, C-хелатов.

Для установления влияния структуры арильных заместителей в соответствующих боранах на процесс фотоизомеризации авторами [37] были изучены реакции фотоизомеризации асимметричных *N,C*-хелатных борорганических соединений типа B(ppy)(Mes)(Ar) с двумя различными арильными группами при атоме бора на примере боранов **77а**–с. Установлено, что в процессе фотоизомеризации принимает участие менее

замещенная арильная группа с образованием окрашенных в темный цвет изомеров (боратиранов) **78а**–**c**, которые при нагревании изомеризуются в стабильные на воздухе 4b*H*-азаборепины **79а**–**c** (Схема 1.1.2.35).

hv hv
$$\frac{hv}{R}$$
 $\frac{hv}{R}$ $\frac{h$

Схема 1.1.2.35 — Термический синтез 4bH-азаборепинов **79а**— \mathbf{c} на основе боратиранов **78а**— \mathbf{c}

Механистические аспекты этих интересных и необычных явлений фото/термической изомеризации изучены на основе кинетических данных и вычислительных исследований. Для доказательства механизма образования 4bH-азаборепинов 79a–c из боратиранов 78a–c использован меченный дейтерием исходный боран $B(ppy)(Mes)(C_6D_5)$ (Схема 1.1.2.36) [37]. Установлено, что при нагревании дейтерированного боратирана 80 происходит деароматизация пиридильного фрагмента посредством прямого переноса атома дейтерия D(1) от бориранового кольца c образованием аддукта 81.

$$B(ppy)(Mes)(C_6D_6) \xrightarrow{hv} D(1) \xrightarrow{D(2)} D(3) \xrightarrow{D(3)} D(4) \xrightarrow{D(3)} D(4)$$

Схема 1.1.2.36 – Термический синтез 4b*H*-азаборепина **81** на основе дейтерированного боратирана **80**

Фотореакция имидазолзамещенного борана **82** образованием боратирана 83 проходит менее эффективно и с меньшим квантовым выходом, но при этом термоизомеризация боратирана 83 в азаборепин 84 происходит быстрее (Схема 1.1.2.37) [37]. Вероятно, большее π -сопряжение в имидазолсодержащем хелатном лиганде меньшая ароматичность сравнению cпиридином способствует стабилизации имидазола возбужденного состояния борана 82 и снижает энергию реорганизации, которая связана деароматизацией имидазола способствует И трансформации боратирана 83 в азаборепин 84.

Схема 1.1.2.37 — Фотохимический синтез боратирана **83** и его термоизомеризация в азаборепин **84**

Исследована фотоизомеризация *N,C*-хелатированных органоборанов **85а**–**c** и **87а**–**d**, содержащих в своей структуре арильные заместители с донорными аминогруппами в *пара*-положении (Схема 1.1.2.38) [37].

Схема 1.1.2.38 — Фотоизомеризация боранов **85а—с** и **87а—d** с электронодонорными заместителями в *пара*-положении

Из приведенных выше структур только соединения **85а,b** успешно участвуют в реакции фотоизомеризации (300 нм, 9 ч, N_2) с образованием боратиранов **86а,b**, в то время как **85c** остается инертным (Схема 1.1.2.38) Бораны **87а-d**, не содержащие метильных групп в *орто*-положении арильного заместителя при атоме бора, тоже инертны (**87d**), либо разлагаются под действием фотооблучения (**87a-c**), не образуя боратиранов, что, вероятно, связано с различиями в механизмах электронного возбуждения данных молекул.

В продолжение исследования реакции фотоизомеризации боранов в боратираны, авторы [38] синтезировали ряд боранов **88a,b** и **89a–f** с этинильным фрагментом в *пара*-положении одного из ароматических заместителей (Схема 1.1.2.39).

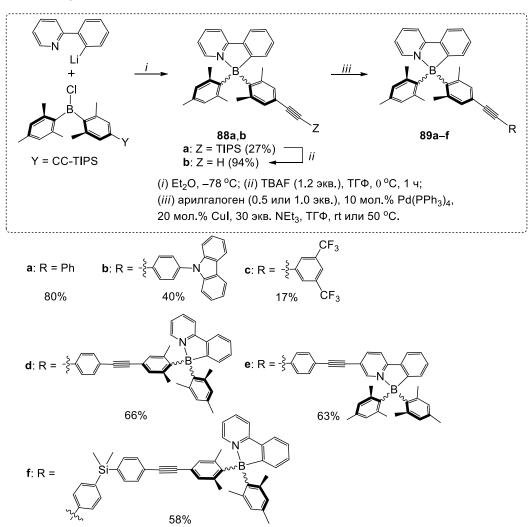


Схема 1.1.2.39 — Синтез боранов **88а,b**, **89а—f** с этинильным фрагментом

При фотоизомеризации боранов **89а–с** с высокой региоселективностью образуются соответствующие боратиранов **90а-с**, которые при нагреве до 90 °C в течение 1 часа превращаются в исходные бораны (Схема 1.1.2.40). Структура исходных боранов **89а–с** и продуктов фотореакции **90а–с** доказана методами спектроскопии ЯМР и масс-спектрометрии. Соединения **89d,е** оказались инертными к воздействию УФ-облучения.

Схема 1.1.2.40 – Фотоизомеризация боранов **89а–с** с этинильным фрагментом в *пара*-положении арильного заместителя

В тех же условиях боран **88a** при фотооблучении образует смесь двух боратиранов **91a** и **92a** в соотношении $\sim 6:1$ (R = TIPS), а его аналог **88b** – смесь **91b** и **92b** в соотношении 4:1 (R = H) (схема 1.1.2.41) [39].

Схема 1.1.2.41 — Фотоизомеризация боранов **88а,b** с образованием смеси двух изомерных боратиранов

Согласно теоретически обоснованному механизму [38, 40], возбуждение *N,C*-хелатных соединений бора при УФ-облучении

сопровождается образованием бирадикальных интермедиатов **A** и **B** (Схема 1.1.2.42), которые трансформируются в боратирановые аддукты. Наиболее стабильным является бирадикальный интермедиат **B**, что связано с делокализацией электронной плотности вдоль алкинфункционализированного арильного заместителя. Это объясняет различие в региоселективности образования боратирановых аддуктов.

Схема 1.1.2.42 – Бирадикальный механизм фотоизомеризации

Отмечено [39], что в отличие от соединенных 1,4-фениленовым спейсером *бис*-боранов **89d**,**e**, абсолютно инертных к воздействию УФ облучения, *бис*-боран **89f**, соединенный кремниевым мостиком, подвергается фотоизомеризации с участием одного борного центра с образованием *моно*-боратирана **93** (Схема 1.1.2.43) аналогично ранее описанным ди-, три- и гексаборанам **35**, **37**, **39**, **41** [см. 24, 25].

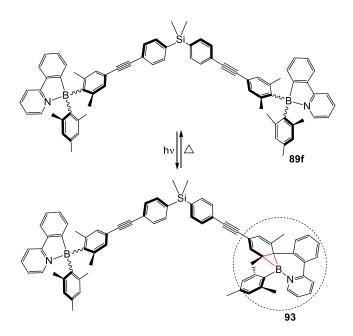


Схема 1.1.2.43 — Фотоизомеризация Si-содержащего бис-борана **89f**

Авторами [40, 41] синтезирован широкий ряд боранов 94а-h с двумя разными заместителями у атома бора, один из которых - мезитильный, присутствие которого в структуре исходной молекулы необходимо для осуществления фотоизомеризации [36], а второй – N,O,S-гетероциклический гетеробициклический (Схема 1.1.2.44). При УФ-облучении или синтезированных боранов происходит ожидаемое региоселективное образование боратиранов с участием гетероциклического заместителя (R). В этих реакциях фотогенерированные боратираны 95а и 97b-f являются промежуточными соединениями, которые трансформируются в более стабильные изомеры 96a и 98b-f.

Схема 1.1.2.44 — Фотоизомеризация боранов **94а—h** с N,O,S-гетеро(би)циклическими заместителями

Образование боратиранов происходит с участием гетероциклического заместителя (R) (Схема 1.1.2.44). Непосредственная близость связи C(2)-X борирановому циклу способствует (X=N,O,S)ee активации перегруппировке гетероцикла с образованием более стабильных изомеров – 96a 4bH-азаборепина оксаборининов 98b-f. И тиа-, интермедиатных боратиранов влияет на их дальнейшую трансформацию. Так, боратираны 97b-f, полученные на основе боранов с 2-тиофеновым или 2-фурильным заместителем на атоме бора, при последующем облучении 1,2-тиоборинины 98b-d И 1,2-оксаборинины превращаются соответсвенно, а боратиран 95а, образовавшийся из борана с 3-тиофеновым заместителем, трансформируется при нагревании в 4bH-азаборепин 96а. Азациклические производные боранов 94g, проявляют самую низкую активность в этих реакциях, причем боран 94g – полностью инертен. Боран 94h индольным заместителем атоме бора региоселективно на

фотоизомеризуется в течение 16 ч до борирана **97h**, который при длительном облучении разлагается. Все трансформации фиксировались с помощью мониторинга спектров ЯМР ¹¹В через определенное время после начала УФоблучения.

Ha 1.1.2.45 приведены [42] фототрансформации схеме диарилборагетероциклов $B(npy)Ar_2$ 99a-g, содержащих вместо 2фенилпиридильного фрагмента 2-(нафталин-1-ил)пиридильный (пру = 2-(нафталин-1-ил)пиридин). Обнаружено, что в отличие от рассмотренных выше боранов типа $B(ppy)Ar_2$ (ppy = 2-фенилпиридил) при УФ-облучении боранов 99а-д происходит двухстадийная фотоизомеризация. На первой стадии один из арильных заместителей мигрирует от атома бора к атому углерода нафтильного заместителя с образованием борепина 100. Вторая стадия изомеризации – это первый пример обратимой фотоизомеризации между борепином 100 и борираном 101.

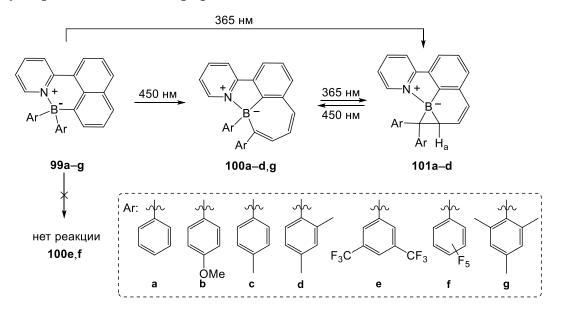


Схема 1.1.2.45 — Фототрансформации диарилборагетероциклов с 2нафтилпиридилным фрагментом **99а–g**

На фотоактивность *N*,*C*-хелатированных боранов **99а**–**g** влияет природа арильного заместителя у атома бора. Так, дифенилзамещенный боран **99а** при УФ-облучении (365 нм) изомеризуется с количественным выходом (72%)

боратирана **101а**, что сопровождается отчетливым изменением цвета раствора от светло-желтого до ярко-оранжевого. Квантовый выход фотоизомеризации борана **99а** в боратиран **101а** в толуоле составляет 14% (Схема 1.1.2.45). Интересно, что при облучении борана **99а** с большей длиной волны (450 нм) в течение 4 ч образуется смесь борепина **100а** и боратирана **101а** в соотношении 1 : 1.2.

Бораны **99b**,**c** с электронодонорными группами ОМе или Ме в *пара*положении на арильном заместителе при атоме бора подвергаются фотоизомеризации при 450 нм, аналогично **99a**, образуя смесь борепина и боратирана в соотношении **100b** : **101b**=2.8 : 1 и **100c** : **101c** = 1.9 : 1, соответственно, при этом конверсия для **99b**,**c** в боратираны **101b**,**c** составляет 94 и 100% соответственно.

Облучение борана **99d** (365 нм) с *орто*-Ме заместителем арильной группы дает смесь соединений **100d** и **101d** в соотнеошении 1 : 4.9. При дальнейшем облучении с увеличением длины волны до 450 нм боратиран **101d** полностью превращается в борепин **100d**. Таким образом, метильная группа в *орто*- положении арильного заместителя в соединении **100d** стабилизирует борепиновый изомер **100b**. В связи с этим в аналогичных условиях боран **99g** с двумя *орто*-Ме-группами практически не изомеризуется до боратирана **101g**, а фотопродуктом является лишь борепин **100g**.

Бораны **99e,f** с электроноакцепторными группами (CF₃, F) на арильном заместителе не проявляют фотоактивность при облучении. Таким образом, на фотоактивность рассмотренных боранов оказывают влияние как стерические, так и электронные эффекты арильных заместителей атома бора.

Структура борирана **101а** установлена с помощью двумерной ЯМРспектроскопии и РСА полученных в результате перекристаллизации кристаллов. При попытке выделить бориран **101а** колоночной хроматографией он постепенно разлагался на воздухе.

В отличие от приведенных выше примеров боратаноркарадиенов 33а-f (См. схему 1.1.2.18) в соединении **101а** (Схема 1.1.2.46) атом бора является общим борациклогексадиенового, ДЛЯ так и ДЛЯ бориранового фрагментов. Это соединение 101a является первым примером борациклогексадиенилборатирана с таким типом связи и представляет редкий изомер боратаноркарадиена.

Боратираны **101а**—с устойчивы к воздействию воды, однако на воздухе в течение нескольких дней при 25 °C (либо при нагревании 90 °C в течение 12 ч) трансформируются в димеры **102а**—с (Схема 1.1.2.46). Полученный на основе боратирана **101а** продукт окисления **102а** выделен с выходом 72% в виде желтых кристаллов перекристаллизацией из смеси растворителей гексан—хлористый метилен (2 : 1) и охарактеризован методом PCA [42].

Схема 1.1.2.46 – Окисление боратиранов 101а-с кислородом воздуха

В работе [43] сообщается C,C-хелатированных 0 синтезе гетероциклическими карбенами боратиранов 104 УФ-облучением димезитилборанов **103**. В отличие от ранее рассмотренных *N*.*C*-C, C-хелатированные хелатированных боратиранов 104 ИХ аналоги термически стабильны и не подвергаются обратимой термической реакции даже при нагревании до 110 °C. Более того, они устойчивы по отношению к кислороду и не разлагаются с образованием продуктов деборирования и $B(OMes)_3$, как N,C-хелатированные боратираны (См. схемы 1.1.2.18, 1.1.2.25) [20-22, 27]. Однако, при последующем фотооблучении (350 нм) боратираны **104** склонны к внутримолекулярной перегруппировке до изомерных аддуктов **105** (Схема 1.1.2.47).

Схема 1.1.2.47 — Фотоизомеризация *С,С*-хелатированных гетероциклическими карбенами боранов **103**

Первый пример аннелированного с карбораном боратирана, полученного фотоизомеризацией азаборола, приведен в работе [44]. При облучении светом ксеноновой дуговой лампы (400–1500 нм, 300 Вт) карборансодержащего азоборола **106** в растворе ТГФ при комнатной температуре в атмосфере азота получен сочлененный с карбораном боратиран **107** в виде бесцветных кристаллов с выходом 82% (Схема 1.1.2.48).

But Dipp

$$A = BH$$

106

But Dipp

 $A = BH$

Схема 1.1.2.48 – Синтез аннелированного с карбораном боратирана 107

Процесс фотоизомеризации тригонально-планарного азаборола **106** и тетраэдрального боратирана **107** полностью обратим. При комнатной температуре бледно-желтый раствор боратирана **107** очень медленно превращается в темно-фиолетовый раствор азаборола **106**. При нагревании процесс фотоизомеризации ускоряется. Мониторинг реакции с помощью

спектроскопии ЯМР 1 Н и 11 В показал, что боратиран **107** полностью преобразуется в азаборол **106** при нагревании (80 $^{\circ}$ С) в течение 12 ч. Попытки синтезировать аналогичный боратиран методом переметаллирования металлокарборанов (например, $\text{Li}_{2}\text{C}_{2}\text{B}_{10}\text{H}_{10}$ или 1,2-[М]-1,2-С $_{2}\text{B}_{10}\text{H}_{10}$, где [М] – переходный металл) с помощью RBHal $_{2}$ не увенчались успехом.

Аннелированный с корбораном боратиран 107 не проявляет какой-либо активности при взаимодействии с кетонами, алкинами, изонитрилами, а также комплексами переходных металлов, например, $[(COD)RhCl]_2$, $Ni(COD)_2$, $Pd(dba)_2$ (COD = 1,5-циклооктадиен, dba = дибензилиденацетон). Однако при взаимодействии боратирана 107 с CuCl (1 экв) в растворе ТГФ в результате гетеролитического разрыва В-С связи бориранового кольца с одновременным формированием нового BNCтрехчленного цикла образуется цвиттер-ион 108 (Схема 1.1.2.49). При добавлении эквимольного количества 1,3-диизопропил-4,5диметилимидазол-2-илидена к цвиттер-иону 108 последний полностью трансформируется обратно в боратиран 107. Обработкой боратирана 107 1 экв. HCl в растворе диоксана получен монохлорборан-карбеновый аддукт 109в результате разрыва одной связи В-С бориранового цикла.

Схема 1.1.2.49 – Реакции аннелированного с карбораном боратирана **107** с HCl и CuCl

При взаимодействии боратирана **107** с элементной серой в ТГФ при комнатной температуре обнаружена неописанная ранее для бориранов реакция расширения трехчленного цикла с образованием аддукта **110** (Схема 1.1.2.50).

Схема 1.1.2.50 – Взаимодействие боратирана 107 с серой

Молекулярная структура аддукта **110** подтверждена методом РСА. Особенностью полученного соединения является наличие плоского четырехчленного кольца ССВS (сумма внутренних углов тетрагона 360°), которое образуется путем формальной вставки атома элементной серы по одной В–С-связи бориранового цикла ВСС. Атом бора тиоборетанового фрагмента принимает искаженную тетраэдрическую геометрию, связываясь с тремя атомами углерода и одним атомом серы.

1.1.3 Синтез боратиранов реакцией [2 + 1]-циклоприсоединения непредельных соединений к бориленам [RB:]

Впервые синтез стабилизированных N-гетероциклическими карбенами боратиранов реакцией путем [2 + 1] циклоприсоединения нафталина к борилену [RB:] осуществил Braunschweig H. [45]. Борилен DMII·BH (DMII -1,3-диметилимидазол-2-илиден) генерируется *in situ* при взаимодействии дихлорборана BHCl₂·DMII **111** с двумя эквивалентами нафталенида натрия $Na[C_{10}H_8]$ в $T\Gamma\Phi$ при -78 °C . Боратиран 7.8-($IMe\cdot BH$)- $C_{10}H_8$ **112** образуется в

виде смеси диастереомеров RRS(R,R-112) и RSR (R,S-112) в соотношении 1:1 с общим выходом 88% (Схема 1.1.3.51). Диастереомеры разделяли двукратной перекристаллизацией при -30 °C из толуола. Образование только двух возможных пар энантиомеров является результатом *син*-селективного взаимодействия борилена DMII·BH с нафталином. Авторы отмечают, что в трехчленном кольце генерируются три стереогенных центра, *син*-селективность ограничивает количество возможных энантиомеров двумя парами (RRS/SSR и RSR/SRS).

Схема 1.1.3.51 — Синтез боратиранов *RRS* (*R*,*R*-**112**) и *RSR* (*R*,*S*-**112**) реакцией [2+1]-циклоприсоединения борилена [RB:] к нафталиниду натрия

Позже авторы [46, 47] синтезировали *транс*-1,2,3-трифенилборатираны **114а,b** реакцией [2+1]-циклоприсоединения дианиона *транс*-стильбена Na₂[C₁₄C₁₂] к бориленам, генерируемым из стабилизированных гетероциклическими карбенами фенилдихлорборанов **113a,b** (Схема 1.1.3.52). Это первые примеры стабилизированных гетероциклическими карбенами моноциклических боратиранов, синтезированных без УФоблучения.

Схема 1.1.3.52 — Синтез 1,2,3-трифенилборатиранов **114а,b** по реакции [2+1]- циклоприсоединения борилена к дианиону *транс*-стильбена

Полученные в виде смеси диастереомеров боратираны были полностью охарактеризованы с помощью методов ЯМР-спектроскопии, элементного анализа и РСА. Боратираны 114а, в устойчивы на воздухе и не разлагаются после обработки водой в течение нескольких дней. Они инертны к нагреванию до 80 °C в течение нескольких дней и фотолитическому воздействию (облучение ртутной лампой в течение 1 ч (114а) и 36 ч (114b) в C_6D_6). собой растворе Образовавшиеся борираны представляют рацемическую смесь энантиомеров И имеют взаимно трансориентированные фенильные группы, связанные с атомами углерода кольца.

Эти устойчивость результаты демонстрируют впечатляющую стабилизированных гетероциклическими карбенами боратиранов, обусловленную наличием сильного основания Льюиса в составе молекулы боратирана. Поэтому неудивительно, что попытки удалить основание Льюиса из соединений 114а, в и получить свободный бориран, оказались безуспешными. Даже при нагревании (60 °C) боратирана **114**а в бензоле в течение 7 недель с комплексом платины $[Pt(PEt_3)_3]$, генерированном *in situ* из Pt(PEt₃)₄, борирановый цикл не разрушался [46]. В результате активации одной из С-Н-связей карбенового фрагмента боратирана 114а с выходом 38% был получен ковалентно-связанный комплекс **115**, выделенный в виде бесцветных кристаллов (Схема 1.1.3.53).

Схема 1.1.3.53 – Взаимодействие боратирана 114а с комплексом Рt(PEt₃)₃

1.1.4 Синтез боратиранов реакцией двойного гидроборирования ацетиленов с помощью имидазол-2-илиденборанов

В 2017 году [48, 49] реакцией двойного гидроборирования диметилацетилендикарбоксилата имидазол-2-илиденборанами **116a–d** получены *транс*-дикарбоксилат-замещенные боратираны **117a–d** с выходом 19–80% (Схема 1.1.4.54). В зависимости от природы заместителя R при атоме азота в структуре боранов **116a–d** синтез проводили либо при сильном охлаждении до –78 °C, либо при нагревании до 80 °C.

MeO₂C — CO₂Me
$$\frac{1}{1000}$$
 MeO₂C $\frac{1}{1000}$ MeO₂C $\frac{1}{10000}$ MeO₂C $\frac{1}{10000}$ MeO₂C $\frac{1}{10000}$ MeO₂C $\frac{1}{10000}$ MeO₂C $\frac{1}{1$

Схема 1.1.4.54 — Реакция двойного гидроборирования диметилацетилендикарбоксилата с помощью имидазол-2-илиденборанов

Согласно литературным данным, при гидроборировании ацетиленов образуются алкенилбораны [50]. Данный случай демонстрирует первый пример гидроборирования ацетиленов, приводящий не только к (Е)-алкенилборанам 118а-d (5–35%), но и к боратиранам 117а-d (19–80%). Очевидно, что на направление реакции гидроборирования влияет наличие двух электроноакцепторных карбоксильных групп в структуре ацетилена, которые способствуют гидридному переносу от имидазол-2-илиденборанов. Полученные соединения 117а-d и 118а-d являются стабильными и не трансформируются друг в друга при длительном хранении или нагревании (при 80 °C) в растворе ацетонитрила в течение одной недели.

На основании квантовохимических расчетов [48] предложен механизм образования боратиранов **117а–d** и алкениборанов **118а–d** в растворе ТГФ. Термодинамически наиболее выгодные направления реакции между бораном **116а** и диметилацетилендикарбоксилатом представлены на схеме 1.1.4.55.

Схема 1.1.4.55 — Предложенный на основе квантовохимических расчетов механизм образования боратиранов **117а**—**d** и алкениборанов **118а**—**d**

Стабилизированные карбенами боратираны **121а**—**f**, содержащие карбоксильные группы, при взаимодействии с HCl или Me₃SiCl в растворе дихлорметана при температуре 40 °C могут быть превращены в достаточно редкие соединения — боралактоны **122а**—**f** (Схема 1.1.4.56) [51, 52], химические трансформации которых открывают удобный путь к получению различных производных карбоновых кислот.

Схема 1.1.4.56 – Синтез боралактонов 122а–f на основе боратиранов 121а–f

В 2020 г. реакцией радикального двойного транс-гидроборирования диина 123 c помощью NHC·BH₃ 124 (NHC Nциклического карбен) последующей °C) гетероциклический И термической изомеризации образовавшегося борепина 125 был получен аннелированный боратиран 127 (выход 67%) (Схема 1.1.4.57) [53]. На стадии радикальной реакции наряду с борепином 125 образуется побочный продукт 126.

Схема 1.1.4.57 – Образование аннелированного боратирана 127

Путем перекристаллизации из толуола при -30 °C получены монокристаллы боратирана **127** и изучены методом РСА. Установлено, что аннелированный боратиран **127** образуется в виде смеси $\frac{9h}{do}/\frac{9\kappa}{30}$ -изомеров. В спектре ЯМР ¹¹В соединения **127** наряду с сигналом атома бора $\delta_{\rm B}$ -33.3

м.д. наблюдается еще один слабый сигнал при δ_B -30.4 м.д., который был отнесен к экзо-диастереомеру **127** (эндо/экзо ~ 97:3) [53]. Предполагаемый экзо-продукт не удалось выделить и охарактеризовать. Боратиран **127** обладает высокой термостабильностью, что было показано методом дифференциальной сканирующей калориметрии. В реакционной массе было обнаружено незначительное количество (2%) 7,8,9,10-тетрагидро-6Н-циклогепта[b]нафталина **128**.

На основе квантовохимических расчетов методом DFT предложен механизм реакции термической изомеризации борепина **125** в боратиран **127** (Схема 1.1.4.58). Согласно расчетам борепин сначала трансформируется в интермедиатный бораноркарадиен **129** в результате термической бπ-электроциклической изомеризации, а затем следует 1,5-сдвиг атома бора с образованием боратирана **127** [53].

Схема 1.1.4.58 — Предложенный на основе квантовохимических расчетов механизм реакции термической изомеризации борепина **125** в боратиран **127**

В дополнение к приведенным выше экспериментальным работам в литературе опубликованы теоретические исследования, в которых подробно обсуждаются вопросы формирования, устойчивости и электронной структуры бориранов [54–65] и детального понимания механизма обратимой фотоизомеризации *N,C*-хелатных борорганических соединений в

соответствующие борираны [66, 67], которые в данном обзоре не обсуждаются.

1.2 Борирены и боратирены

Борациклопропены (борирены, боратирены) — представляют собой простейший пример непредельных циклических борорганических соединений. Борирены являются борными аналогами циклопропенильных катионов и представляют собой самые малые ароматические системы. Аналогично их алициклическим аналогам (бориранам) они обладают свободной *p*-орбиталью атома бора, способной принять пару свободных электронов от электронодонорной молекулы. Однако в отличие от бориранов борирены проявляют ароматические свойства. Оба π-электрона бориренового кольца полностью делокализованы между *p*-орбиталями атома бора и двух атомов углерода, что придает производным борирена ароматичность, согласно правилу Хюккеля.

Борирены представляют собой яркий пример современной химии, где теоретические расчеты предшествовали экспериментальным исследованиям. Из-за проблем, связанных с выделением и кристаллизацией бориренов, они практически не были экспериментально исследованы до начала 21 века. Интенсивные теоретические исследования с предсказаниями геометрии, термодинамической стабильности и реакционной способности этих трехчленных борсодержащих гетероциклов были начаты в начале 80-х годов прошлого века немецким химиком Schleyer [55–56].

1.2.1 Первые примеры синтеза бориренов

Первые примеры синтеза бориренов появились в 1984 году. Так, в сообщении [68] описан способ получения 1-*трет*-бутилбориренов **130а,b** по реакции (триметилстаннил)алкинов с 1,2-ди-*трет*-бутил-1,2-дихлордибораном в мягких условиях (Схема 1.2.1.59).

$$R \longrightarrow SnMe_3 + Cl \longrightarrow B \longrightarrow B \longrightarrow Cl$$

$$CMe_3$$

$$-Me_3SnCl$$

$$R \longrightarrow B$$

$$CMe_3$$

$$CMe_3$$

$$130a,b$$

$$a: R = CMe_3$$

$$b: R = SnMe_3$$

Схема 1.2.1.59 — Синтез бориренов **130а,b** реакцией (триметилстаннил)алкинов с 1,2-ди-*трет*-бутил-1,2-дихлордибораном

Борирены **130а,b** были выделены с помощью вакуумной перегонки в виде жидкостей, структура которых установлена с помощью анализа ЯМР ¹H, ¹³C, ¹¹B спектральных данных, ИК- и масс-спектрометрии. Выход выделенных соединений авторами не указан.

При взаимодействии с 4-третбутилпиридином борирен 130а образует белый кристаллический аддукт 131 (Схема 1.2.1.60). При ЭТОМ комплексообразование 4-трет-бутилпиридина происходит экзоциклическим атомом бора поскольку в спектре ЯМР ¹¹В наблюдается сильнопольный сдвиг сигнала атома бора заместителя от δ_B 72 до 9 м.д., тогда как сигнал атома бора бориренового цикла смещается в более слабое поле лишь на 4.0 м.д. (от δ_B 43.0 до 47.0 м.д.). Попытки выделить аналитически чистые кристаллы для рентгеноструктурного анализа не увенчались успехом.

Схема 1.2.1.60 – Образование комплекса борирена **131** с 4-*трем*-бутилпиридином

Синтез В-аминобориренов впервые осуществлен в 1984 году в несколько стадий [69]. На первой стадии 1,2,4,3,5-тритиадиборолан при

взаимодействии с замещенными ацетиленами образует 1,2,3-дитиаборолы **132а–f**, которые в результате последующих реакций с LiN(SiMe₃)₂ и кипячения с натрием в толуоле в результате элиминирования серы образуют 1-[бис(триметилсилил)амино]борирены **133а–f** с выходом 2–7% (Схема 1.2.1.61). Полученные борирены представляют собой бесцветные, слегка вязкие жидкости. Однако этот метод не получил развития из-за очень низких выходов продуктов реакци.

Br B Br R' R' C-S LiN(SiMe₃)₂ R' C-S Na, TONYON Sh, 110°C Br N(SiMe₃)₂

132a-f a: R = H, R' =
$$n$$
-Pr, b: R = H, R' = n -Pr e: R = R' = Et, f: R = R' = n -Pr

Схема 1.2.1.61 – Синтез В-аминобориренов **133а–f**

1.2.2 Синтез бор(ат)иренов фотоизомеризацией алкинилборанов

Исследования в области фотоинициированных превращений органоборанов позволили существенно усовершенствовать методы синтеза бориренов [70–74]. В результате фотоперегруппировки (254 нм, бензол/ТГФ) пиридината дифенил(фенилэтинил)борана **134** получен пиридинат трифенилборирена **135** (Схема 1.2.2.62) [70].

Схема 1.2.2.62 — Фотохимический синтез пиридината трифенилборирена **135** и его химические свойства

Структура комплекса борирена 135 подтверждена данными спектров ¹Н ЯМР, масс-спектрами, а также химическими трансформациями. В массспектрах наряду с пиками 344 и 345 (для изотопов бора 10 В и 11 В) пиридината борирена 135, наблюдаются также пики незакомплексованного борирена – 265 и 266. Кроме этого, обнаружены пики, соответствующие продуктам окисления (m/z 298, диоксаборолан 137), гидролиза (m/z 189, *цис-/mpaнс*стильбен) и разложения борирена, которые образуются в масс-спектрометре чувствительности борирена к кислороду Действием из-за И влаге. дейтероуксусной кислоты DOAc был получен α,α' -дидейтеро- μc -стильбен 136. В присутствии толана в условиях фоотооблучения комплекса борирена 135 происходит расширение трехчленного цикла и образование пиридината пентафенилборола 138 с выходом 25% (Схема 1.2.2.62).

Внедрение молекулы ацетилена происходит исключительно по связи В- С (Путь a, схема 1.2.2.63), а не по связи С-С (Путь δ), что подтверждено

аналогичной реакцией борирена **135** в присутствии ди-*n*-толилацетилена, в результате которой образуется, борол **139**.

Схема 1.2.2.63 — Взаимодействие пиридината трифенилборирена 135 с ди-*п*-толилацетиленом

В 1987 г. Eisch J. с сотр. [71] осуществили фотоизомеризацию димезитил(арилэтинил)боранов в борирены **140а,b** (Схема 1.2.2.64). Наиболее подходящими растворителями при облучении (при 300 нм) являются тетрагидрофуран или бензол, содержащие небольшое количество пиридина. В этом случае выход фотореакции составляет 70%. В чистом толуоле или бензоле конверсия снижается до 35%. В алифатических растворителях образование бориренов не происходит.

Схема 1.2.2.64 — Фотохимический синтез триарилзамещенных бориренов **140**a,b

Тримезитилборирен **140a** (t_{пл}=218°C) достаточно стабилен и при непродолжительном нагревании на воздухе даже при 250°C не разлагается. Рентгеноструктурный анализ тримезитилборирена **140a** показал, что борациклопропеновый фрагмент образует равносторонний треугольник с длинами связей между атомами 1.416–1.417 Å и углом 60°. Последующие экспериментальные исследования показали, что оба π-электрона

бориренового кольца полностью делокализованы между p-орбиталями атома бора и двух атомов углерода и это придает производным борирена ароматичность, согласно правилу Хюккеля. Таким образом, авторам [70–74] удалось подтвердить теоретическое предположение советского и российского химика Вольпина М.Е. [75] о 2π -делокализации электронов ВСС трехчленного кольца.

При длительном окислении **140a** кислородом в толуоле при 25°C наблюдается образование димезитилацетилена, а также небольшого количества 2,4,5-тримезитил-1,3-диокса-2-борола **141** (Схема 1.2.2.65).

Схема 1.2.2.65 – Окисление 1,2,3-тримезетилборирена **140a** кислородом

При взаимодействии борирена **140a** водой, метанолом, этанолом или уксусной кислотой при 25 °C происходит протодеборирование с образованием соответствующего борана **142** (Схема 1.2.2.66). Полное удаление атома бора достигается кипячением **140a** в ледяной уксусной кислоте.

Схема 1.2.2.66 – Протодеборирование борирена 140а

Известно, что в присутствии основания Льюиса в борорганических соединениях происходит заполнение пустой *p*-орбитали атома бора с образованием аддуктов [76]. В ненасыщенных борацикланах образование

таких аддуктов нарушает любое π -сопряжение с участием атома бора, и, таким образом, исчезает любая ароматичность или антиароматичность в цикле. Это явление оказалось полезным, например, для модуляции фотофизических свойств боролов [77, 78], поэтому в работе [76] при исследовании реакционной способности бориренов продемонстрировано их поведение в отношении различных оснований Льюиса. Путем фотооблучения димезитилборилфенилацетилена в среде неполярного растворителя был получен 1,2-димезитил-3-фенилборирен 143, который образует стабильные аддукты 144 и 145 с 4-диметиламинопиридином (DMAP) и 1,3-диметил-2,3-1.2.2.67). дигидро-1H-имидазолом, соответственно (Схема При взаимодействии борирена 143 с пиридином получен соответствующий пиридинат 146, образующийся в виде твердого осадка желтого цвета при охлаждении реакционной массы до -40 °C. Фосфорорганические основания не реагируют с бориреном 143.

Схема 1.2.2.67 — Синтез 1,2-димезитил-3-фенилборирена **143** и его взаимодействие с основаниями Льюиса

Эксперименты показали, что все перечисленные основания Льюиса можно легко удалить из структуры аддуктов **144–146**. При добавлении трис(пентафторфенил)борана $B(C_6F_5)_3$ к аддуктам **144–146** образуется

исходный борирен **143** (Схема 1.2.2.68). Полученные результаты показали, что борирены являются более слабыми кислотами Льюиса, чем $B(C_6F_5)_3$.

Mes Ph
$$B(C_6F_5)_3$$
 Mes Ph C_6F_5 Mes C_6F_5 Mes

Схема $1.2.2.68 - Взаимодействие аддуктов борирена с <math>B(C_6F_5)_3$

При взаимодействии 1,2-димезитил-3-фенилборирена **143** с тетракис(триэтилфосфин)платиной в ТГФ был получен платино-бориреновый комплекс **147** в виде светло-желтых кристаллов (т. пл. 151 °C) (Схема 1.2.2.69) [79].

Mes Ph + [Pt(PEt₃)₄]
$$\xrightarrow{60 \text{ °C}, 6 \text{ ч}}$$
 $\xrightarrow{Et_3P}$ \xrightarrow{B} $\xrightarrow{Et_3P}$ \xrightarrow{B} \xrightarrow{B}

Схема 1.2.2.69 – Взаимодействие борирена **143** с Pt(PEt₃)₄

Структура комплекса **147** установлена методом рентгеновской кристаллографии, ЯМР спектрометрии, циклической вольтамперметрии, а также подтверждена квантовохимическими расчетами методом DFT. Показано, что выделенное соединение **147** представляет собой координационный В-С σ-комплекс борирена с Pt (PEt₃)₂ в соотношении 1:1.

1.2.3 Синтез бориренов реакцией [2+1]-циклоприсоединения ацетиленов к бориленам [RB:]

Возможность получения бориренов по реакции [2+1]- циклоприсоединения ацетиленов к бориленам [RB:] **148** (Схема 1.2.3.70) и потенциальная ароматичность бориренов впервые была высказана советским ученым Вольпиным в 1962 году [75], когда трехчленные борсодержащие гетероциклы еще не были описаны.

$$R^{1}$$
 $=$ R^{1} $+$ $[R^{2}B:]$ $+$ R^{1} $+$ R^{1} $+$ R^{2} $+$ R^{2} $+$ R^{2}

Схема 1.2.3.70 — Схема реакции [2+1]-циклоприсоединения ацетиленов к бориленам **148**

В последующие годы было предпринято несколько попыток синтеза получения борилена 148 ДЛЯ бориренов ПО реакции [2+1]циклоприсоединения различными исследовательскими группами (Timms P. [1], van der Kerk [54, 80–82]). Однако удавалось получать только димеры бориренов. Например, в результате совместной низкотемпературной конденсации субгалогенидов BF, BCl, генерируемых пропусканием через твердый бор тригалогенидов бора (BF₃, BCl₃) при высоких температурах, и ацетилена были выделены продукты димеризации бориренов – 1,4диборациклогексадиены **149а,b** (Схема 1.2.3.71) [1].

HC=CH
$$\xrightarrow{BX}$$
 $\xrightarrow{-196 \, ^{\circ}C}$ \xrightarrow{B} \xrightarrow{X} \xrightarrow{B} \xrightarrow{X} \xrightarrow{B} \xrightarrow{X} \xrightarrow{B} \xrightarrow{A} $\xrightarrow{A$

Схема 1.2.3.71 – Взаимодействие ацетилена с субгалогенидами бора BX (X = F, Cl) в газовой фазе

С целью получения *н*-бутилзамещенного борирена **150** по реакции [2+1]-циклоприсоединения осуществлено генерирование борилена кипячением в бензоле системы $C_8K/MeBBr_2$ в присутствии ди-*н*-бутилацетилена (Схема 1.2.3.71) [80–82]. Однако с помощью вакуумной дистилляции был выделен его димер — 1,4-дибора-2,5-циклогексадиен **151** ($t_{\text{кип}} = 90-100 \, ^{\circ}\text{C}/10^{-5} \, \text{мм} \, \text{рт.ст.}$), представляющий собой вязкую жидкость желтого цвета, неустойчивую на воздухе. Структура соединения **151** была установлена на основе данных ЯМР 1 Н и ГХ-МС. В масс-спектре

обнаружены пики 326, 327 и 328 в соотношении 1:8:16, соответствующие структуре димеризованного продукта **151**. Несмотря на то, что борирен **150** не был выделен, он был предложен в качестве интермедиата.

Схема 1.2.3.72 — Взаимодействие *н*-бутилацетилена с MeBBr₂

Взаимодействием трифенилсилилборилена **152**, генерированного в условиях облучения при охлаждении реакционной смеси до –196 °C, с *бис*(триметилсилил)ацетиленом получен борирен **153** (Схема 1.2.3.73), который выделен в виде масла желтого цвета и охарактеризован с помощью спектроскопии ¹Н ЯМР, ИК и масс-спектрометрии[83].

Ph₃SiLi
$$\rightarrow$$
 TFΦ, rentah \rightarrow B(SiPh₃)₃ \rightarrow Ph₃SiB:} \rightarrow TMS \rightarrow

Схема 1.2.3.73 – Синтез борирена **154** по реакции [2+1]-циклоприсоединения борилена **152** к *бис*(триметилсилил)ацетилену

После синтеза трифенилсилилборилена **152** следует избавляться от растворителя (ТГФ) поскольку при последующем облучение в его присутствии образуется побочный продукт его взаимодействия с молекулой $T\Gamma\Phi - 2$ -трифенилсилил-1,2-оксаборинан **154** (Рисунок 1.2.3.4).

Рисунок 1.2.3.4 — 2-Трифенилсилил-1,2-оксаборинан **154**

По реакции [2+1]-циклоприсоединения получен боратирен **155** в виде натриевой соли (Схема 1.2.3.74) [84]. Об образовании трехчленного борсодержащего цикла судили по химической трансформации в 1,2-дидейтеростильбен, полученный в виде смеси *транс* и *цис*-форм в соотношении 1:7, соответственно.

Na⁺[BPh₄]⁻

Na⁺[BPh₂]⁻

Na⁺[BPh₂]⁻

Ph—C
$$\equiv$$
C—Ph

Na⁺

Na⁺

Ph

Ph

DOAc

Ph

Ph

155

Схема 1.2.3.74 – Синтез тетрафенилборатирена 155

Более удобный подход к синтезу бориленов реакцией [2+1]- циклоприсоединения предложен в 2005 г. Вгаипѕсһweig Н. [85]. В качестве источника бориленов авторы [76, 85–88] использовали аминобориленовые комплексы [(OC) $_5$ M=B=N(SiMe $_3$) $_2$], которые легко можно получать в обычных условиях в инертной атмосфере на основе переходных металлов VI группы (M = Cr, Mo, W). Таким образом, в выбранных условиях перенос борилена :BN(SiMe $_3$) $_2$, образовавшегося в ходе реакции, из координационной сферы металла на тройную связь алкина дает возможность проводить прямой и селективный синтез бориренов. Так, в результате фотолиза металлбориленовых комплексов (OC) $_5$ M=B=N(SiMe $_3$) $_2$ (M=Cr, Mo) **156a,b** при температуре \sim 20 °C в присутствии симметричных ацетиленов получены В-аминоборирены **157a-d** (Схема 1.2.3.75) [85, 87].

ОС СО
$$P(TMS)_2 + P(TMS)_2 + P($$

Схема 1.2.3.75 — Синтез В-аминобориренов **157а—d** фотолизом комплексов **156а,b** в присутствии симметричных ацетиленов

Борирен **157а** был выделен в виде бледно-желтых кристаллов перекристаллизацией из гексана при -60° С и охарактеризован методом рентгеновской спектроскопии. Сравнивая значения длин связей С–С и В–С связей между атомами в бориреновых циклах аминоборирена **157а** и арилборирена **143**, авторы [85] сделали вывод, что характерная делокализация π -электронов в бориреновом цикле ослаблена для соединения **157а** за счет наличия аминогруппы, которая вступает во взаимодействие π -типа с вакантной p-орбиталью атома бора.

Возможность хемоселективного раскрытия бориренового цикла в Ваминобориренах путем гидроборирования 1-[бис(триметилсилил)амино]-2,3-диэтилборирена **133е** с помощью 9-борабицикло[3.3.1]нонана (9-ВВN) с количественным и селективным образованием *цис*-амин(борилвинил)борана **158** продемонстрирована в работе [86] (Схема 1.2.3.76).

2
$$\frac{N(TMS)_2}{B}$$
 + $\frac{C_6D_6, 80 \, ^{\circ}C}{30 \, ^{\circ}}$ $\frac{C_6D_6, 80 \, ^{\circ}C}{B}$ $\frac{B}{Et}$ $\frac{B}{E}$ $\frac{B}{Et}$ \frac{B}

Схема 1.2.3.76 – Взаимодействие В-аминоборирена **133e** с 9-ВВN

В развитие этих исследований авторами [76] осуществлен синтез бориренов с использованием ряда ацетиленов, в том числе несимметричных, содержащих в качестве заместителей борильные фрагменты B(NMe₂)₂. Так,

при фотолизе в течение 12 ч при комнатной температуре аминоборильного комплекса хрома **156a** в присутствии ацетиленов, содержащих различные функциональные группы, например, B(NMe₂)₂, Ph и SiMe₃, образуются аминоборирены **159a–c** (Схема 1.2.3.77).

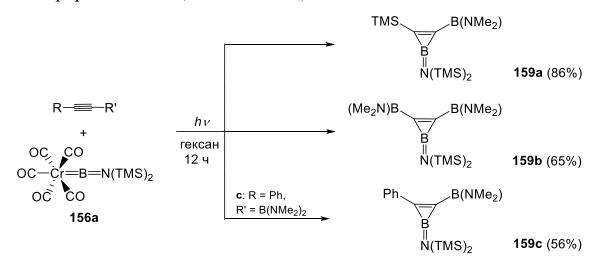


Схема 1.2.3.77 — Синтез В-аминобориренов **159а—с** фотолизом комплекса **156а** в присутствии несимметричных ацетиленов

Чувствительные к влаге и воздуху аминоборирены **159а**—с были выделены методом фракционной дистилляции при пониженном давлении в виде бледно-желтой твердой массы **159а,b** или масла **159c**. Пригодные для рентгеноструктурного анализа монокристаллы этих соединений получены в пентане при –30 °C в течение недели. При длительном хранении в атмосфере аргона моноборилзамещенные аминоборирены **159a,c** разлагаются. В аналогичных условиях диборилзамещенный аминоборирен **159b** проявляет большую стабильность [76]. Также обнаружено, что соединения **159a,b** при температуре более 200°C разлагаются.

Данные РСА о длине связей С–С и В–С и углах между атомами в аминобориренах показали, что в борирене **159b** с двумя группами B(NMe₂)₂ в отличие от борирена **159a** сопряжение бориренового кольца увеличивается, на основе рентгеноструктурного анализа данных.

В работе [76] исследована реакционная способность аминобориренов 159а—с по отношению к различным основаниям Льюиса (производным

пиридина, фосфина и имидазола). Установлено, что аминоборирены **159а**–**c** практически не взаимодействуют с указанными основаниями Льюиса как при комнатной температуре, так и при нагревании до 80 °C, за исключением 1,3-диметилимидазолинилидена-2, образующего аддукты **160а**–**c** (Схема 1.2.3.78).

нет реакции
$$\frac{N/P\text{-}основание}{N}$$
 $\frac{R}{N}$ $\frac{R}{N$

Схема 1.2.3.78 — Взаимодействие В-аминобориренов **159а—с** с основаниями Льюиса

Известно, что соединения бора за счет свободной *p*-орбитали на атоме склонны К образованию комплексов \mathbf{c} электронодонорными соединениями. Однако В-аминоборирены менее склонны к подобным реакциям кватернизации, поскольку атомы бора и азота в этих соединениях уже связаны ковалентной связью, а неподеленная пара электронов атома азота за счет делокализации со свободной р-орбиталью атома бора условно образует двойную связь (B=N). Тем не менее, более сильные основания Льюиса — стабильные карбены, например, 1,3-диметил-2,3-дигидро-1Hобразуют прочные аддукты с аминобориренами. Следует имидазол, аминобориренов **160а-с**, содержащих борильные отметить, ДЛЯ заместители, кватернизация экзоциклических атомов бора не наблюдается, даже при добавлении избытка карбена.

Поскольку π -сопряженные системы на основе бора привлекают внимание исследователей своими уникальными фотофизическими свойствами и возможностью применения в качестве материалов для

электроники [89, 90], исследования в области синтеза бориренов получили свое дальнейшее развитие. Так, путем фотохимического переноса борилена из аминобориленового комплекса [(OC)₅Cr=B=N(SiMe₃)₂] **156а** к о-алкинильному комплексу платины [Cl(PMe₃)Pt−C≡CPh] впервые синтезирован комплекс борирен−переходный металл **161** (Схема 1.2.3.79) [91]. В качестве субстратов были выбраны Pt-алкинилы — важный класс металлоорганических соединений, применяемых в оптоэлектронике.

CI(PMe₃)₂Pt— Ph
+
$$\frac{h\nu}{T\Gamma\Phi, 7 \text{ y}}$$
 Me₃P B
(OC)₅Cr=B=N(TMS)₂ TMS TMS

Схема 1.2.3.79 – Синтез борирена **161** фотолизом комплекса **156а** в присутствии σ-алкинильного комплекса платины

Платина-замещенный аминоборирен **161** был выделен в виде аналитически чистых кристаллов с выходом ~53% путем фильтрации из реакционной смеси и последующей кристаллизации из гексана при –60 °C.

Облучение борирена 161 в токе сухого аргона в течение 4 дней при комнатной температуре приводит внутримолекулярной К фотоперегруппировке с раскрытием бориренового цикла и образованию нового борофосфорорганического соединения ациклического строения 162 1.2.3.80). фотохимической (Схема Продукт перегруппировки trans-[Cl(PMe₃)₂PtBN(SiMe₃)₂C \equiv CPh] **162**, алкинильный комплекс выделен перекристаллизацией из смеси толуол/гексан при -30 °C с выходом 65% охарактеризован спектральными методами и рентгеновской кристаллографией [92].

Схема 1.2.3.80 – Облучение аминоборирена **161**

Как известно, под действием кислоты Бренстеда (вода, метанол, этанол, уксусная кислота) или в реакции гидроборирования, например, с помощью 9-ВВN [86] при 25 °С происходит раскрытие бориренового кольца путем расщепления одной эндоциклической связи В–С. Так, в работе [92] изучена реакционная способность Pt-замещенного аминоборирена 161 по отношению к типичному протонному реагенту НС1 (Схема 1.2.3.81). В результате взаимодействия также наблюдается раскрытие бориренового кольца с образованием соответствующего амино(винил)борана 163, который выделен перекристаллизацией из гексана при –30 °С в виде бесцветных кристаллов.

TMS TMS

$$CI$$
 PMe_3
 Pt
 TMS
 T

Схема 1.2.3.81 – Взаимодействие аминоборирена 161 с НС1

Авторы предположили, что экзоциклическая связь В–N в выбранных условиях будет расщепляться под действием трибромида бора с образованием Рt-замещенного 1-бромборирена **164**, как показано на схеме 1.2.3.82. Однако выяснилось, что взаимодействие аминоборирена **161** с BBr₃ не приводит к разрыву связи В–N и образованию 1-бромзамещенного аминоборирена **164**, а вместо этого происходит реакция замещения атома хлора на атом брома в Pt-содержащем фрагменте молекулы, в результате чего образуется борирен *trans*-[Br(PMe₃]₂Pt{µ-BN(SiMe₃)₂C=C}Ph] **165** [92].

Схема 1.2.3.82 – Взаимодействие аминоборирена **161** с BBr₃

С целью изучения влияния экзоциклических заместителей при атоме бора в структуре бориренов на их свойства в качестве источника борилена использовали другой источник борилена, который обеспечивал альтернативное замещение при атоме бора. Так, вместо комплекса $[(OC)_5Cr=B=N(SiMe_3)_2]$ 156a, позволяющего в присутствии синтезировать аминоборирены, бы использован бориленовый комплекс железа $[(OC)_5Cr=BFe(CO)_2(Cp)]$ **166** (Схема 1.2.3.83) [93–95]. Фотооблучение **166** в присутствии 1,2-бис(триметилсилил)этина в течение получаса приводит к количественному образованию нового В-ферроборирена 167, структура которого установлена спектральными методами анализа ЯМР ¹H, ¹³C, ¹¹B. При длительном стоянии в растворе при –30 °C B-ферроборирен **167** выпадал в виде желтых кристаллов, что позволило авторам подтвердить нового В-ферроборирена с помощью рентгеноструктурного структуру анализа.

Схема 1.2.3.83 — Синтез *В*-ферроборирена **167** фотолизом комплекса **166** в присутствии 1,2-*бис*(триметилсилил)этина

Показано [95], что взаимодействие В-ферроборирена **167** с карбенами сопровождается гетеролитическим разрывом связи В–Fe с получением нового класса борсодержащих гетероциклов – катионам борирония **168a,b** (Схема 1.2.3.84).

Схема 1.2.3.84 — Взаимодействие В-ферроборирена 167 с карбенами

По окончании реакции соединение **168a** сразу же осаждалось из раствора в виде соли оранжевого цвета, в то время как соединение **168b** в виде соли красного цвета было получено только лишь после удаления растворителя из реакционной массы, последующего промывания пентаном и перекристаллизацией из ТГФ. Структура соединений **168a,b** надежно доказана методами мультиядерной ЯМР спектроскопии и РСА. Таким образом, взаимодействием В-ферроборирена с двукратным избытком *N*-гетероциклического карбена впервые получены борироний-катионы [(BC₂)R₂L₂]⁺, содержащие в качестве катиона борирен, лигированный двумя карбенами [95]. Авторы считают, что малый размер бориренового кольца в **168a,b** является ключевым фактором, позволяющим двум громоздким

карбенам связываться с атомом бора. Реакция основана на необычной способности аниона $[(\eta^5-C_5Me_5)Fe(OC)_2]$ выступать в роли уходящей группы, при этом использование некоординированных карбенов для разрыва связи металл—элемент достаточно редкое явление.

Первый пример синтеза комплекса с η^3 -координированным к атому металла бориреновым лигандом описан в работе [96]. В результате фотолитического переноса арилбориленового лиганда из комплекса хрома **169** на дифенилацетилен синтезирован хром-бориреновый комплекс **170** (Схема 1.2.3.85).

Схема 1.2.3.85 — Синтез борирена **170** и его комплекса **171** фотолизом соединения **169** в присутствии дифенилацетилена

Реакция сопровождается потерей трех лигандов СО. Анализ спектров ЯМР ¹Н реакционной массы показал, что арилбориленовый комплекс **169** реагирует с дифенилацетиленом с образованием двух соединений **170** и **171** в соотношении 1:4. Бориреновый комплекс **170** был выделен в виде кристаллов с выходом 15% наряду с соответствующим «свободным» бориреном **171** (62%) путем перекристаллизации при –30 °C.

Согласно РСА комплекс **170** характеризуется наличием η^3 бориренового остова, одновременно связанного с фрагментом $Cr(CO)_2$ и фенильным лигандом. Комплекс **170** авторы [96] рассматривают как классический полусэндвичевый комплекс, в котором одна из трех СО-групп

заменена двухэлектронным бориреновым лигандом. Данные PCA позволили найти отличительные особенности «свободного» борирена **171** и π -связанного моноядерного бориренового комплекса **170**. Интересен факт, что в спектре ЯМР ¹¹В для комплекса **170** не наблюдается сигнала атома бора, в то время как свободный борирен **171** имеет характерный для бориренов химический сдвиг атома бора в спектре ЯМР ¹¹В ($\delta_B = 33.0$ м.д.).

Таким образом, показано [96], что арилзамещенный бориленовый комплекс хрома **169**, как и его более насыщенные электронами амино(железо)органические аналоги, может быть источником борилена для получения соответствующих бориренов.

Возможность получения в аналогичных условиях *бис*-аминобориренов **172** продемонстрирована в работе [85] на примере фотолиза комплексного соединения $(OC)_5$ Mo=BN $(SiMe_3)_2$ **156b** в присутствии 1,4-*бис*(триметилсилил)-бута-1,3-диина (Cxeма 1.2.3.86).

OC CO
$$\frac{156b}{172}$$
 TMS $\frac{hv}{C_6D_6, 4 \text{ y}}$ TMS $\frac{hv}{C_6D_6, 4 \text{$

Схема 1.2.3.86 – Синтез *бис*-борирена **172** фотолизом комплекса **156b** в присутствии 1,4-*бис*(триметилсилил)-бута-1,3-диина

Структура полученного *бис*-борирена **172** надежно установлена методами спектроскопии ЯМР (1D и 2D) и масс-спектроскопии.

Фотолиз аминобориленовых комплексов на основе хрома и молибдена при комнатной температуре успешно проходит в присутствии ароматических диинов с образованием новых *бис*-аминобориренов с высокими выходами [87]. Так, при УФ-облучении раствора комплекса [(CO)₅Cr=B=N(SiMe₃)₂] **156а** в ТГФ бледно-желтого цвета с ароматическими диинами, такими как 1,4-дифенилбута-1,3-диин или 1,4-*бис*(4-метоксифенил)бута-1,3-диин при

комнатной температуре в течение 8 ч были получены *бис*-аминоборирены **173а,b** (Схема 1.2.3.87). Спектральные данные ЯМР ¹Н и ¹¹В для соединений **173а,b** свидетельствует о высокой симметрии молекулы в растворе и быстром вращении вокруг связи В–N при комнатной температуре).

R

OC, CO

2 OC—
$$Cr$$
=B=N(TMS)₂

OC CO

156a

173a,b

a: R = H (90%)
b: R = OMe (68%)

Схема 1.2.3.87 — Синтез *бис*-бориренов **173а,b** фотолизом комплекса **156а** в присутствии 1,4-диарил-1,3-бутадиинов

В аналогичные реакции с борильными комплексами хрома и молибдена **156а,b** вступают диины (1,4-*бис*(триметилсилилэтинил)бензол или 2,5-*бис*(4-*N,N*-диметиламинофенилэтинил)тиофен), в которых тройные связи разделены сопряженным ароматическим или гетероароматическим спейсером (Схема 1.2.3.88).

Схема 1.2.3.88 — Синтез *бис*-бориренов **174**, **175** фотолизом комплексов **156а,b** в присутствии 1,4-*бис*(триметилсилилэтинил)бензола или 2,5-*бис*(4-N,N-диметиламинофенилэтинил)тиофена

Полученные *бис*-борирены **174** и **175** представляют собой твердые аморфные вещества чувствительные к воздуху и влаге. *Бис*-борирены **173а,b** и **174** являются первыми структурно-охарактеризованными *бис*-бориренами с расширенной системой π -сопряжения, включающую трехкоординированные борные центры.

Расчетные и экспериментальные данные, выполненные авторами для аминобориренов [87], подтверждают представление о том, что B=N связь в этих соединениях является слабой двойной связью. Ее π -вклад уменьшается вследствие включения p_z -орбитали атома бора в 2π -электронное ароматическое кольцо.

Использование в качестве исходных мономеров *транс-бис* (алкинил)платиновых прекурсоров позволяет получать борорганические гибридные молекулы, содержащие в своей структуре два бориреновых фрагмента, разделенных атомом платины [97]. Так, в бензоле или гескане при УФ-облучении в течение 6 ч при фотолизе комплекса [(OC)₅Cr=B=N(SiMe₃)₂] **156а** с переносом борилена к *бис* (алкинил)платиновому комплексу **176** были синтезированы *транс-бис* (борирен)платиновые комплексы **177а–с** (Схема 1.2.3.89).

Схема 1.2.3.89 — Синтез *бис*-бориренов **177а—с** фотолизом комплекса **156а** в присутствии *бис*(алкинил)платины **176**

Чувствительные к влаге и воздуху продукты реакции **177а**-с были выделены в виде желтых кристаллов с удовлетворительными выходами 39-

63% хроматографическим методом на специально подготовленном силикагеле с последующей перекристаллизацией из гексаметилдисилоксана. В инертной атмосфере *бис*-борирены **177а**—с можно хранить неограниченное время.

Спектры ЯМР ¹H, ¹³C, ²⁹Si, ³¹P, ¹⁹⁵Pt полученных комплексов показали двойной набор сигналов, что, по мнению авторов, соответствует разным конформациям (*син- и анти-*) бориреновых фрагментов, разделенных относительно друг друга атомом платины. Наблюдаемое в этих системах удвоение сигналов ЯМР указывает на существование между атомом платины и бориреновыми кольцами вращательного барьера. Возможно, именно это приводит к образованию двух конформационных изомеров, в которых бориреновые фрагменты либо удерживаются на одной стороне плоскости PtX_2L_2 , либо смещены относительно этой плоскости (син- и антиконформации). Спектральные эксперименты при различных температурах позволили установить, что затруднение вращения связей внутри молекулы является результатом не стерических факторов, а сильного электронного сопряжения между платиновым ядром и двойной борирен-ароматической системой, что является причиной компланарности в твердом состоянии [97]. Это взаимодействие демонстрирует совершенно новые фотофизические свойства полученных бис-бориренов по сравнению с ранее полученными моно-бориренами. Впервые полученные и исследованние комплексные соединения 177a-c, которых бориреновых В два кольца взаимно компланарны за счет сильного π -электронного взаимодействия, по мнению авторов [97] можно успешно использовать при разработке новых оптоэлектронных устройств.

Вместо облучния для генерирования борилена в присутствии ацетиленов в синтезе бориренов по реакции [2+1]-циклоприсоединения используется также нагревание.

Так, термохимическая реакция таких алкинов, как димезитилэтин, 4,4'- (этин-1,2-диил)бис(*N*,*N*-диметиланилин, бис {бис(диметиламино)борил} этин, 1-триметилсилил-2-бис(диметиламино)борилэтин с комплексом 166 приводит к селективному образованию В-металлированных бориренов 178а— d (Схема 1.2.3.90) [93]. В зависимости от природы исходного ацетилена реакция завершается за 3–5 часов. Полученные В-ферроборирены сначала вакуумировали, затем перекристаллизовывали из гексана с получением желто-оранжевых кристаллов бориренов 178а—d с выходами 24—61%. Побочный продукт Cr(CO)₆ отделяли сублимацией.

Схема 1.2.3.90 — Синтез *В*-ферробориренов **178а—d** термолизом комплекса **166** в присутствии ацетиленов

Аналогично, нагреванием 1,4-*бис*(триметилсилил)бута-1,3-диина с двукратным избытком комплекса **166** в ксилоле был получен *бис*-(В-ферроборирен) **179** (Схема 1.2.3.91) [94].

Схема 1.2.3.91 — Синтез *бис-*(*B*-ферроборирена) **179** термолизом комплекса **166** в присутствии 1,4-*бис*(триметилсилил)бута-1,3-диина

Рентгено-структурное исследование комплекса **179** показало, что расстояние между взаимно ортогональными бориреновыми кольцами, связанными углерод-углеродной связью составляет 1.413 Å. Это гораздо меньше, чем аналогичная связь между двумя $\mathrm{sp^2}$ -гибридизованными атомами углерода типичного бифенила, что может объяснить делокализацией π -электронов двойных связей в трехчленных бориренах. Действительно, DFT-расчеты показали отчетливую делокализацию π -электронов в кольцах бориренов, в которую значительный вклад вносят d-электроны атома Fe [94].

1.2.4 Методы синтеза бензобориренов

Бензоборирены — изоэлектронные аналоги бензоциклопропенильных ионов — представляют собой пример нестабильных высоконапряженных молекул, обладающих сопряженной с атомом бора ароматической системой. Эти соединения представляют большой теоретический и практический интерес не только для химиков, но и для физиков. Исследования авторов [98–106] внесли заметный вклад в развитие химии бензобориренов.

Первые неудачные попытки синтеза бензобориренов термолизом арилгалогенборанов, а также восстановлением их с помощью лития в конце 80-х и начале 90-х годов XX века описаны в работах немецких химиков Kaufmann и Schacht. [98, 99]. Позднее Bettinger и Kaiser [100–102] впервые идентифицировали эту «неуловимую» молекулу бензоборирена **180**,

образующуюся при взаимодействии атомарного бора с дейтеробензолом (Схема 1.2.4.92), методом масс-спектроскопии в газовой фазе на молекулярном уровне с помощью экспериментов со скрещенными молекулярными пучками. Использование наряду с физико-химическими экспериментами расчетных компьютерных методов позволило описать радикальный механизм реакции образования бензоборирена [101].

Схема 1.2.4.92 – Образование бензоборирена **180** при взаимодействии атомарного бора с дейтеробензолом

При фотооблучении дийодфенилборана **181** в твердом аргоне при 10 К был получен В-йодобензоборирен **182** (Схема 1.2.4.93) [103]. Впервые для производного бензоборирена был зарегистрирован спектр ИК-поглощения.

$$\lambda = 306 \text{ HM}$$
 $\lambda = 254 \text{ HM}$
181
182

Схема 1.2.4.93 – Фотолиз дийодфенилборана **181** с получением В-йодобензоборирена **182**

Лишь в 2018 году молекула бензоборирена была спектрально идентифицирована методом спектроскопии ЯМР при нормальных условиях. Бензоаннелированный борирен **184** в виде комплекса с 1,3-диизопропил-4,5-диметилимидазолин-2-илиденом был синтезирован восстановлением борана **183** *трет*-бутиллитием (Схема 1.2.4.94) [104]. Наряду с бензобориреном **184** в этой реакции образуется небольшое количество дигидроборана **185**.

Схема 1.2.4.94 — Синтез бензоборирена **184** восстановлением борана **183** с помощью t-BuLi

С целью получения монокристаллов бензоборирена **184** его длительное время выдерживали в ацетонитриле при –35 °C. Однако в этих условиях бензоборирен **184** димеризуется до 9,10-дигидро-9,10-дибораантрацена **186** (Схема 1.2.4.95), структура которого установлена с помощью РСА.

Схема 1.2.4.95 – Димеризация бензоборирена 184

Ненасыщенные трехчленные циклические борорганические соединения (борирены, бензоборирены) представляют огромный интерес для исследователей, однако область практического использования их в качестве π -сопряженных борсодержащих структурных материалов еще недостаточно исследована. Прогресс в этой области достигнут путем синтеза бориренов, в которых атомы бора кватернизованы с помощью оснований Льюиса, чтобы ароматичность по желанию могла быть направленно изменена.

1.3 Заключение по литературному обзору

В обзоре обобщены и систематизированы исследования в области синтеза, физико-химических свойств и перспектив использования насыщенных и ненасыщенных трехчленных борсодержащих карбоциклов с одним атомом бора — бориранов, бориренов. Высокая нестабильность этих соединений при взаимодействии с кислородом воздуха или хранении при комнатной температуре чрезвычайно ограничивала исследование свойств и области их практического применения.

За последние 15 лет разработаны новые методы и подходы к синтезу трехчленных борацикланов — реакции фотохимической изомеризации органоборанов, двойного гидроборирования диалкилацетиленкарбоксилатов с помощью имидазол-2-илиденборанов, [2+1]-циклоприсоединения бориленов к алкинам. К числу наиболее многообещающих методов следует назвать реакцию фотоизомеризации хелатированных органоборанов в соответствующие борираны, которые перспективны при создании на их основе новых типов фотоуправляемых молекулярных переключателей для молекулярной электроники и фотоники.

Огромный практический интерес для исследователей представляют борирены, однако практическое использование их в качестве π -сопряженных борсодержащих структурных материалов еще недостаточно изучено. Однако несмотря на то, что эти исследования находятся на начальном этапе, уже полученные результаты свидетельствуют о перспективности данного направления исследований с точки зрения создания уникальных по своим свойствам борсодержащих функциональных материалов для сенсорных датчиков, светоизлучающих и электронных устройств.

Следует отметить, что, несмотря на представленный в обзоре ассортимент методов синтеза бориранов и бориренов, в мировой литературе совершенно отсутствуют сведения об использовании катализаторов в синтезе этих соединений. В связи с этим, в настоящей диссертационной работе

выполнены исследования, направленные на разработку нового каталитического метода синтеза бориранов взаимодействием α -олефинов с RBCl $_2$ под действием катализатора Cp_2TiCl_2 в присутствии акцептора галоген-ионов Mg.

ГЛАВА 2 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

2.1 Циклоборирование α-олефинов с помощью BCl₃·SMe₂, катализируемое Cp₂TiCl₂

Для реализации запланированной программы исследований нами была выдвинута возможности однореакторного идея получения борациклопропанов – бориранов путем взаимодействия α-олефинов с BCl₃·SMe₂ действием катализатора Cp₂TiCl₂ ПОД В присутствии металлического магния (акцептор ионов хлора). Опираясь на ранее полученные результаты по каталитическому циклоалюминированию аолефинов и ацетиленов с помощью EtAlCl₂ в присутствии катализаторов на Джемилева), основе титана (реакция приводящему комплексов алюминациклопропанам и алюминациклопропенам, при котором ключевыми интермедиатами являются титанациклопропаны, можно предположить, что замена атома T_i в интермедиатных титанациклопропанах 1 на атом бора cпомощью галогенидов бора, например BCl₃, приведет к соответствующим бориранам **2** (Схема 2.1.1).

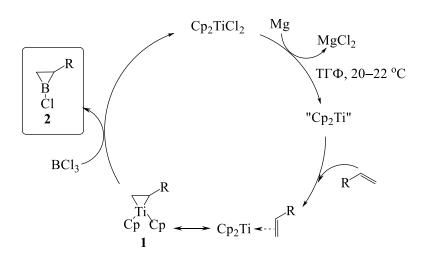


Схема $2.1.1 - Предполагаемая схема механизма реакции циклоборирования <math>\alpha$ -олефинов с помощью BCl_3 под действием катализатора Cp_2TiCl_2 .

В качестве модельной реакции выбрано взаимодействие окт-1-ена с $BCl_3 \cdot SMe_2$ в присутствии каталитических количеств Cp_2TiCl_2 и Mg в

разработанных условиях (окт-1-ен : $BCl_3 \cdot SMe_2 : Mg : [Ti] = 1 : 2 : 1 : 0.2, TГФ, 20–22°C, 14 ч). В результате реакции получен 1-хлор-2-гексилбориран$ **3** $(Схема 2.1.2), который идентифицирован методом мультиядерной <math>^1$ H, 13 C, 11 B ЯМР спектроскопии.

$$\frac{\text{Hex}}{\text{BCl}_3\cdot\text{SMe}_2}$$
 $\frac{\text{Hex}}{\text{ПГФ}}$ $\frac{\text{Hex}}{\text{B}}$ $\frac{\text{Hex}}{\text{OH}}$ $\frac{\text{Hex}}{\text{OH}}$ $\frac{\text{Hex}}{\text{Hex}}$ $\frac{\text{OH}}{\text{OH}}$ $\frac{\text{Hex}}{\text{Hex}}$ $\frac{\text{OH}}{\text{Hex}}$ $\frac{\text{OH}}{\text{OH}}$ $\frac{\text{OH}}{\text{OH}}$ $\frac{\text{OH}}{\text{Hex}}$ $\frac{\text{OH}}{\text{OH}$ $\frac{\text{OH}}{\text{OH}}$ $\frac{$

Схема 2.1.2 – Синтез 1-хлор-2-гексилборирана **3** взаимодействием окт-1-ена с BCl₃·SMe₂ в присутствии Cp₂TiCl₂

АВС спиновая система охарактеризована с помощью двумерных экспериментов (Рисунок 2.1.1). Метиленовые протоны бориранового цикла являются диастереотопными за счет хирального центра C^2 и различие значений химических сдвигов достигает Δ 1.01 м.д. [δ (C³H^a) -0.45 м.д., $\delta(C^3H^b)$ 0.56 м.д.]. В спектре HSQC они имеют кросс-пики с сигналом атома углерода при 17.20 м.д., а в гомоядерном COSY эксперименте наблюдается взаимодействие протона H^a метиленового фрагмента с вицинальным метиновым протоном борациклопропана при $\delta(C^2H) = 1.20$ м.д. [$\delta(C^2H)$ 24.90 м.д.]. С помощью двумерной корреляционной ЯМР спектроскопии (COSY, HSQC, HMBC) были сделаны отнесения всех сигналов циклического остова гексильного заместителя, И подтверждена структура 1-хлор-2-И гексилборирана 3. Полученный борациклопропан 3 представляет собой комплекс с SMe₂, сигналы метильных групп которого в спектрах ЯМР ¹³С и 1 Н наблюдаются при $\delta_{C}(S(CH_{3})_{2})$ 17.40 м.д. и $\delta_{H}(S(CH_{3})_{2})$ 1.28 м.д., соответственно. Сигнал атома бора в спектре ЯМР ¹¹В проявляется в области тетракоординированных соединений бора при δ_B 2.54 м.д. 1-Хлор-2гескилбориран 3 устойчив в инертной атмосфере в ТГФ при комнатной температуре лишь несколько дней. Так, при попытке выделить его с помощью вакуумной возгонки он разрушался (температура бани около 90 °C), а при идентификации выпавших из раствора ТГФ кристаллов методом РСА последние разрушались под действием рентгеновского облучения.

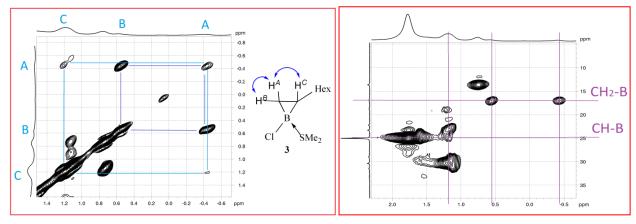


Рисунок 2.1.1 – COSY и HSQC эксперименты для 1-хлор-2-гексилборирана **3**

Для дополнительного подтверждения структуры 1-хлор-2-гексилборирана **3** последний был окислен с помощью H_2O_2 в щелочной среде с целью получения спиртов. Спирты **4**–**6** выделены методом колоночной хроматографии с общим выходом \sim 80% (Схема 2.1.2). Для идентификации спиртов методом масс-спектрометрии продукты окисления **4**–**6** превращали в триметилсилильные эфиры **7**–**9** с помощью *бис*-триметилсилилацетамида (BSA).

Наряду с 1-хлор-2-гексилборираном **3** идентифицирован побочный продукт 2-хлор-1,2-оксаборинан **10**, который образуется в результате взаимодействия BCl₃ с тетрагидрофураном. Внедрение низкокоординированных борорганических соединений по C-O связи в молекулу тетрагидрофурана в литературе известно [107, 108]. Соединение **10** было идентифицировано спектральными методами ЯМР и окислением в соответствующий 1,4-диол **11** (Схема 2.1.3).

Схема 2.1.3 – Образование 2-хлор-1,2-оксаборинана 10

Из числа испытанных катализаторов, а именно Cp_2TiCl_2 , $Ti(Pr^iO)_4$, $TiCl_4$, Cp_2HfCl_2 , $Ni(acac)\cdot 2Ph_3P$, $CoCl_2\cdot 2Ph_3P$, $Pd(acac)\cdot 2Ph_3P$, Cp_2ZrCl_2 , каталитическую активность в реакции окт-1-ена с $BCl_3\cdot SMe_2$, приводящей к образованию 1-хлор-2-гексилборирана **3**, проявляет лишь Cp_2TiCl_2 . В отсутствии катализатора реакция не идет.

С целью изучения влияния природы растворителя на выход целевых бориранов, а также разработки оптимальных условий проведения реакции мы исследовано взаимодействие окт-1-ена с $BCl_3 \cdot SMe_2$ в присутствии Cp_2TiCl_2 в различных растворителях. Было установлено, что реакция проходит только в тетрагидрофуране. В других эфирных (Et_2O , 1,4-диоксан), алифатических (гексан, циклогексан), ароматических растворителях (толуол, бензол), а также хлористом метилене реакция не идет.

Влияние соотношения исходных реагентов на выход 1-хлор-2-гексилборирана 3 приведено в таблице 2.1.1.

Таблица 2.1.1 – Влияние соотношения исходных реагентов на выход борирана **3**.

№	Мольное соотношение окт-1-ен : $BCl_3 \cdot SMe_2 : Mg : Cp_2TiCl_2$	Выход 3, %
1	10:20:10:1	75
2	10:25:10:1	77
3	10:15:10:1	60
4	10:20:10:0.5	45
5	10:20:10:2	75
6	10:20:5:1	67

Условия реакции: ТГФ, 20–22 °C, 14 ч

Значительное влияние на выход борирана **3** оказывает концентрация катализатора. Так, наиболее высокий выход продукта наблюдается при концентрации катализатора, равной 20мол% Cp_2TiCl_2 (при $20\,^{\circ}\text{C}$. С уменьшением концентрации катализатора до 1 мол% выход борирана **3** снижается до 15% что связано, вероятно, с уменьшением каталитически активных центров в реакционной массе (рис. 2.1.2).

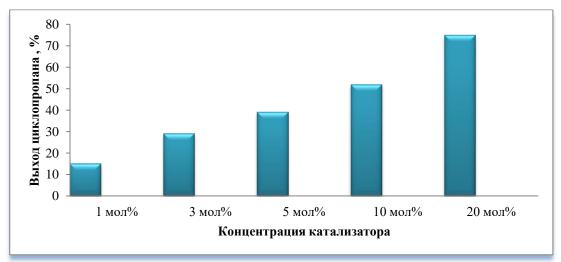


Рисунок 2.1.2 — Влияние концентрации катализатора на выход борирана **3** (условия реакции: окт-1-ен : [B] : Mg = 1 : 2 : 2, ТГФ, $14 \lor 4$, 20-22 °C)

При пониженной температуре \sim 0 °C (20 мол. % Cp₂TiCl₂, окт-1-ен : [B]: Мg : [Ti] = 1:2:1:0.2, ТГФ) скорость реакции замедляется и конверсия исходного окт-1-ена не превышает 15% за 14ч. При увеличении температуры до \sim 65 °C реакция завершается практически за 1,5–2 часа, но при этом требуется использование обратного холодильника, что предусматривает дополнительный расход воды, а также электроэнергии. В связи с этим последующие эксперименты проводились при комнатной температуре.

Полученные результаты позволили сделать вывод, что реакцию циклоборирования окт-1-ена с помощью $BCl_3 \cdot SMe_2$ следует проводить при соотношении реагентов окт-1-ен : [B] : Mg : [Ti] = 1:2:1:0.2 в ТГФ в течении 14 часов при комнатной температуре (20–22 °C).

С целью выяснения общего характера исследуемой реакции во взаимодействие с $BCl_3 \cdot SMe_2$ были вовлечены другие α -олефинов (гекс-1-ен,

дец-1-ен, аллилбензол, стирол и аллилфениловый эфир) в разработанных условиях с получением 1-хлорбориранов **12a-c**, **16**, **20** (Схема 2.1.4).

$$BCl_{3} \cdot SMe_{2} \xrightarrow{\text{Fr}} \begin{array}{c} R \\ B \cdot SMe_{2} \end{array} \xrightarrow{\text{H}_{2}O_{2}, \text{OH}^{-}} \\ Cl \\ 12a-c \\ \hline \end{array} \begin{array}{c} I3a-c \\ I3:14:15 \sim 1:1:1 \text{ (55-75 \%)} \end{array}$$

$$BCl_{3} \cdot SMe_{2} \xrightarrow{\text{Fr}} \begin{array}{c} II1 \\ II2 \end{array} \xrightarrow{\text{Fr}} \begin{array}{c} II2 \\ II2 \end{array} \xrightarrow{\text{Fr}}$$

Схема 2.1.4 — Циклоборирование α -олефинов с помощью $BCl_3 \cdot SMe_2$, катализируемое Cp_2TiCl_2

Реакция аллилбензола с $BCl_3 \cdot SMe_2$ сопровождается образованием наряду с целевым 2-бензил-1-хлорборираном **20** продукта изомеризации исходного аллилбензола — 1-фенилпропена **21** в соотношении 2:3, соответственно. В присутствии комплексов титана α -олефины склонны к изомеризации [109]. Окислением 1-хлорбориранов **12a**-в, **16**, **20** с помощью $H_2O_2/NaOH$ получены 1,2-диолы **13a**-c, **17**, **22** и моноолы **14a**-c, **15a**-c, **18**, **19**, **23**, **24**. Соотношение диола и моноолов составляет $\sim 1:1:1$.

С целью замены атома галогена в 1-хлорбориранах на гидроксильную группу в соответствии с известными методиками [110, 111] мы провели гидролиз 1-хлорбориранов **3,12b** с получением 1-гидроксибориранов (бориран-1-олов) **25b,c** (Схема 2.1.5), что является дополнительным доказательством структуры 1-хлорбориранов.

Схема 2.1.5 – Гидролиз 1-хлорбориранов **3,12b** с образованием бориран-1олов **25a,b**

Сигнал атома бора в спектрах ЯМР 11 В для выделенных с помощью перегонки 1-гидроксибориранов **25а,b** по сравнению с исходными 1-хлор-2-алкилбориранами **3,12b** ($\delta_B \sim 2$ м.д.) существенно сместился в слабое поле и проявляется в области $\delta_B \sim 32$ м.д. В ИК спектрах диагностируются полосы поглощения в области 3400 см⁻¹, что свидетельствует о наличии ОН-групп в молекулах полученных соединений. Окислением бориран-1-олов **25a,b** с помощью $H_2O_2/NaOH$ получены диолы **4,13b** и моноолы **5, 14b, 6, 15b** (Схема 2.1.6).

R
B
H₂O₂, OH⁻
OH
OH
$$0^{\circ}C$$
HO
OH
HO
 $0^{\circ}C$
HO
OH
 $0^{\circ}C$
HO
OH
 $0^{\circ}C$
 $0^{\circ}C$
 $0^{\circ}C$
HO
OH
 $0^{\circ}C$
 $0^$

Схема 2.1.6 – Окисление 1-гидроксибориранов 25а, в

Обнаружено, что 1-гидроксиборираны **25а,b** при комнатной температуре частично превращаются в соответствующие ангидриды (В-О-В) **26а,b** (Схема 2.1.7). При выдерживании соединений **25а,b** в присутствии безводного MgSO₄ в течение 24 ч происходит практически полная трансформация в ангидриды **26а,b**. Сигналы атома бора в спектрах ЯМР ¹¹В для **26а,b** смещены в более сильное поле по сравнению с исходными 1-гидроксибориранами **25а,b** [δ_B 32.14 (**25a**), δ_B 32.12 м.д (**25b**)] и проявляются при δ_B 18.62 м.д. (**26a**), δ_B 18.34 м.д. (**26b**).

Схема 2.1.7 – Трансформация 1-гидроксибориранов **25а,b** в ангидриды **26а,b**

Таким образом, нами впервые осуществлено прямое циклоборирование α -олефинов с помощью $BCl_3 \cdot SMe_2$ в $T\Gamma\Phi$ в присутствии катализатора Cp_2TiCl_2 с получением 1-хлор-2-арил(алкил)бориранов. Реакция имеет общий характер и позволяет в одну препаративную стадию в мягких условиях получать ранее неописанные 1-хлорборираны и производные бориновой кислоты — 1-гидроксиборираны.

2.2 Циклоборирование α-олефинов с помощью BF₃·TГΦ, катализируемое Cp₂TiCl₂

В продолжение этих исследований с целью изучения влияния структуры исходных галогенидов бора в реакции циклоборирования α -олефинов, а также получения соответствующих бориранов, содержащих другие галогены при атоме бора изучено взаимодействие α -олефинов с BF3·TГ Φ под действием катализатора Cp2TiCl2. Установлено, что при взаимодействии окт1-ена с BF3·TГ Φ в присутствии катализатора Cp2TiCl2 и Mg в разработанных условиях (окт-1-ен : BF3·TГ Φ : Mg : [Ti] = 1 : 4 : 2 : 0.2, ТГ Φ , 20–22 °C, 14 часов) наблюдается наиболее высокий выход целевого борорганического соединения (70%), которое выделено методом перегонки при пониженном давлении в виде бесцветной дымящейся на воздухе жидкости, устойчивой в инертной атмосфере в течение нескольких недель. Полученное соединение идентифицировали с помощью мультиядерной ¹H, ¹³C, ¹¹B, ¹⁹F ЯМР спектроскопии как 1-фтор-2-гексилбориран **27** (Схема 2.2.8). Сигналы атомов углерода и водорода в спектрах ЯМР ¹³C и ¹H группы CH2-B-CH, непосредственно связанных с квадрупольным атомом бора (или удаленных

от него на 2–3 химические связи) не могут быть зафиксированы в шкале времени ЯМР, что обусловлено спин-спиновым взаимодействием углеродбор, величиной этого спин-спинового взаимодействия и скоростью квадрупольной релаксации ядер бора ¹¹В при комнатной температуре [112]. При более низких температурах (210К–298К) спектры ЯМР ¹Н и ¹³С еще менее информативны из-за сильного уширения всех сигналов.

Hex + BF₃· ΤΓΦ
$$\frac{\text{Cp}_2\text{TiCl}_2, \text{Mg}}{\text{TΓΦ}, 20-22 °C}$$
 $\stackrel{\text{Hex}}{\underset{\text{F}}{\text{B}} \cdot (\text{BF}_3)_n}$ $n = 1-3$ **27** (70%)

Схема 2.2.8 – Синтез 1-фтор-2-гексилборирана 27

В спектре ЯМР ¹¹В (CDCl₃) борирана наблюдается сигнал атома бора при δ_B –1.28, а в спектре ЯМР ¹⁹F сигнал атома фтора при δ_F –151.5 м.д. Важно отметить, что в спектрах ЯМР ¹¹В и ¹⁹F для выделенного 1-фтор-2-гексилборирана **27** наблюдаются дополнительные сигналы, характерные для ВF₃ (δ_B –0.01, δ_F –155.33 м.д.). Избавиться от ВF₃ путем повторных ректификаций нам не удалось. Полагаем, что полученный 1-фтор-2-гексилбориран **27** представляет собой ассоциат с молекулами трифторида бора **27**·(BF₃)_n, где п = 1–3 согласно соотношению интегральных интенсивностей соответствующих пиков в спектрах ЯМР ¹¹В и ¹⁹F. Подобные ассоциаты образуются вследствие наличия в молекуле полярной связи В–F, что было ранее описано в работах Кёстера [113]. Молекулярная масса выделенного соединения **27**·(BF₃)_n установлена методом криоскопии и соответствует значению 258. Это соответствует составу **27**·(BF₃)₂ (выч. 278 г/моль).

Для дополнительного подтверждения структуры бориран **27** был окислен $H_2O_2/NaOH$ с образованием диола **4** и моноолов **5,6** в соотношении 1:1:1 (с общим выходом ~75%). Это свидетельствует о наличии двух В–С связей в структуре соединения **27** (Схема 2.2.9).

Схема 2.2.9 – Окисление 1-фтор-2-гекилборирана 27

При гидролизе борирана **27** образуется 1-гидрокси-2-гексилбориран **25а** (Схема 2.2.10).

Схема 2.2.10 – Гидролиз 1-фтор-2-гекилборирана 27

Показано, что реакция каталитического циклоборирования α -олефинов носит общий характер, поскольку наряду с окт-1-еном в реакцию с ВF₃·ТГФ были вовлечены другие α -олефины, такие как гекс-1-ен, нон-1-ен, дец-1-ен, додец-1-ен и тетрадец-1-ен с получением 1-фторбориранов **28а**—**e** с выходами 45—65 % (Схема 2.2.11).

$$R$$
 + BF_3 · $T\Gamma\Phi$ Cp_2TiCl_2 , Mg B B F $R = Bu (a), Pent (b), Oct (c), $28a-e$ $Dec (d), Dodec (e)$$

Схема 2.2.11 – Синтез 1-фтор-2-алкилбориранов **28а**—е

Таким образом, катализируемое Cp_2TiCl_2 циклоборирование алифатических α -олефинов также может быть успешно осуществлено с использованием $BF_3 \cdot T\Gamma\Phi$ в тетрагидрофуране с получением ранее неописанных 1-фторбориранов, которые аналогично 1-хлорбориранам могут служить прекурсорами для получения 1-гидроксибориранов.

2.3 DFT-исследование механизма реакции переметаллирования титанациклопропана хлоридом бора как ключевой стадии циклоборирования α -олефинов хлоридом бора, катализируемого Cp_2TiCl_2

Согласно предполагаемой нами схеме механизма реакции циклоборирования α-олефинов (Схема 2.1.1), на первом этапе реакции в Cp₂TiCl₂/Mg/TГФ образуется системе координационно-ненасыщенный Cp_2Ti^{2+} , титанацен который координирует молекулу α-олефина образованием промежуточного титанациклопропана [114]. На следующем этапе предполагается процесс замены атома титана в титанациклопропане на атом бора с помощью BCl₃, механизм которого до начала наших исследований в литературе не обсуждался.

Для теоретического обоснования предполагаемого нами механизма замены атома Ті титанациклопропана на атом В проведены расчёты теплового эффекта и других энергетических характеристик (свободной энергии Гиббса и энтропии) возможных маршрутов модельной реакции переметаллирования титианациклопропана трихлоридом бора методом РВЕ/3z), реализованным в программе PRIRODA 6.0 [115].

Рассмотрены три стадии реакции переметаллирования: раскрытие цикла, переметаллирование до борсодержащих продуктов и рециклизация с образованием бориранов (Схема 2.3.12). В зависимости от того, с какой стороны переметаллирующий реагент BCl_3 атакует титанациклопропан, внедрение BCl_3 по связи Ti—C может проходить как по маршруту a, так и по маршруту b.

Схема 2.3.12 — Стадии реакции переметаллирования титанациклопропана с помощью тригалогенида бора (маршруты **a** и **б**)

Рассматривалось два альтернативных варианта трансформации, а именно одностадийная трансформации $\mathbf{IIa,6} \rightarrow \mathbf{IV}$, и двухстадийная трансформации $\mathbf{IIa,6} \rightarrow \mathbf{III} \rightarrow \mathbf{IV}$. Согласно второму варианту при взаимодействии бифункционального интермедиата \mathbf{II} со второй молекулой $\mathbf{BHal_3}$ бориран \mathbf{IV} должен образоваться в результате рециклизации 1,2-диборана \mathbf{III} .

На схеме 2.3.13 и энергетической диаграмме (Рисунок 2.3.3) представлены результаты расчетов поверхности потенциальной энергии реакции переметаллирования титанациклопропана с использованием реагента BCl₃ по предполагаемым схемам превращений. Рассчитанная методом PBE/3z геометрия промежуточных комплексов представлена на рис. 2.3.4.

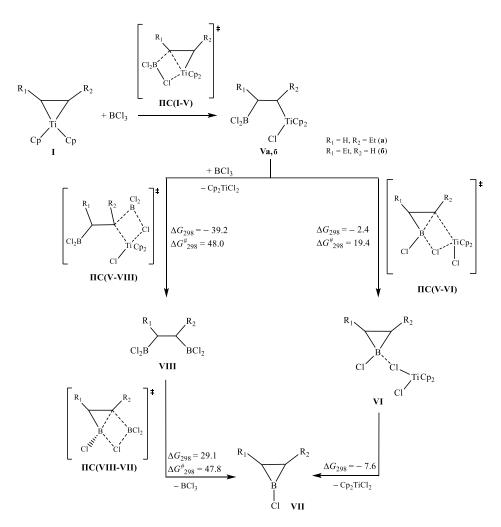


Схема 2.3.13 — Стадии переметаллирования титанациклопропана регентом BCl₃ для маршрута **a**, значения их свободной энергии Гиббса и активационных барьеров (в ккал/моль)



Рисунок 2.3.3 — Энергетическая диаграмма реакции переметаллирования 2-этил-титанаценциклопропана реагентом BCl₃

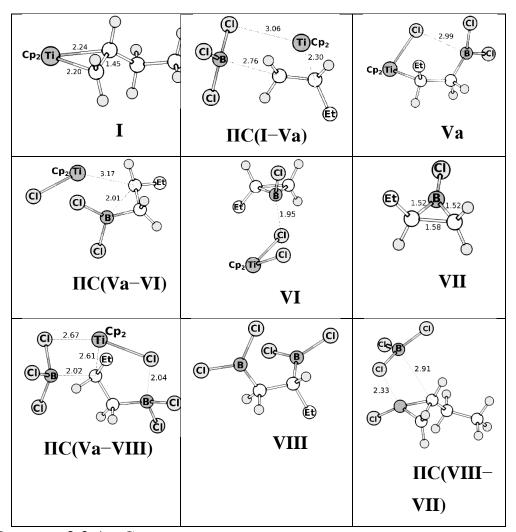


Рисунок 2.3.4 — Структура промежуточных комплексов в реакции переметаллирования титаноциклопропана реагентом BCl₃, рассчитанные методом PBE/3z (длина связей приводится в ангстремах)

Согласно расчетам, атака реагентом BCl_3 титанациклопропана \mathbf{I} осуществляется по связи Ti– CH_2 (Маршрут \mathbf{a}): энергетический барьер данной стадии реакции ($\mathbf{I} + \mathbf{BCl_3} \rightarrow \mathbf{Va}$) по маршруту \mathbf{a} составляет около 20 ккал/моль, что на 4 ккал/моль меньше, чем по маршруту $\mathbf{6}$ (Таблица 2.3.2).

Таблица 2.3.2 — Значения термодинамических и активационных параметров реакции переметаллирования титанациклопропана **I** хлоридом бора (H, G [ккал/моль], S [кал/(моль·К)]), рассчитанные в газовой фазе при T=298.15К (PBE/3z, PRIRODA 6.0)

Реакция	ΔH^0	ΔG^0	ΔS^0	$\Delta \mathrm{H}^{\neq}$	$\Delta \mathrm{G}^{\neq}$	$\Delta \mathrm{S}^{\neq}$
I + BCl ₃ → Va	-15.8	-2.4	-44.9	6.6	20.2	-45.4
I + BCl₃→ Vb	-18.7	-6.2	-42.1	10.9	24.1	-44.4
Va → VIa	-1.1	-2.4	4.4	19.4	19.4	-0.1
$Vb \rightarrow VIb$	1.0	0.1	2.8	16.1	17.4	-4.4
VIa→VII +Cp2TiCl2	5.7	-7.6	44.5			
$VIb \rightarrow VII + Cp_2TiCl_2$	6.6	-6.4	43.3			
Va + BCl ₃ → VIII + Cp ₂ TiCl ₂	-36.0	-39.2	10.5	32.6	48.0	-51.6
Vb + BCl ₃ → VIII + Cp ₂ TiCl ₂	-33.1	-35.4	7.7	9.7	22.3	-42.4
VIII → VII + BCl ₃ (a)	40.6	29.1	38.4	46.5	47.8	-4.5
VIII → VII + BCl ₃ (b)	40.6	29.1	38.4	46.4	47.7	-4.3

На первой элементарной стадии образуется промежуточное соединение V (Рисунок 2.3.4), в 1-м и 2-м положениях которого находятся фрагменты «Ср₂TiCl» и «ВСl₂». Поскольку рассчитанное расстояние между атомами В и Cl в промежуточном соединении V (Рисунок 2.3.4) преобладает над расстоянием ковалентной связи B-Cl ($d_{pacy} = 1.78 \text{ Å}$), очевидно, что его структура ациклическая. При этом достаточно близкое расстояние между двумя реакционными центрами « Cp_2TiCl » и « BCl_2 » в комплексе Vспособствует внутримолекулярной перегруппировке вследствие обмена образованию между Ti В интермедиата VI, лигандами И И подтверждается величиной барьера ($\Delta G^{\#}_{298} = 19.4$ ккал/моль) при комнатной температуре. В результате последующего восстановления катализатора Cp_2TiCl_2 за счет диссоциации связи B-Cl интермедиата VI образуется 1-хлор-2-этилбориран **VII** (Схема 2.3.13).

Кроме того, энергетические характеристики внутримолекулярного обмена между вышеуказанными сближенными в пространстве титан- и борсодержащими фрагментами в составе интермедиата VI позволяют нам предположить, что в качестве борных реагентов могут быть использованы не только тригалогениды бора, но и замещенные дихлорбораны $RBCl_2$ (R = Alk, Ar), которые также должны переметаллировать титациклопропан I в соответствующий борациклопропан.

Исследование альтернативного пути образования вышеуказанного 1хлор-2-этилборирана VII через диборан VIII ($Va \rightarrow VIII \rightarrow VII$, схема 2.3.13) по маршруту а показало достаточно высокие барьеры. Так, на стадию замены атома Ті на второй атом В ($Va \rightarrow VIII$) необходимо 48 ккал/моль, и столько же на стадию рециклизации диборана VIII (VIII → VII), причем последняя, согласно расчетам, является энергетически 29.1 ккал/моль). процессом (ΔG_{298}) Приведенные выше расчеты соответствуют предложенному нами механизму реакции переметаллирования, который предполагает образование исключительно циклического продукта (борирана).

Таким образом, впервые предложен двухстадийный механизм замены атома переходного металла в титаноциклопропане на атом бора. На первой стадии реагент BCl₃ атакует титанациклопропан с незамещенной стороны, сопровождается раскрытием. В результате последующей что его внутримолекулярной перегруппировки И регенерации катализатора 1-хлор-замещенный бориран. Ключевым моментом направлении данной реакции можно считать возможность перехода атома С1 от атома В к атому переходного металла (Ті) в бифункциональном промежуточном комплексе V.

2.4 Катализируемое Cp₂TiCl₂ циклоборирование олефинов с помощью RBCl₂ (R = Ar, Alk, cyclo-Alk)

Как было указано выше, на основании теоретически обоснованного механизма реакции циклоборирования α -олефинов нами сделано предположение, что реагентами циклоборирования наряду с BCl_3 могут быть также арил(алкил)дихлорбораны. С целью подтверждения данной гипотезы мы исследовали взаимодействие $PhBCl_2$ с α -олефинами в присутствии катализатора Cp_2TiCl_2 и Mg.

Показано, что PhBCl₂ успешно вовлекается в реакцию циклоборирования α -олефинов (гекс-1-ен, окт-1-ен, дец-1-ен, стирол, *орто*-, *мета*-, *пара*-метилстирол) в присутствии катализатора Cp₂TiCl₂ и магния с образованием соответствующих 1-фенил-2-алкил(арил)бориранов **29а**-**g** (Схема 2.4.14). Сигнал атома бора PhBCl₂ в спектрах ЯМР ¹¹В (δ _В 55.4 м.д) после завершения реакции исчезает, при этом для бориранов **29а**-**g** он проявляется в области ~ 30 м.д.

R = Bu(a), Hex(b), Oct(c), Ph(d), o-MePh(e), m-MePh(f), p-MePh(g)

Схема 2.4.14 — Циклоборирование α -олефинов с помощью PhBCl₂, катализируемое Cp₂TiCl₂

1-Фенилборираны **29а**–**g** термически нестабильны, поскольку в процессе возгонки разрушаются. Для стабилизации 1-фенилбориранов **29а**–**g** мы добавляли в реакционную массу эквимольное количество пиридина и перегоняли. За счет неподеленной пары электронов атома азота пиридин образует молекулярный комплекс с борираном, что стабилизирует трехчленный борирановый цикл при нагревании. После добавлении пиридина к 1-фенил-2-гексилборирану **29b** в спектре ЯМР ¹¹В мы наблюдали

появление второго сигнала атома бора с большей интенсивностью при δ_B 2.1 м.д., который и указывал на образование молекулярного комплекса борирана с пиридином **29b·Py**. Наличие двух сигналов свидетельствует о существовании равновесия между закомплексованным и свободным 1-фенилборираном **29b** (Схема 2.4.15).

Схема 2.4.15 – Комплексообразование между борираном **29b** и пиридином

Оценка термодинамической возможности образования комплекса 1-фенил-2-этилборирана с молекулой пиридина сравнением рассчитанных энергий Гиббса комплекса и исходных молекул (PBE/3z, Природа 6.0) показала, что образование комплекса с пиридином термодинамически возможно, так как $\Delta G = -13.2$ ккал/моль.

При выделении пиридинового комплекса из раствора после предварительного вакуумирования реакционной массы остаток подвергли термической возгонке в вакууме. Однако из-за низкой прочности комплекса (29b)·Ру в условиях термической возгонки пиридиновый комплекс разрушался с образованием свободного от молекул пиридина борирана 29b.

Выделенные в индивидуальном виде 1-фенилборираны **29**а-**g** идентифицированы на основе анализа спектров ЯМР 1 H, 13 C, 11 B. Аналогично 1-фторбориранам **27**, **28**а-**e** в спектре ЯМР 13 C и 1 H (CDCl₃) бориранов **29**а-**g** сигналы атомов углерода и водорода бориранового цикла не могут быть зафиксированы в шкале времени ЯМР (см. главу 2). Уширенный сигнал атома бора для бориранов **29**а-**g** в спектрах ЯМР 11 B при $\delta_{\rm B} \sim 30\,$ м.д. находится в более слабом поле по сравнению с сигналами атома бора для 1-хлор(фтор)-2-замещенных бориранов, идентифицированных в составе комплексов с SMe₂ ($\delta \sim 2\,$ м.д.) или BF₃ ($\delta \sim -1\,$ м.д.).

В масс-спектре 1-фенил-2-октилборирана **29с** обнаружены пики, характерные для деканола-1 (m/z 158) и фенола (m/z 94), а также пики молекулярных ионов с m/z 259, 260, 261, которые соответствуют предполагаемым структурам борорганических соединений А или В (Рисунок 2.4.5.). Вероятно, они образуются в процессе окисления в масс-спектрометре.

Рисунок 2.4.5 – Предполагаемые структуры борорганических соединений A и В

В продолжение этих исследований с целью изучения влияния структуры исходных дихлорборанов на выход и селективность образования бориранов целевых замещенных нами были синтезированы алкилдихлорбораны (EtBCl₂, *н*-PentBCl₂, н-HexBCl₂), арилалкилдихлорбораны $(Ph(CH_2)_2BCl_2,$ Naphth(CH_2)₂ BCl_2), также циклоалкилдихлорбораны (cyclo-Oct, NorbBCl₂) и испытаны в реакциях циклоборирования α-олефинов.

Установлено, что при взаимодействии α -олефинов (окт-1-ен, дец-1-ен) с алкилдихлорборанами (EtBCl₂, PentBCl₂, HexBCl₂) в условиях (α -олефин: [B]: [Mg]: [Ti] = 1 : 1.2 : 2 : 0.2, ТГФ, 50 °C 5ч, затем 20–22 °C 16 ч) образуются 1,2-диалкилборираны **30а**—е с выходом 67–82%, которые были выделены в индивидуальном виде с помощью вакуумной перегонки и идентифицированы спектральными и химическими методами (Схема 2.4.16).

Схема 2.4.16 – Алкилдихлорбораны в синтезе 1,2-дизамещенных бориранов

Окисление 1,2-диалкилбориранов 30a—е с помощью $H_2O_2/NaOH$ приводит количественно к соответствующим диолам 3,13b и моноолам 4,14b, 5,15b, R-OH в соотношении 1:1:1:3 (Схема 2.4.17).

R'

B

$$R'$$
 R'
 R'

Схема 2.4.17 – Окисление 1,2-диалкилбориранов

Следует отметить, что в отличие от катализируемого Cp₂TiCl₂ циклоборирования α-олефинов с применением в качестве борных реагентов PhBCl₂, а также BCl₃·SMe₂ и BF₃·TГ Φ , осуществляемого при комнатной температуре, циклоборирование с участием алкилдихлорборанов проходит при нагревании до 50 °C. Однако Ph(CH₂)₂BCl₂ с трудом вступает в реакцию циклоборирования α-олефинов даже при нагревании (50–100 1-(2-фенилэтил)-2-гексилборирана, полученного Образование реакцией циклоборирования окт-1-ена с Ph(CH₂)₂BCl₂, подтверждали только с помощью продуктов окисления после обработки перекисью водорода (октан-1,2-диол 3, октан-1-ол 4, октан-2-ол 5, 2-фенилэтанол). Дихлор[1-(2нафтил)этил]боран (Naphth(CH_2)₂ BCl_2) в разработанных условиях вовсе не образует целевые борираны. По-видимому, низкая реакционная способность арилалкилдихлорборанов обусловленна увеличением барьера на стадии внутримолекулярной циклизации по сравнению с рассчитанным для BCl₃ (см. главу 2.3). Рассчитанный барьер (или энергия активации, Е_а) составляет порядка 20 ккал/моль, что является предельным значением для прохождения реакций при комнатной температуре.

Наряду алкилдихлорборанами алкиларилдихлорборанами И И бициклические дихлорбораны, синтезированы моноименно, циклооктилдихлорборан 31 и экзо-норборнилдихлорборан 32, которые успешно вступают в катализируемую Cp₂TiCl₂ реакцию циклоборирования αолефинов с образованием 2-алкил-1-циклооктил(норборнил)бориранов 33а, в и **34а,b** (Схема 2.4.18). При окислении бориранов **33а,b** и **34а,b** с помощью $H_2O_2/NaOH$ образуются ожидаемые диолы **3,13b** и моноолы **4,14b**, **5,15b**,**c**, **35** и 36.

Схема 2.4.18 — Циклооктил- и экзо-норборнилдихлорбораны **31**, **32** в синтезе бориранов

Структура выделенных с помощью вакуумной перегонки бориранов 30a—е и 33a, в надежно доказана с помощью мультиядерной ЯМР 1 Н, 13 С 11 В спектроскопии. В спектрах ЯМР 1 Н и 13 С бориранов 30a—е (Схема 2.4.16) и 33a, в (Схема 2.4.18) сигналы атомов углерода и водорода, находящиеся в α -положении к атому бора, а также C^{4} Н $_{2}$ -группы алкильного заместителя во 2-м положении бориранового цикла, также не проявляются как и в описанных выше 1-фтор(фенил)-2-алкилбориранах. В спектрах ЯМР 11 В (CDCl $_{3}$) наблюдаются сигналы атома при δ_{B} 30—31 м.д. в области, характерной для соединений бора с трехкоординированным атомом бора.

Однако в спектрах ЯМР ¹³С ожидаемых бориранов **34а,b** наряду с сигналами алкильного и бициклического заместителей наблюдаются сигналы третичного атома углерода при δ_{C} 74 м.д., что свидетельствует о внедрении атома кислорода ПО связи B–C(norbornyl) при сохранении борациклопропанового фрагмента. С помощью вакуумной перегонки были 1-(бицикло[2.2.1]гепт-2-илокси)-2выделены И идентифицированны алкилборираны **37а,b** (Рисунок 2.4.6).

Рисунок 2.4.6 — Структура 1-(бицикло[2.2.1] гепт-2-илокси)-2-алкилбориранов ${\bf 37a,b}$.

В развитие изучения реакций каталитического циклоборирования непредельных соединений с целью получения аннелированных бориранов осуществлено взаимодействие циклических олефинов (циклогептен, *цис*циклооктен, *цис/транс*-циклододецен (*цис/транс* = 3:1), норборнен) с RBCl₂ (R = Et, *н*-Pent) в присутствии катализатора Cp_2TiCl_2 в условиях, разработанных для синтеза 1,2-диалкилбориранов (олефин: [B]: Mg: [Ti] = 1 : 2 : 2 : 0.2, $T\Gamma\Phi$, 50 °C 5ч, затем ~ 20–22 °C, 16 ч). Можно предположить, что эти реакции позволят получить аннелированные борираны **38** и **39** (Рисунок 2.4.7). Однако идентифицировать ожидаемые борираны после выделения продуктов реакции нам не удалось.

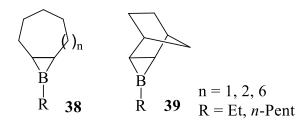


Рисунок 2.4.7 – Предполагаемые структуры аннелированных бориранов 38,

39

В спектрах ЯМР 13 С образцов реакционных масс, полученных по завершении реакций $EtBCl_2$ с циклическими олефинами, вместо сигналов ожидаемых аннелированных структур **38**, **39** (Рисунок 2.4.7) наблюдается заметно большее число сигналов, что позволило предположить образование смеси продуктов. Наличие уширенных сигналов в области δ_C 69–75 м.д. свидетельствовало о внедрении атома кислорода по связи B-C образовавшихся борсодержащих соединений.

Вероятно, образующиеся в процессе данной реакции борорганические соединения, чрезвычайно чувствительны даже к следовым количествам кислорода и влаги. Предположили, что добавление к реакционным массам избытка воды будет способствовать полному превращению образовавшихся борорганических соединений в кислородсодержащие борорганические Действительно, спектры ЯМР реакционных масс после соединения. обработки водой значительно упростились, что позволило идентифицировать образование смеси эфиров бороновой кислоты 40а, в и **41a,b**, **42a,b** и **43a,b**, **44a**, **45a** и **46a,b**, **47a,b** (Схема 2.4.19).

Схема 2.4.19 — Взаимодействие циклических олефинов с RBCl₂, катализируемое Cp₂TiCl₂, с последующим гидролизом

Методом вакуумной перегонки выделены исключительно диэфиры — дициклоалкил(алкил)боронаты **41a,b**, **43a,b** и **47a,b**) с высокими выходами (86–96%). Наименьший выход бороната **45a** (52%) наблюдался в Ті-катализируемой реакции между циклододеценом и $EtBCl_2$. Наряду с **47a** в этой реакции образуется 2-этил-1,2-оксаборинан (δ_B =52 м.д.), молекула которого формируется в результате взаимодействия $EtBCl_2$ с $T\Gamma\Phi$ (Рисунок 2.4.8).

Рисунок 2.4.8 – Структура 2-этил-1,2-оксаборинана

Наличие двух циклогептильных (циклооктильных, циклододецильных) норборнильных фрагментов или подтверждается соотношением (Et, интегральных интенсивностей сигналов алкильного *н*-Pent) циклогептильного (циклооктильного, циклододецильного, норборнильного) фрагментов в спектрах ЯМР 1 Н соединений **41a,b**, **43a,b**, **45a** и **47a,b**. Следует ^{13}C что спектрах ЯМР ДЛЯ дибицикло[2.2.1] гепт-2отметить, илалкилборонатов 47а, в наблюдается диастереомерное расщепление ряда сигналов за счет наличия двух ассиметрических центров в структуре.

Полагаем, что боронаты **41a,b**, **43a,b**, **45a** и **47a,b** являются продуктами конденсации соединений **40a,b**, **42a,b**, **44a** и **46a,b**. Предполагаемый путь образования этих боронатов приведен на схеме 2.4.20 на примере трансформации соединений **42a,b** в дициклооктилалкилборонаты **44a,b**.

Схема 2.4.20 – Вероятный путь образования боронатов **43а,b** из соединений **42а,b**

Очевидно, что предшественниками производных бороновой кислоты 40a,b, 42a,b, 44a и 46a,b являются хлор(циклооктил)алкилбораны 48a,b, 49a,b, 50a и бицикло[2.2.1]гепт-2-ил(хлор)алкилбораны 51a,b (Схема 2.4.21), которые в результате автоокисления [116] и гидролиза [110, 111] в условиях реакции трансформируются в циклогептил(циклооктил, циклододецил)алкилгидроксиборонаты 40a,b, 42a,b, 44a и бицикло[2.2.1]гепт-2-илалкилгидроксиборонаты 46a,b, соответственно.

$$\begin{bmatrix}
Cl \\
B-R \\
B-R
\end{bmatrix}
 \begin{bmatrix}
O], H_2O \\
A & D \\
R
\end{bmatrix}$$

$$48a,b (n = 1) \\
49a,b (n = 2) \\
50a (n = 6)$$

$$\begin{bmatrix}
Cl \\
B-R
\end{bmatrix}
 \begin{bmatrix}
O], H_2O \\
B-R
\end{bmatrix}
 \begin{bmatrix}
O], H_2O \\
B-R
\end{bmatrix}
 \begin{bmatrix}
O & D \\
A & D \\
B-R
\end{bmatrix}
 \begin{bmatrix}
O & D \\
C & D \\
C$$

Схема 2.4.21 – Прекурсоры при образовании соединений **40a,b**, **42a,b**, **44a** и **46a,b**

Как следует из полученных результатов, циклические олефины не образуют соответствующие аннелированные борираны в реакциях с $RBCl_2$, катализируемых Cp_2TiCl_2 . Это дополнительно подтверждается отсутствием ожидаемых диолов и образованием исключительно моноолов **35**, **36**, **52**, **53** после обработки реакционных масс с помощью $H_2O_2/NaOH$ (Схема 2.4.22).

$$RBCl_{2} \xrightarrow{\begin{array}{c} 20 \text{ mol}\% \\ R = \text{Et (a)}, n\text{-Pent (b)} \end{array}} \begin{array}{c} Cl \\ A8a, b \text{ (n = 1)} \\ A9a, b \text{ (n = 2)} \\ B-R \end{array} \begin{array}{c} 52(n = 1) \\ A9a, b \text{ (n = 2)} \\ 50a \text{ (n = 6)} \end{array} \begin{array}{c} 35(n = 2) \\ 53 \text{ (n = 6)} \end{array}$$

Схема 2.4.22 — Катализируемая Cp_2TiCl_2 реакция циклических олефинов с $RBCl_2$ (R=Et, n-Pent) после окисления $H_2O_2/NaOH$

Одновременно осуществлены теоретические расчеты термодинамических и активационных параметров реакции трансметаллирования титанациклопропанового интермедиата как ключевой стадии модельной реакции между циклогептеном и $EtBCl_2$ в присутствии катализатора Cp_2TiCl_2 (Схема 2.4.23). Расчетные данные приведены в Таблице 2.4.3.

Схема 2.4.23 — Ключевые стадии переметаллирования титаноциклопропанов с помощью EtBCl₂

Таблица 2.4.3 — Рассчитанные термодинамические и активационные параметры трансметаллирования титанациклопропанового интермедиата **54** с помощью EtBCl₂ (H, G [ккал/моль], S [кал/(моль·К)])

Реакция	ΔΗ	ΔG	ΔS	$\Delta \mathrm{H}^{\neq}$	ΔG^{\neq}	ΔS^{\neq}
54+EtBCl ₂ → 55	-31,4	-17,8	-45,5	7,4	21,7	-48,0
55 → 56	23,4	21,4	6,8	36,9	38,5	-5,3
$56 \rightarrow 57 + Cp_2TiCl_2$	-0,6	-13,8	44,5			

Согласно расчетам, стадия внутримолекулярного лигандного обмена является термодинамически невыгодной ($\Delta G = 21,4$ ккал/моль) и характеризуется высоким энергетическим барьером ($\Delta G^{\#} = 38,5$ ккал/моль). Таким образом, ключевая стадия — трансметаллирование титанациклопропана в борациклопропан не реализуется для циклических олефинов.

Полагаем, что в реакции между алкилдихлорборанами и циклическими олефинами участвуют каталитически активные гидридные Ті-содержащие интермедиаты, приводящие к продуктам гидроборирования циклоолефинов **48a,b, 49a,b, 50a** и **51a,b**, из которых в процессе автоокисления и гидролиза образуются производные бороновой кислоты. Образование гидридных комплексов титана в системе Cp₂TiCl₂/Mg/TГФ известно [117]. Согласно предполагаемой нами схеме (Схема 2.4.24), образующийся при

взаимодействии циклооктена с $EtBCl_2$ в условиях реакции циклоборирования гидридный комплекс титана переметаллируется с помощью $EtBCl_2$ до продукта гидроборирования **51a**.

Схема 2.4.24 — Предполагаемая схема образования продукта гидроборирования **49**а

Таким образом, нами показано, что в условиях реакции циклоборирования непредельных соединений с помощью $RBCl_2$ (R – алкил,арил) ациклические α -олефины образуют продукты циклоборирования (борираны), в то время как циклические олефины в тех же условиях – продукты гидроборирования (циклоалкил(хлор)бораны).

2.5 Катализируемое Cp₂TiCl₂ взаимодействие α-олефинов с аминодихлорборанами

В продолжение исследования влияния природы заместителя при атоме бора в исходных дихлорборанах $RBCl_2$ в реакциях циклоборирования олефинов изучено взаимодействие ароматических и алифатических α -олефинов с дихлорборанами, содержащими в своей структуре атом азота $-R_2NBCl_2$ (R=i-Pr, μ -Pr).

Эксперименты показали, что при взаимодействии диизопропилдихлораминоборана i-Pr₂NBCl₂ с ароматическими α -олефинами

в условиях реакции циклоборирования (α -олефин: i-Pr₂NBCl₂: Mg: [Ti] = 1: 1.2: 2: 0.2, ТГФ, 20–22 °C, 8 ч) не наблюдаются ожидаемые продукты циклоборирования (B-аминобориранов), а вместо этого селективно образуются mpanc-1-алкенилбораны **58a**–**d** с выходами 69–95% (Схема 2.5.25). Структура выделенных с помощью ректификации соединений **58a**–**d** установлена на основании анализа одномерных спектров ЯМР ¹H, ¹³C, ¹¹B, а также двумерной корреляционной ЯМР спектроскопии (COSY, HSQC, HMBC).

Схема 2.5.25 — Селективное борилирование ароматических α -олефинов с помощью i-Pr₂NBCl₂, катализируемое Cp₂TiCl₂

Реакция борилирования ароматических α -олефинов, катализируемая Cp_2TiCl_2 , проходит стереоспецифично с образованием исключительно *транс*изомера, что было установлено на основе анализа спектров ЯМР ¹Н. Так, например, для 1-алкенилборана **58a**, полученного на основе *пара*метилстирола, величина вицинальной константы спин-спинового взаимодействия протонов двойной связи CH=CH=B [δ_H 6.79 м.д (дд)] составляет $^3J=17.4$ Γ_H .

Следует отметить, что метиновые протоны двух N-изопропильных групп 1-алкенилборана **58а** являются магнитно-неэквивалентными. Они проявляются двумя хорошо разрешенными гептетами при $\delta_{\rm H}$ 3.40 м.д. и $\delta_{\rm H}$ 4.16 м.д. ($\Delta\delta$ 0.76 м.д.), что свидетельствует об отсутствии инверсии при атоме азота вследствие наличия сопряжении B–N связи. В спектре ЯМР ¹¹В

наблюдается сигнал атом бора δ_B 37.0 м.д., характерный для 1-алкенилборанов (диизопропиламино) боранов [118].

С целью изучения влияния природы исходных α -олефинов на направление реакции в Ті-катализируемое взаимодействие с i-Pr₂NBCl₂ вовлечены алифатические α -олефины (окт-1-ен и дец-1-ен). Установлено, что алифатические α -олефины в отличие от ароматических вовлекаются в реакцию борилирования не столь селективно. Анализ спектра ЯМР ¹¹В реакционной массы после окончания реакции указанных α -олефинов с i-Pr₂NBCl₂ под действием катализатора Cp₂TiCl₂ показал, что наряду с сигналом $\delta_{\rm B} \sim 37.0$ м.д. 1-алкенилборанов **59а,b** [$\delta_{\rm B}$ 37.1 для **59а**, $\delta_{\rm B}$ 36.8 для **59b** (Схема 2.5.26)], наблюдается второй сигнал при $\delta_{\rm B}$ 42.1 м.д., соответствующий продукту гидроборирования (**60a,b**).

Таким образом, при использовании в качестве исходных мономеров алифатических α-олефинов в упомянутой выше реакции образуются продукты борилирования **59а,b** и гидроборирования **60а,b** в соотношении 2:3 с общим выходом до 90% (Схема 2.5.26). В спектрах ЯМР ¹³С и ¹Н реакционной смеси также наблюдается второй набор сигналов. Спектральные отнесения для **59а,60а** и **59b,60b** были выполнены из полученных после ректификации фракций, состоящих из смеси продуктов борилирования и гидроборирования, обогащенных одним из соединений.

Схема 2.5.26 — Взаимодействие алифатических α -олефинов с i-Pr₂NBCl₂, катализируемое Cp₂TiCl₂

С учетом имеющихся в литературе данных [119–121], а также собственных экспериментальных результатов формирование продуктов

борилирования и гидроборирования в реакциях а-олефинов с i-Pr₂NBCl₂ можно представить следующей схемой (Схема 2.5.27). На первой стадии происходит восстановление координационно-ненасыщенного Cp₂TiCl₂ до $\langle\langle Cp_2Ti\rangle\rangle$ под действием Mg. Ha следующей стадии *i*-Pr₂NBCl₂ взаимодействует с «Ср₂Ti» с разрывом B-Cl связи, давая комплекс 61. В результате внедрения а-олефина по связи Ті-В комплекса 61 формируется комплекс 62. Далее в результате β-гидридного переноса образуется гидридный комплекс титана 63 и 1-алкенилбораны (58a-d, 59a,b). Затем гидридный комплекс титана взаимодействует с *i*-Pr₂NBCl₂ и через стадию восстановительного элиминирования HCl возвращается в каталитический цикл в виде интермедиата 61 (Путь А).

Образовавшийся в ходе реакции гидридный комплекс титана **63** также реагирует с исходным α -олефином, превращаясь в комплекс **64**, переметаллирование которого реагентом i- Pr_2NBCl_2 дает продукты гидроборирования **60a,b** с одновременной регенерацией катализатора Cp_2TiCl_2 .

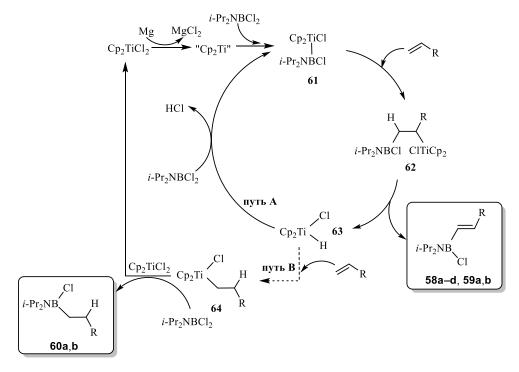


Схема $2.5.27 - Предполагаемый каталитический цикл реакции борилирования <math>\alpha$ -олефинов с помощью i- Pr_2NBCl_2 в присутствии Cp_2TiCl_2

Однако образование в случае алифатических α -олефинов смеси продуктов борилирования и гидроборирования в соотношении 2:3 (вместо 1:1) свидетельствуют о том, что продукты гидроборирования могут образоваться по другому пути, например, с участием гидридных комплексов титана, генерированных в системе Cp_2TiCl_2/Mg с участием молекулы $T\Gamma\Phi$ (См. главу 2.4).

Аналогичные результаты были получены при использовании в качестве борного реагента μ -Pr₂NBCl₂, однако в этом случае выход продуктов борилирования и гидроборирования заметно снижается.

Обнаруженное направление взаимодействия α -олефинов с аминодихлорборанами R_2NBCl_2 — реакция борилирования открывает новый путь к синтезу 1-алкенилборанов, являющихся полезными интермедиатами в синтетической органической и медицинской химии, а также эффективными строительными блоками в синтезе новых π -сопряженных борсодержащих систем при создании фотофизических и электронных устройств.

ГЛАВА З ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Одномерные (1 H, 13 C, 11 B, 19 F) и двумерные (COSY, HSQC, HMBC) спектры ЯМР записаны в CDCl₃ на спектрометре Bruker Avance 400 с рабочей частотой 400.13 МГц для 1 H, 100.62 МГц для 13 C, 128.33 МГц для 11 B, 376.37 МГц для 19 F. При регистрации спектров ЯМР 1 H и 13 C в качестве внутреннего стандарта использовали ТМС, для спектров 11 B – BF₃·Et₂O. Химические сдвиги ($^{\delta}$) даны в миллионных долях.

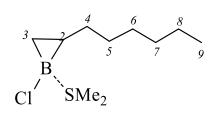
Хроматографический анализ продуктов окисления, триметилсилильных эфиров и борирана проводили на приборе Shimadzu GC-9A (капиллярная колонка 2000х2мм, неподвижная фаза — силикон SE-30 (5%) на Chromaton N-AW-HMDS (0.125–0.160 мм), газ-носитель — гелий (30мл/мин), при программировании температуры от 50 до 300 °C со скоростью 8°C/мин.

Масс-спектры регистрировали на приборе Shimadzu GCMS-QP2010 Ultra (капиллярная колонка Supelco PTE-5 (60 м ×0.25 мм, газ-носитель — гелий, программирование температуры от 40 до 280 °C со скоростью 8 °C/мин, температура испарителя 260 °C, температура источника ионов 200 °C, с энергией ионизирующих электронов 70 эВ.

ИК спектры снимали на спектрометре Bruker Vertex 70v (жидкая плёнка).

Определение молекулярной массы борорганических соединений осуществляли криоскопическим методом в бензоле по методике [122] в стеклянной трехгорлой ячейке, снабженной термометром Бэкмана (точность измерения температуры замерзания $0.005\,^{\circ}$ C).

3.1 Очистка исходных реагентов и растворителей

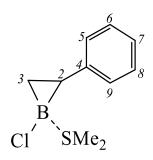

В работе использовали коммерчески доступные $PhBCl_2$ и Cp_2TiCl_2 (Sigma-Aldrich). Мономеры (гекс-1-ен, окт-1-ен, дец-1-ен, стирол, *орто-*, *мета-*, *пара-*метилстиролы, аллилбензол) использовали с чистотой не менее

99%. Перед опытами α-олефины предварительно обезвоживали и перегоняли по методике [123] Эфирные растворители (ТГФ и диэтиловый эфир) выдерживали над NaOH (тв.), пропускали через Al₂O₃, кипятили над натриевой дробью, перегоняли в токе аргона над LiAlH₄ [124] С целью создания инертной атмосферы для работы с металлорганическими соединениями использовали аргон марки «чистый» (ГОСТ 10157-73), дополнительно очищенный от следов влаги и кислорода пропусканием через систему, состоящую из последовательно соединенных колонн (конц. H₂SO₄, КОН, прокаленные молекулярные сита).

3.2 Синтез 2-алкил(арил)-1-хлорбориранов

В стеклянный реактор (50 мл) в атмосфере сухого аргона при перемешивании с помощью магнитной мешалки загружали последовательно при охлаждении до 0°С 5 мл ТГФ, 3 ммоль (0.072 г) порошка Mg, 1 ммоль α -олефина, 0.2 ммоль (0.050 г) катализатора Cp_2TiCl_2 и 2 ммоль (0.36 г) BCl_3 SMe_2 . Смесь перемешивали при 0°С 1 ч. Затем реакционную массу нагревали до комнатной температуры (~ 20 –22 °С) и перемешивали еще 14 ч, после чего центрифугировали, растворитель выпаривали и 1-хлор-2-R-бориран анализировали с помощью ЯМР.

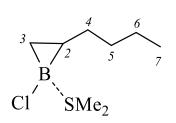
1-Хлор-2-гексилбориран (3)



Нестабильное соединение охарактеризовано методом ЯМР в растворе без выделения в индивидуальном виде, поэтому его выход (80%) соответствует выходу продукта трансформации (25a). Конверсия до 85% (по данным

спектроскопии ЯМР 1 Н). Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.58 (уш.м, 1H, H 3A), 0.39 (уш.м, 1H, H 3B), 0.51–0.58 м (3H, H $_{3}^{9}$), 0.85–1.1 (м 11H, H 2 , H $_{2}^{4-8}$), 1.28 (м 6H, S(C $\underline{\text{H}}_{3}$)₂). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ

= 13.67, 16.62 (С³, $W_{\frac{1}{2}}$ = 30.6 Гц), 17.40 (S(С<u>H</u>₃)₂), 22.33, 24.50 (С²), 28.96, 29.90, 31.19, 32.20. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 2.54.

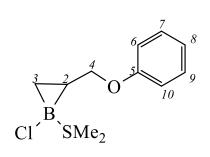

1-Хлор-2-фенилборирана (12с)

Нестабильное соединение охарактеризовано методом ЯМР в растворе без выделения в индивидуальном виде. Конверсия до 75% (по данным спектроскопии ЯМР 1 Н).Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): $\delta = 0.39$ (уш.м, 1H, 3A), 0.62 (уш.м, 1H, 3B), 1.15–1.26 [м, 7H, 2 , S(CH₃)₂], 7.00–7.20 (м, 5H,

5СН_{аром}). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 17.36 (C³, $W_{\frac{1}{2}}$ = 27.9 Гц), 18.74 [S(CH₃)₂], 25.90 (C²), 126.50, 127.57, 128.04, 144.10. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 2.78.

1-Хлор-2-бутилбориран (12а)

Нестабильное соединение охарактеризовано методом ЯМР в растворе без выделения в индивидуальном виде. Конверсия до 75% (по данным спектроскопии ЯМР 1H).Спектр ЯМР 1 H (CDCl₃, м.д., 400.13 МГц): δ = 0.51 (уш.м, 1H, H 3A), 0.40 (уш.м, 1H,


 H^{3B}), 0.55–0.62 (м, 3H, H_3^7), 0.80–1.05 (м, 7H, H^2 , H_2^{4-6}), 1.27 (м, 6H, $S(C\underline{H}_3)_2$). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 13.43, 16.91 (С³, $W_{\frac{1}{2}}$ = 28.1 Гц), 18.80 ($S(C\underline{H}_3)_2$), 22.90, 25.05 (С²), 29.94, 32.20. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 2.95.

1-Хлор-2-октилбориран (12b)

Нестабильное соединение охарактеризовано методом ЯМР растворе без выделения В индивидуальном виде, поэтому его выход (92%) соответствует выходу

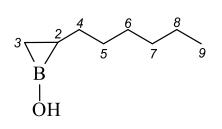
продукта трансформации (25b). Конверсия до 96% (по данным спектроскопии ЯМР 1 Н).Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.42 (уш.м, 1Н, Н^{3A}), 0.59 (уш.м, 1Н, Н^{3B}), 0.65–70 (м, 3Н, Н₃ 1I), 1.00–1.40 (м, 21Н, Н², Н₂ $^{4-10}$, S(C $\underline{\text{H}}_3$)₂). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 13.67, 17.26 (С³, $W_{\frac{1}{2}}$ = 30.1 Гц), 18.10 (S(C $\underline{\text{H}}_3$)₂), 22.42, 25.50 (С²), 28.90, 29.1, 29.40, 29.50, 31.05, 32.11. Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 2.75.

1-Хлор-2-(феноксиметил)бориран (16)

Нестабильное соединение охарактеризовано методом ЯМР в растворе без выделения в индивидуальном виде. Конверсия до 85% (по данным спектроскопии ЯМР 1 Н).Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): $\delta = 0.55$ (уш.м, 1H, 3A), 0.44 (уш.м, 1H, 3B), 1.10 (уш.м, 1H, 2), 1.20

(м. $S(C\underline{H}_3)_2$), 2.80 (м, 1H, H^{4A}), 3.25 (м, 1H, H^{4B}), 6.40 м, 6.63 м, 6.77 (м, 5H, CH_{apom}). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 17.10 (C^3 , $W_{1/2}$ = 19.6 Гц), 18.30 ($S(C\underline{H}_3)_2$), 24.55 (C^2), 68.50 (C^4 –О), 117.16, 120.27, 127.90, 161.10. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 2.67.

1-Хлор-2-бензилбориран (20)


Нестабильное соединение охарактеризовано методом ЯМР в растворе без выделения в индивидуальном виде. Конверсия до 40% (по данным спектроскопии ЯМР 1 H).Спектр ЯМР 1 H (CDCl₃, м.д.,

400.13 МГц): δ = 0.38 (уш.м, 1H, H^{3A}), 0.62 (уш.м, 1H, H^{3B}), 1.20–1.29 (уш.м, 7H, H², S(С<u>Н</u>₃)₂), 2.48 (м, 2H, H₂⁴), 7.04–7.17 (м, 5H, СН_{аром}). Спектр ЯМР ¹³С (СDСl₃, м.д., 100.62 МГц): δ = 17.79 (С³, W_½ = 30.8 Гц), 18.50 (SMe₂), 24.30 (С²), 37.71 (С⁴), 125.30, 127.60, 127.80, 144.10. Спектр ЯМР ¹¹В (СDСl₃, м.д., 128.33 МГц): δ = 2.84.

3.3 Синтез 2-алкилбориран-1-олов

К раствору 10 ммоль борирана (1-хлор-2-гексилбориран **3** и 1-хлор-2-октилбориран **12b**), синтезированные по вышеуказанной методике, в 20 мл ТГФ добавляли 2 мл воды и смесь перемешивали 3 ч. Борираны синтезировали согласно методам описанных выше. После отделения органического слоя водный слой экстрагировали диэтиловым эфиром (2 х 10 мл). Эфирные экстракты объединяли с органическим слоем, растворитель упаривали, а остаток перегоняли при пониженном давлении.

2-Гексилбориран-1-ола (25а)

Выход 90% (1.26 г. 9.0 ммоль), светлосерая жидкость, т. кип. 90 °С (5 мм рт.ст). Найдено, (%): С 69.96; Н 12.12. С₉H₁₉BO. Вычислено, (%): С 70.10; Н 12.33. ИК спектр ν , см⁻¹: 3470, 2951, 2948, 2922, 2850, 1603, 1448,

1376, 1356, 1325, 1263, 1189, 1032, 893, 810, 766, 721, 670, 649. Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): $\delta = 0.90$ (т, 3H, CH₃, J = 6.4 Гц), 1.20–1.65 (м,

8H, 4CH₂). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 14.06, 22.63, 29.24, 29.30, 31.80. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 32.14. [В спектрах ЯМР ¹Н и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (B–C²H–, B–C³H₂–), а также C⁴H₂ не проявляются].

2-Октилбориран-1-ол (25b)

Выход 92% (1.55 г, 9.2 ммоль), светлосерая жидкость, т. кип. 115 °С (5 мм рт.ст.). ИК спектр ν , см⁻¹: 3466, 2956, 2924, 2854, 1717, 1619, 1467, 1376, 1321, 1260, 1217, 1032, 893, 804, 760, 720, 668. Спектр ЯМР ¹Н

(CDCl₃, м.д., 400.13 МГц): δ = 0.90 (т, 3H, CH₃, J = 6.8 Гц), 1.20–1.50 (м, 12H, 6CH₂). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 14.10, 22.68, 29.35, 29.42, 29.61, 29.65, 31.90. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 32.12. [В спектрах ЯМР ¹H и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С²H–, В–С³H₂–), а также С⁴H₂ не проявляются].

3.4 Синтез 1,1'-бис(2-алкилбориран)оксидов

Раствор бориран-1-олов (0.5 ммоль) в $CDCl_3$ (0.5 мл) выдерживали над безводным $MgSO_4$ (0.050 г) в течении 24 ч. Полученные ангидриды анализировали методом ЯМР.

1,1'-Бис(2-гексилбориран)оксид (26а)

Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 0.90 (т, 6H, 2CH₃, J = 6.2 Гц), 1.21–1.50 (м, 16H, 8CH₂). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 14.07, 22.63, 29.24, 29.31, 31.80. Спектр ЯМР

¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 18.62. [В спектрах ЯМР ¹Н и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (B–C²H–, B–C³H₂–, B–C²'H–, B–C³'H₂–), а также C⁴H₂ и C⁴'H₂ не проявляются].

1,1'-Бис(2-октилбориран)оксид (26b)

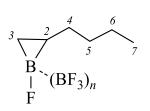
Спектр ЯМР
1
Н (CDCl₃, м.д., 400.13 МГц): $\delta = 0.89$ (т, 6H, 2CH₃, $J = 6.8$ Гц), 1.20–1.50 (м, 24H, 12CH₂). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62

МГц): $\delta = 14.09$, 22.67, 29.34, 29.49, 29.61, 29.64, 31.91. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): $\delta = 18.34$. [В спектрах ЯМР ¹Н и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (B–C²H–, B–C³H₂–, B–C²'H–, B–C³'H₂–), а также C⁴H₂ и C⁴'H₂ не проявляются].

3.5 Общая методика синтеза 1-фтор-2-алкилбориранов

В стеклянный реактор (50 мл) в атмосфере аргона при перемешивании на магнитной мешалке последовательно загружали при 0°C 20 мл ТГФ, 40 ммоль (0.96 г) Мg (порошок), 10 ммоль α -олефина, 1 ммоль (0.25 г) катализатора Cp_2TiCl_2 , 30 ммоль (4.2 г) BF_3 ·ТГФ. Смесь перемешивали при 0°C 1 ч. Затем реакционную массу нагревали до комнатной температуры (~20–22 °C) и перемешивали еще 14 ч, после чего центрифугировали, ТГФ выпаривали, а остаток перегоняли в вакууме в атмосфере аргона.

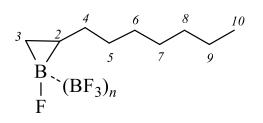
1-Фтор-2-гексилбориран·(BF₃)_n (27)


В Спектр ЯМР ¹Н (CDCl₃, м.)

В (ВF₃)_n (т, 3H, С⁹Н₃,
$$J = 6.4$$
 Гц), 1.

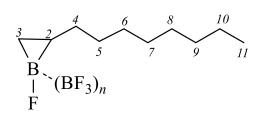
Выход 0.87 г, т. кип. 83–87°С (27 мм рт.ст.). Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.90 (т, 3H, С 9 Н₃, J = 6.4 Гц), 1.23–1.35 (м, 10H, С $^{4-8}$ Н₂).

Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 14.22 (C⁹), 22.81 (C⁸); 29.37, 29.54, 29.55 [(C⁴⁻⁶)], 32.07 (C⁷). Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = -1.78, -0.10. Спектр ЯМР ¹⁹F (CDCl₃, м.д. 376.37 МГц) δ = -155.66, -151.98. [В спектрах ЯМР ¹H и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С²H–, В–С³H₂) не проявляются].


1-Фтор-2-бутилбориран·(BF₃)_n (28a)

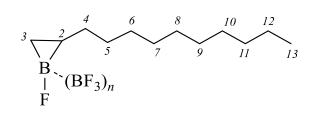
Выход 0.67 г, т. кип. 55–59°С (40 мм рт.ст.). Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.89 (т, 3H, $\mathrm{C^{7}H_{3}}$, J = 7.2 Гц), 1.22–1.33 (м, 6H, $\mathrm{C^{4-6}H_{2}}$). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 13.91 ($\mathrm{C^{7}}$), 22.73

(C⁶), 29.81 (C⁵), 31.93 (C⁴). Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): $\delta = -1.10$, -0.20. Спектр ЯМР ¹⁹F (CDCl₃, м.д. 376.37 МГц) $\delta = -156.46$, -151.32. [В спектрах ЯМР ¹H и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (B–C²H–, B–C³H₂) не проявляются].


1-Фтор-2-гептилбориран · (BF₃)_n (28b)

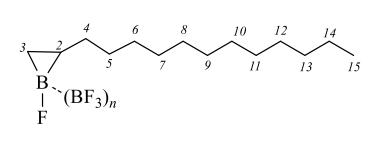
Выход 1.0 г, т. кип. 65–68°С (5 мм рт. ст.). Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): $\delta = 0.90$ (т, 3H, C^{10} Н₃, J = 6.6 Гц), 1.26–1.40 (м, 12H, C^{4-9} Н₂). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): $\delta = 14.21$ (C^{10}),

22.70 (С⁹); 29.36, 29.44, 29.53, 29.63 [(С⁴⁻⁷)], 32.07 (С⁸). Спектр ЯМР ¹¹В (СDСl₃, м.д., 128.33 МГц): $\delta = -1.37$, -0.01. Спектр ЯМР ¹⁹F (CDCl₃, м.д. 376.37 МГц) $\delta = -155.90$, -152.50. [В спектрах ЯМР ¹H и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С²H–, В–С³H₂) не проявляются].


1-Фтор-2-октилбориран·(BF₃)_n (28c)

Выход 0.99 г, т. кип. 81–85°С (5 мм рт. ст.). Спектр ЯМР ¹Н (CDCl₃, м.д., 400.13 МГц): $\delta = 0.91$ (т, 3H, C^{11} H₃, J = 7.0 Гц), 1.20–1.37 (м, 16H, C^{4-10} H₂). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): $\delta = 14.20$

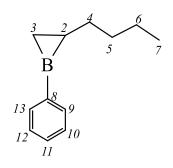
 (C^{11}) , 22.90 (C^{10}) ; 29.50, 29.63, 29.74, 29.80, 29.81 $[(C^{4-8})]$, 32.20 (C^{9}) . Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): $\delta = -1.25$, -0.08. Спектр ЯМР 19 Г (CDCl₃, м.д. 376.37 МГц) $\delta = -156.11$, -151.55. [В спектрах ЯМР 1 Н и 13 С сигналы протонов и углеродных атомов, связанных с атомом бора (B– C^{2} H–, B– C^{3} H₂) не проявляются].


1-Фтор-2-децилбориран·(BF₃)_n (28d)

Выход 1.10 г, т. кип. 80–86°Сс (1 мм рт. ст.). Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): $\delta = 0.91$ (т, 3H, C^{13} H₃, J = 6.8 Гц), 1.22–1.40 (м, 18H, C^{4-12} H₂). Спектр ЯМР 13 С (CDCl₃, м.д.,

100.62 МГц): δ = 14.10 (C¹³), 22.81 (C¹²); 29.34, 29.47, 29.49, 29.68, 29.73, 29.79, 29.24 [(C⁴⁻¹⁰)], 32.06 (C¹¹). Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = -1.50, -0.01. Спектр ЯМР ¹⁹F (CDCl₃, м.д. 376.37 МГц) δ = -155.90, -151.15. [В спектрах ЯМР ¹H и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С²H–, В–С³H₂) не проявляются].

1-Фтор-2-додецилбориран·(BF₃)_n (28e)


Выход 1 г, т. кип. $103-108^{\circ}$ С (1 мм рт. ст.). Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): $\delta = 0.92$ (т, 3H, C^{15} H₃, J = 7.0 Гц), 1.23-1.41 (м, 22H, C^{4-14} H₂). Спектр ЯМР 13 С (CDCl₃,

м.д., 100.62 МГц): δ =14.34 (C¹⁵), 22.93 (C¹⁴); 29.20, 29.45, 29.60, 29.79, 29.82, 29.89, 29.90, 29.93, 29.95 [(C⁴⁻¹²)], 32.07 (C¹³). Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = -1.73, -0.07. Спектр ЯМР ¹⁹F (CDCl₃, м.д. 376.37 МГц) δ = -156.11, -152.55. [В спектрах ЯМР ¹Н и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С²Н–, В–С³Н₂) не проявляются].

3.6 Синтез 2-алкил-1-фенилбориранов

В стеклянный реактор (50 мл) в атмосфере сухого аргона при перемешивании последовательно загружали при 0°С 30 мл Et₂O, 10 ммоль α-олефина, 20 ммоль (0.486 г) порошка Mg, 2.0 ммоль (0.498 г) Cp₂TiCl₂, добавляли по каплям 12 ммоль (1.91 г) PhBCl₂ и перемешивали в течение 1 ч. Затем реакционную массу нагревали до комнатной температуры (~ 20–22 °C) и перемешивали еще 14 ч, после чего центрифугировали, диэтиловый эфир отгоняли. Через 30 мин реакционную массу помещали в сублимационную камеру и подвергали термической возгонке в вакууме.

2-Бутил-1-фенилбориран (29а)

Выход: 80% (1.38 г, 8.0 ммоль). Белое твердое вещество. Найдено, (%): С 83.62; Н 9.92. С₁₂H₁₇B. Вычислено, (%): С 83.69; Н 9.88. Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 0.89–0.99 (м, 3H, С⁷H₃), 1.22–1.48 (м, 4H, С⁵⁻⁶H₂), 7.29–7.39 (м, 2H, Ph), 7.55–

7.64 (м, 1H, Ph), 8.24–8.35 (м, 2H, Ph). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 14.32, 22.80, 31.96, 128.19, 132.92, 135.85. Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 29.02. [В спектрах ЯМР 1 Н и 13 С сигналы протонов и углеродных атомов, связанных с атомом бора (B–C²H–, B–C³H₂ B–C^{Ph}), а также сигналы С⁴H₂ не проявляются].

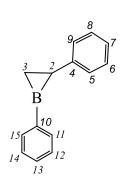
2-Гексил-1-фенилбориран (29b)

Выход: 75% (1.50 г, 7.5 ммоль). Белое твердое вещество. Найдено, (%): С 83.81; Н 10.35. С₁₄H₂₁B. Вычислено, (%): С 83.95; Н 10.49. Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 0.83–1.05 (м, 3H, С⁹H₃), 1.06–1.53 (м, 8H, С^{5–8}H₂), 1.53–1.58 (м, 1H, С⁴H⁴), 1.75–1.78

(м, 1H, C^4H^B), 7.40–7.72 (м, 4H, Ph), 8.24–8.40 (м, 1H, Ph). Спектр ЯМР ¹³С (СDCl₃, м.д., 100.62 МГц): δ = 14.30, 22.87, 29.51, 29.74, 32.04, 38.63, 128.17, 132.88, 135.84. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 30.29. [В спектрах ЯМР ¹H и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (В– C^2H –, В– C^3H_2 В– C^{Ph}) не проявляются].

2-Октил-1-фенилбориран (29с)

Выход: 70% (1.60 г, 7.0 ммоль). Бледно-желтое твердое вещество. Найдено, (%): С 84.02; Н 10.99. С₁₆Н₂₅В. Вычислено, (%): С 84.14; Н 10.96. Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.91–1.01 (м, 3H, С 11 Н₃), 1.19–1.55 (м,


12H, $C^{5-10}H_2$), 7.20–7.30 (M, 2H, Ph), 7.50–7.60 (M, 1H, Ph), 8.20 (M, 2H, Ph).

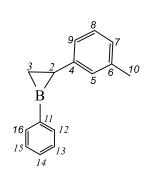
Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 14.34, 22.91, 29.55, 29.73, 29.81, 29.92, 32.13, 128.21, 132.93, 135.87. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 28.66. [В спектрах ЯМР ¹Н и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (B–C²H–, B–C³H₂ B–C^{Ph}), а также сигналы С⁴H₂ не проявляются].

3.7 Синтез 2-арил(бензил)-1-фенилбориранов

В стеклянный реактор (50 мл) в атмосфере сухого аргона при перемешивании последовательно загружали при 0°С 30 мл Et₂O, 10 ммоль α-олефина, 20 ммоль (0.486 г) порошка Mg, 2.0 ммоль (0.498 г) Cp₂TiCl₂, добавляли по каплям 12 ммоль (1.91 г) PhBCl₂ и перемешивали в течение 1 ч. Затем реакционную массу нагревали до комнатной температуры (~ 20–22 °C) и перемешивали еще 14 ч, после чего центрифугировали, диэтиловый эфир и непрореагировавшие исходные олефины отгоняли и анализировали методом ЯМР.

1,2-Дифенилбориран (29d)

Нестабильное соединение **29b** охарактеризовано методом ЯМР в растворе без выделения в индивидуальном виде, поэтому его выход (80 %) соответствует сумме выходов продуктов трансформации (спиртов **13c**, **14c** и **15c**) Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 7.01–7.30 (м, 5H, Ph), 7.35–7.60 (м, 3H, Ph), 8.21 (м, 2H, Ph). Спектр ЯМР


 13 С (CDCl₃, м.д., 100.62 МГц): δ = 125.30, 126.99, 127.10, 128.89, 131.90, 136.15, 144.10. Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 30.51. [В спектрах ЯМР 1 Н и 13 С сигналы протонов и углеродных атомов, связанных с атомом бора (B–C²H–, B–C 3 H₂ B–С Ph) не проявляются].

2-(2-Метилфенил)-1-фенилбориран (29е)

Нестабильное соединение **29e** охарактеризовано методом ЯМР в растворе без выделения в индивидуальном виде. Конверсия до 55% (по данным спектроскопии ЯМР 1 Н) Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 2.25 (уш. с, 3H, MePh), 6.50–6.75, 8.15–8.30 (м, 9H, Ar). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 19.19, 120.68, 125.91,

126.26, 126.57, 128.36, 128.88, 130.45, 135.95, 142.57. Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 30.83. [В спектрах ЯМР 1 Н и 13 С сигналы протонов и углеродных атомов, связанных с атомом бора (B–C 2 H–, B–C 3 H₂ B–C Ph) не проявляются].

2-(3-Метилфенил)-1-фенилбориран (29f)

Нестабильное соединение **29f** охарактеризовано методом ЯМР в растворе без выделения в индивидуальном виде. Конверсия до 47% (по данным спектроскопии ЯМР 1 Н) Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 2.34–2.56 (уш. c, 3H, MePh), 6.70–6.85, 8.10–8.25 (м, 9H, Ar). Спектр ЯМР 13 С (CDCl₃, м.д.,

100.62 МГц): δ = 22.36, 124.24, 126.03, 126.14, 127.98, 128.45, 130.57, 135.60, 138.80, 145.10. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 31.03. [В спектрах ЯМР ¹Н и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (B–C²H–, B–C³H₂ B–C^{Ph}) не проявляются].

2-(4-Метилфенил)-1-фенилбориран (29g)

Нестабильное соединение **29g** охарактеризовано методом ЯМР в растворе без выделения в индивидуальном виде. Конверсия до 53% (по данным спектроскопии ЯМР 1 Н) Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 2.44, 2.48 (уш. c, 3H, MePh), 7.10–7.70, 8.10–8.30 (м, 9H, Ar). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 21.58, 123.44, 127.22, 127.63, 133.78,

134.80, 138.08, 144.32. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 30.98. [В спектрах ЯМР ¹Н и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (B–C²H–, B–C³H₂ B–C^{Ph}) не проявляются].

3.8 Синтез пиридиния 2-гексил-1-фенилбориран-1-ида (29b·Py)

В стеклянный реактор (10 мл) в атмосфере сухого аргона при перемешивании последовательно загружали при 0°С 5 мл Et₂O, 1 ммоль (0.11 г) окт-1-ена, 2 ммоль (0.05 г) порошка Мg, 0.2 ммоль (0.05 г) Ср₂TiCl₂, добавляли по каплям 1.2 ммоль (0.19 г) PhBCl₂ и перемешивали в течение 1 ч. Затем реакционную массу нагревали до комнатной температуры (~ 20–22 °C) и перемешивали еще 14 ч, после чего центрифугировали, диэтиловый эфир отгоняли, добавляли эквимольное количество пиридина 1.2 ммоль (0.1 г) и бориран анализировали методом ЯМР в CDCl₃.

Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): $\delta = 0.68-0.85$ (м, 3H, C⁹H₃), 1.01–1.50 (м, 8H, C⁵⁻⁸H₂), 7.00–7.30, 7.40–7.60, 7.97–8.05, 8.53–8.85 (м, 10H, Ру, Рh). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): $\delta = 13.69$, 22.25, 29.00, 29.01, 31.50, 124.29, 127.09, 129.09, 133.18, 136.14,

148.50. Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 2.10. [В спектрах ЯМР

 1 Н и 13 С сигналы протонов и углеродных атомов, связанных с атомом бора (B–C 2 H–, B–С 3 H₂ B–С Ph), а также сигналы С 4 H₂ не проявляются].

3.9 Синтез 2-гексил-1-фенилборирана (29b) в ТГФ

В стеклянный реактор (10 мл) в атмосфере сухого аргона при перемешивании последовательно загружали при 0° С 5 мл ТГФ, 1 ммоль (0.112 г) окт-1-ена, 2 ммоль (0.05 г) порошка Mg, 0.2 ммоль (0.05 г) Ср₂TiCl₂, добавляли по каплям 1.2 ммоль (0.19 г) PhBCl₂ и перемешивали в течение 1 ч. Затем реакционную массу нагревали до комнатной температуры (~25 °C) и перемешивали еще 14 ч, после чего центрифугировали, часть ТГФ отгоняли и анализировали бориран методом ЯМР в CDCl₃.

Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): $\delta = 0.90-1.06$ (м, 3H, C^9H_3), 1.20–1.43 (м, 8H, $C^{5-8}H_2$), 1.53–2.05 (м, ТГФ), 3.50–3.68 (м, ТГФ), 6.90–7.92 (м, 4H, Ph), 8.14–8.35 (м, 1H, Ph). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): $\delta = 14.16$, 22.70, 25.17 (ТГФ), 29.35,

29.60, 31.95, 69.45 (ТГФ), 127.64, 130.72, 133.35. Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): $\delta = 2.84$. [В спектрах ЯМР 1 Н и 13 С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С 2 Н–, В–С 3 Н₂ В–С Ph), а также сигналы С 4 Н₂ не проявляются].

3.10 Синтез диметилсульфидных комплексов дихлорборанов

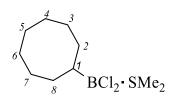
Дихлорбораны RBCl₂ (R = n-Pent, n-Hex, Ph(CH₂)₂, Naphth(CH₂)₂, cyclo-Oct, exo-norbornyl) были синтезированы в виде комплексов с SMe₂ согласно методике [126]. В стеклянный реактор в атмосфере аргона при перемешивании последовательно загружают при комнатной температуре (~ 20–22 °C) (12 ммоль) α -олефина и 1.385 мл (12 ммоль) НВCl₂·SMe₂ и перемешивают в течение 3 часов. Затем продукт реакции перегоняли в

потоке аргона. Спектральные данные для данных комплексов были получены впервые.

н-Пентилдихлорборан-диметилсульфидный комплекс

Выход: 75% (1.61 г, 7.5 ммоль). Бесцветная дымящаяся на воздухе жидкость,

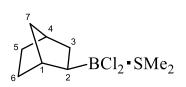
т.кип. 161 °C. Найдено, (%): С 38.99; Н 7.78.


 $C_7H_{17}BCl_2S$. Вычислено, (%): С 39.07; Н 7.91. ИК спектр, v, см⁻¹: 2958, 2928, 2871, 2861, 1459, 1383, 1220, 1180, 1038, 908, 824, 733, 649. Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 0.84–0.94 (м, 5H, B–CH₂, CH₃), 1.25–1.36 (м, 4H, 2CH₂), 1.37–1.48 (м, 2H, CH₂), 2.38 (уш.с, 6H, Me₂S). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 13.97, 19.58 (уш., Me₂S), 22.44, 24.90, 26.06 (уш., B–CH₂), 34.61. Спектр ЯМР ¹¹B (CDCl₃, м.д., 128.33 МГц): δ = 11.66.

н-Гексилдихлорборан-диметилсульфидный комплекс

Выход: 71% (1.63 г, 7.1 ммоль). Бесцветная дымящаяся на воздухе жидкость, т.кип. 169 °C. Найдено, (%): С 41.75; Н 8.50. С₈H₁₉BCl₂S. Вычислено, (%): С 41.92; Н 8.30.

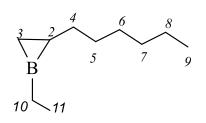
Ик спектр, v, см⁻¹: 2960, 2935, 2927, 2870, 2861, 1455, 1458, 1380, 1210, 1221, 1185, 1050, 900, 833, 820, 730, 699. Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 0.86–0.94 (м, 5H, B–CH₂, CH₃), 1.25–1.38 (м, 6H, 3CH₂), 1.40–1.48 (м, 2H, CH₂), 2.38 (уш.с, 6H, Me₂S). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 14.12, 19.48 (уш., Me₂S), 22.62, 25.29, 25.77 (уш., B–CH₂), 31.76, 32.17. Спектр ЯМР ¹¹B (CDCl₃, м.д., 128.33 МГц): δ = 10.87.


Циклооктилдихлорборан-диметилсульфидный комплекс

Выход: 67% (1.71 г, 6.7 ммоль). Бесцветная дымящаяся на воздухе жидкость, т.кип. 90 °С (10 мм рт. ст.). Найдено, (%): С 47.12; Н 8.28. $C_{10}H_{21}BCl_2S$. Вычислено, (%): С 47.05; Н 8.23. ИК спектр, ν , см⁻¹:

2870, 2848, 2350, 2218, 2111, 1461, 1401, 1355, 1248, 1211, 1209, 1180, 1135, 1039, 960, 850, 801, 730, 621. Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.90–1.02 (м, 1H, B–CH), 1.41–1.67 (м, 10H, 2CH^A, 4CH₂), 1.67–1.84 (м, 4H, 2CH^B, CH₂), 2.40 (уш.с, 6H, Me₂S). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МНz): δ = 19.66 (уш., Me₂S), 26.47, 27.23, 27.35, 29.50, 30.03 (уш., В–СН). Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 13.30.

экзо-2-Норборнилдихлорборан -диметилсульфидный комплекс


Выход: 55% (1.31 г, 5.5 ммоль). Бледножелтая дымящаяся жидкость, т.кип. 112 °С (40 мм. рт. ст.). Найдено, (%): С 44.98; Н 7.19. С₉H₁₇BCl₂S. Вычислено, (%): С 45.18; Н 7.11 ИК спектр, ν , см⁻¹:

2951, 2869, 2359, 2253, 1454, 1372, 1265, 1219, 1199, 1149, 1108, 1033, 950, 908, 834, 735, 650, 546. Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.86 (т, 1H, B–C²H, J = 8.2 Гц), 1.06 (д, 1H, C⁷H⁴, ^{2}J = 9.5 Гц), 1.16–1.19 (м, 2H, C⁵H⁴, C⁶H⁴), 1.29–1.36 (м, 1H, C³H⁴), 1.46–1.57 (м, 3H, C³H^B, C⁵H^B, C⁶H^B), 1.70 (дт, 1H, C⁷H^B, ^{4}J = 1.9 Гц), 2.25 (уш.с, 1H, C⁴H), 2.26 (уш.с, 1H, C¹H), 2.36 (уш.с, 6H, Me₂S). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 20.25 (уш., Me₂S), 28.68 (C⁵), 33.67 (C⁶), 34.38 (C³), 36.42 (уш., B–C²H), 36.73 (C⁴), 36.89 (C⁷), 39.36 (C¹). Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 12.15.

3.11 Синтез 1-этил-2-алкилбориранов

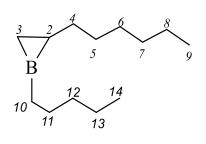
Стеклянный реактор (50 мл) в атмосфере сухого аргона при 0°С, загружали при перемешивании ТГФ 30 мл, Cp_2TiCl_2 2 ммоль, (0.498 г), магния (порошок) 20 ммоль (0.486 г), соответствующий α -олефин 10 ммоль и $EtBCl_2$ 12 ммоль. $EtBCl_2$ синтезировали в соответствии со способами, описанными в [125–127]. Температуру повышали до 55–60 °С и смесь перемешивали 5 ч. Затем реакционную смесь охлаждали до комнатной температуры (~ 20 –22 °С) и перемешивали еще 16 ч. Затем реакционную смесь центрифугировали, растворитель выпаривали и остаток перегоняли при пониженном давлении в потоке аргона.

1-Этил-2-гексилбориран (30а)

Выход: 82% (1.25 г, 8.2 ммоль). Светложелтая жидкость, т.кип. 72 °С (10 мм рт. ст.). Найдено, (%): С 78.99; Н 13.64. С $_{10}$ Н $_{21}$ В. Вычислено, (%): С 78.91; Н 13.81. ИК спектр, ν , см $^{-1}$: 2960, 2901, 2855, 1490, 1410, 1350, 1211,

1101, 1050, 980, 905, 890, 765, 725, 693. Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): $\delta = 0.85$ –0.98 (м, 6H, CH₃, B–CH₂–C<u>H₃</u>), 1.22–1.52 (м., 8H, 4CH₂). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): $\delta = 7.92$ (B–CH₂–<u>C</u>H₃), 14.06, 22.63, 29.25, 29.34, 31.80. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): $\delta = 31.34$. [В спектрах ЯМР ¹H и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С²H–, В–С³H₂–, В–С¹⁰H₂), а также сигналы С⁴H₂ не проявляются].

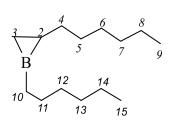
1-Этил-2-октилбориран (30b)


Выход: 80% (1.44 г, 8.0 ммоль). Светло-желтая жидкость, т.кип. 86 °С (10 мм рт. ст.). Найдено, (%): С 79.77; Н 13.82. С₁₂Н₂₅В. Вычислено, (%): С 79.94; Н 13.88. ИК спектр, ν , см⁻¹: 2955, 2854, 1481, 1460,

1415, 1333, 1219, 1119, 1076, 1051, 968, 910, 895, 793, 762, 722, 665. Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.87–0.95 (м, 6H, CH₃, B–CH₂–C<u>H</u>₃), 1.20–1.46 (м, 12H, 6CH₂). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 7.83 (B–CH₂–<u>C</u>H₃), 14.06, 22.69, [(29.38, 29.62, 29.67) 4С], 31.94. Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 31.36. [В спектрах ЯМР 1 Н и 13 С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С 2 Н–, В–С 3 Н₂–, В–С 12 Н₂), а также сигналы С 4 Н₂ не проявляются].

3.12 Синтез 1,2-диалкилбориранов

В стеклянный реактор (50 мл) в атмосфере сухого аргона при 0° С загружали при перемешивании ТГФ 30 мл, Cp_2TiCl_2 2 ммоль (0.498 г), Mg (порошок) 20 ммоль (0.486 г), соответствующий α -олефин 10 ммоль и RBCl₂*SMe₂ 12 ммоль. Температуру повышали до 55–60°С и смесь перемешивали 5 ч. Затем реакционную смесь охлаждали до комнатной температуры (~ 20 –22 ° С) и перемешивали еще 16 ч. Затем реакционную смесь центрифугировали, растворитель выпаривали и остаток перегоняли при пониженном давлении в токе аргона. В реакциях использовали дихлориды бора в виде комплексов с SMe₂ [125], поскольку они более устойчивы по сравнению с RBCl₂. Выделенные вакуумной перегонкой борираны не содержали SMe₂ в своей структуре.

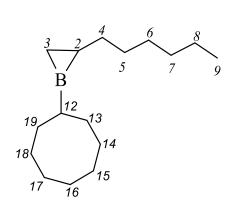

1-Пентил-2-гексилбориран (30с)

Выход: 77% (1.50 г, 7.7 ммоль). Светложелтая жидкость, т.кип. 107 °С (10 мм рт. ст.). Найдено, (%): С 80.20; Н 13.93. С₁₃Н₂₇В. Вычислено, (%): С 80.35; Н 13.91. ИК спектр, ν , см⁻¹: 2940, 2920, 2833, 2801, 1501, 1490, 1315, 1310, 1056, 1015, 1009, 932, 850, 724, 650. Спектр

ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 0.90 (т, 6H, 2CH₃, J = 6.4 Гц), 1.10–1.50 (м, 12H, 6CH₂), 1.50–1.70 (м, 2H, CH₂). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 14.29 (2C), 22.68, 22.87, [(29.50, 29.59) 3C], 32.05, 32.14. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 31.70. [В спектрах ЯМР ¹H и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С²H–, В–С³H₂–, В–С¹⁰H₂), а также сигналы С⁴H₂ не проявляются].

1,2-Дигексилбориран (30d)

Выход: 67% (1.40 г, 6.7 ммоль). Светло-желтая жидкость, т.кип. 80 °С (2 мм рт. ст.). Найдено, (%): С 80.90; Н 13.99. С₁₄Н₂₉В. Вычислено, (%): С 80.70; Н 13.93. ИК спектр, ν , см⁻¹: 2955, 2924, 2855, 1458, 1415, 1332, 1077, 1055, 1029, 909, 892, 800, 723, 665. Спектр


ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 0.84–0.90 (м, 6H, 2CH₃), 1.27–1.42 (м, 14H, 7CH₂), 1.50–1.65 (м, 2H, CH₂). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 14.02, 14.08, 22.64 (2C), [(29.27, 29.38) 3C], 31.62, 31.83, 31.94. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МНz): δ = 31.25. [В спектрах ЯМР ¹H и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С²H–, В–С³H₂–, В–С¹⁰H₂), а также сигналы С⁴H₂ не проявляются].

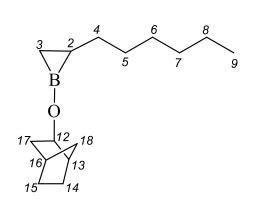
1-Пентил-2-октилбориран (30е)

Выход: 74% (1.64 г, 7.4 ммоль). Светложелтая жидкость, т.кип. 85 °С (2 мм рт. ст.). Найдено, (%): С 80.96; Н 13.96. С₁₅Н₃₁В. Вычислено, (%): С 81.00; Н 13.95. ИК спектр, v, см⁻¹: 2947, 2935, 2923, 2855, 1460, 1458,

1450, 1330, 1081, 1054, 1033, 1032, 990, 908, 892, 810, 727, 631. Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.85–0.95 (м, 6H, 2CH₃), 1.23–1.60 (м, 18H, 9CH₂). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 14.09 (2C), 22.46, 22.67, [(29.29, 29.35, 29.61, 29.65) 5C], 31.90 (2C). Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 30.66. [В спектрах ЯМР 1 Н и 13 С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С 2 Н–, В–С 3 Н₂–, В–С 12 Н₂), а также сигналы С 4 Н₂ не проявляются].

1-Циклооктил-2-гексилбориран (35а)

Выход: 70% (1.64 г, 7.0 ммоль). Светложелтая жидкость, т.кип. 110 °С (1 мм рт. ст.). Найдено, (%): С 81.99; Н 13.21. С₁₆Н₃₁В. Вычислено, (%): С 81.97; Н 13.23. Спектр ЯМР ¹Н (CDCl₃, м.д., 400.13 МГц): δ = 0.90 (т, 3H, CH₃, J = 6.2 Гц), 1.20–1.80 [м, 22H, 4CH₂ (алкил), 7CH₂ (циклооктил)]. Спектр ЯМР ¹³С


(CDCl₃, м.д., 100.62 МГц): δ = 14.11, 22.68, 25.54 (циклооктил), 26.65 (циклооктил), 26.83 (циклооктил), 29.37, 29.70, 30.78 (циклооктил), 31.92. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 32.01. [В спектрах ЯМР ¹Н и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С²Н–, В–С³Н₂–, В–С¹²Н), а также сигналы С⁴Н₂ не проявляются].

1-Циклооктил-2-октилбориран (35b)

Выход: 68% (1.78 г, 6.8 ммоль). Светло-желтая жидкость, т.кип. 120 °С (1 мм рт. ст.). Найдено, (%): С 82.29; Н 13.33. С₁₈H₃₅B. Вычислено, (%): С 82.35; Н 13.34. Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 0.89 (т, 3H, CH₃, J = 6.4 Гц), 1.22–1.89 [м, 26H, 6CH₂ (алкил),

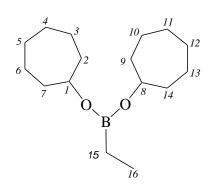
7СН₂ (циклооктил)]. Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 14.09, 22.65, 25.40 (циклооктил), 26.71 (циклооктил), 26.91 (циклооктил), [29.25, 29.37, 29.70 (4С)], 31.05 (циклооктил), 31.86. Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 32.38. [В спектрах ЯМР 1 Н и 13 С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С 2 Н–, В–С 3 Н₂–, В–С 12 Н), а также сигналы С 4 Н₂ не проявляются].

1-(Бицикло[2.2.1] гепт-2-илокси)-2-гексилбориран (39а)

Выход: 75% (1.76 г, 7.5 ммоль). Желтая маслянистая жидкость, т.кип. 103 °C (1 мм рт. ст.). Найдено, (%): С 82.49; Н 12.23. С₁₅H₂₇B. Вычислено, (%): С 82.50; Н 12.37. Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 0.90 (т, 3H, CH₃, J = 6.2 Гц), 1.00–1.19 (м, 3H, 3CH), 1.20–1.75 (м, 15H, 3CH, 6CH₂),

2.15 (м, 1H, CH), 2.23 (м, 1H, CH), 4.02 (м, 1H, O–CH). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 14.08 (алкил), 22.65 (алкил), 24.36, 28.35, 29.28 (алкил), 29.36 (алкил), 31.83 (алкил), 31.90 (алкил), 34.82, 35.38, 42.13, 43.64, 75.25. Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 30.92. [В спектрах ЯМР 14 Н и 13 С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С 2 Н–, В–С 3 Н₂—) не проявляются].

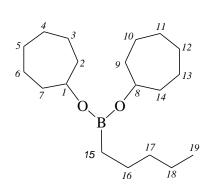
1-(Бицикло[2.2.1]гепт-2-илокси)-2-октилбориран (39b)


Выход: 72% (1.89 г, 7.2 ммоль). Желтая маслянистая жидкость, т.кип. 120 °C (1 мм рт. ст.). Найдено, (%): С 82.81; Н 12.53. С₁₇Н₃₁В. Вычислено, (%): С 82.85; Н 12.59. Спектр ЯМР ¹Н (CDCl₃, м.д., 400.13 МГц): δ = 0.80–0.95 (м, 3H, CH₃), 1.00–1.80 (м, 24H,

2СН, 11СН₂), 4.02 (м, 1H, 2СН–О). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 14.08 (алкил), 22.65 (алкил), 24.27, 28.40, [29.21, 29.62 (4С, алкил)], 31.83 (алкил), 32.60 (алкил), 34.80, 35.37, 42.20, 43.74, 74.95. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 30.91. [В спектрах ЯМР ¹Н и ¹³С сигналы протонов и углеродных атомов, связанных с атомом бора (В–С²Н–, В–С³Н₂–) не проявляются].

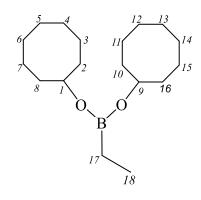
3.13 Синтез дициклоалкилборанатов

В стеклянный реактор (50 мл) в атмосфере сухого аргона при 0°С загружали при перемешивании 30 мл $T\Gamma\Phi$, 2 ммоль (0.498 г) Cp_2TiCl_2 , 20 (0.486)Mg (порошок), 10 ммоль циклического олефина ммоль L) (циклогептен, иис-циклооктен, норборнен, иис/транс-циклододецен) и 12 ммоль $EtBCl_2$ (или *н*-PentBCl₂). $EtBCl_2$ синтезировали в соответствии с методиками [125-127]. n-PentBCl₂ синтезировали в соответствии со способом [120]. Температуру повышали до 50°C и смесь перемешивали 5 ч. Затем реакционную смесь охлаждали до комнатной температуры и перемешивали еще 16 ч. К реакционной смеси добавляли воду (2 мл) и смесь перемешивали в течение 3 ч. Органический слой отделяли, водный слой экстрагировали диэтиловым эфиром (2 × 10 мл), экстракты объединяли с органической фазой. Растворитель выпаривали и остаток перегоняли при пониженном давлении.


Дициклогептилэтилборонат (41а)

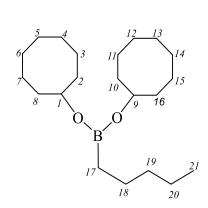
Выход: 94% (1.25 г, 4.7 ммоль). Желтая маслянистая жидкость, т.кип. 150 °C (5 мм рт. ст.). Найдено, (%): С 72.55; Н 10.91. С₁₆Н₂₉ВО₂. Вычислено, (%): С 72.73; Н 10.98. ИК спектр, ν , см⁻¹: 2927, 2858, 2687, 1655, 1608, 1461, 1336, 1221, 1172, 1108, 1025, 913, 834, 821, 762. Спектр

ЯМР ¹Н (CDCl₃, м.д., 400.13 МГц): δ = 0.72 (квинтет, 2H, B–С<u>Н</u>₂–СН₃, J = 7.9 Гц), 0.93 (т, 3H, B–СН₂–С<u>Н</u>₃, J = 7.6 Гц), 1.35–1.45 (м, 4H, циклогептил), 1.52–1.73 (м, 16H, циклогептил), 1.75–1.85 (м, 4H, циклогептил), 4.22–4.28 (м, 2H, 2CH–O). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 5.77 (уш., В–С<u>Н</u>₂–С<u>Н</u>₃), 8.27 (В–С<u>Н</u>₂–С<u>Н</u>₃), 22.83, 28.18, 36.67, 72.67. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 30.65.


Дициклогептилпентилборонат (41b)

Выход: 90% (1.39 г, 4.5 ммоль). Желтая маслянистая жидкость, т.кип. 152 °С (1 мм рт. ст.). Найдено, (%): С 74.59; Н 11.23. С₁₉Н₃₅ВО₂. Вычислено, (%): С 74.51; Н 11.44. ИК спектр, ν , см⁻¹: 2911, 2830, 2718, 1428, 1380, 1300, 1210, 1195, 1170, 1107, 1005, 955, 830, 797, 720, 685. Спектр ЯМР ¹Н (CDCl₃, м.д., 400.13 МГц): δ =

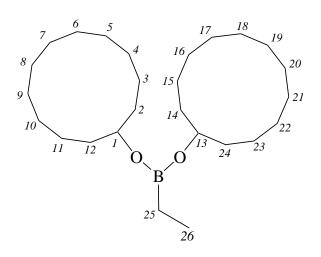
0.71 (т, 2H, B–CH₂, J = 7.8 Гц), 0.90 (т, 3H, CH₃, J = 6.9 Гц), 1.23–1.42 (м, 6H, 3CH₂, алкил), 1.42–1.52 (м, 4H, 4CH, циклогептил), 1.55–1.84 (м, 20H, 12CH, 4CH₂, циклогептил), 4.20–4.30 (м, 2H, 2CH–O). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 13.90 (уш., B–CH₂, алкил), 14.18 (алкил), 22.64 (алкил), 23.05 (циклогептил), 24.20 (алкил), 28.27 (циклогептил), 34.97 (алкил), 36.73 (циклогептил), 72.65 (О–CH). Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 31.99.


Дициклооктилэтилборонат (43а)

Выход: 96% (1.41 г, 4.8 ммоль). Желтая маслянистая жидкость, т.кип. 160 °С (5 мм рт. ст.). Найдено, (%): С 73.55; Н 11.91. С₁₈Н₃₅ВО₂. Вычислено, (%): С 73.40; Н 11.89. ИК спектр, v, см⁻¹: 2923, 2854, 2695, 1712, 1466, 1447, 1390, 1342, 1311, 1263, 1216, 1181, 1117, 1053, 991, 908, 845, 805, 762,

736, 706, 677, 648. Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 0.72 (квинтет, 2H, B–С<u>Н</u>₂–СН₃, J = 7.6 Гц), 0.93 (т, 3H, B–СН₂–С<u>Н</u>₃, J = 7.8 Гц), 1.45–1.60 (м, 16H, циклооктил), 1.60–1.80 (м, 12H, циклооктил), 4.22–4.27 (м, 2H, 2CH–O). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 5.92 (уш., В–СН₂–СН₃), 8.27 (В–СН₂–СН₃), 22.81, 25.38, 27.41, 34.15, 72.23. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 30.76.

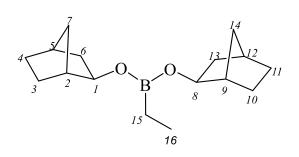
Дициклооктилпентилборанат (43b)



Выход: 92% (1.55 г, 4.6 ммоль). Желтая маслянистая жидкость, т.кип. 171 °C (1 мм рт. ст.). Найдено, (%): С 74.75; Н 11.98. С₂₁Н₄₁ВО₂. Вычислено, (%): С 74.92; Н 12.19. ИК спектр, v, см⁻¹: 2902, 2838, 2704, 1455, 1400, 1385, 1312, 1260, 1205, 1171, 1125, 998, 975, 831, 800, 766, 727, 680, 650. Спектр ЯМР ¹Н (CDCl₃, м.д., 400.13

МГц): δ = 0.70 (т, 2H, B–CH₂, J = 7.8 Гц), 0.89 (т, 3H, CH₃, J = 6.8 Гц), 1.24–1.42 (м, 6H, 3CH₂, алкил), 1.42–1.62 (м, 16H, 4CH, 6CH₂, циклооктил), 1.65–1.78 (м, 12H, 4CH, 4CH₂, циклооктил), 4.17–4.32 (м, 2H, 2CH–O). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 13.50 (уш., B–CH₂, алкил), 14.09 (алкил), 22.58 (алкил), 22.80 (циклооктил), 24.16 (алкил), 25.39 (циклооктил),

27.43 (циклооктил), 34.13 (циклооктил), 34.90 (алкил), 72.23 (О–СН). Спектр ЯМР 11 В (СDСl₃, м.д., 128.33 МГц): δ = 31.36.


Дициклододецилпентилборанат (45а)

Выход: 52% (1.06 г, 2.6 ммоль). Желтая маслянистая жидкость, т.кип. 178 °C (0.1 мм рт. ст.). Найдено, (%): С 76.91; Н 12.48. С₂₆Н₅₁ВО₂. Вычислено, (%): С 76.85; Н 12.56. ИК спектр, v, см⁻¹: 2927, 2863, 1694, 1577, 1543, 1482, 1415, 1333, 1222, 1076, 1049, 906, 797, 763, 717, 600. Спектр ЯМР ¹Н (CDCl₃, м.д., 400.13

МГц): δ = 0.75 (квинтет, 2H, B–CH₂–CH₃, J = 6.7 Гц), 0.92 (т, 3H, В –CH₂ – CH₃, J = 8.0 Гц), 1.25–1.50 (м, 28H, циклододецил), 1.51–1.75 (м, 16H, циклододецил), 3.97–4.08 (м, 2H, 2CH–O). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 5.34 (уш., B–CH₂–CH₃), 7.90 (В–CH₂-CH₃), 20.91, 23.22, 23.40, 23.76, 24.16, 32.38, 69.38. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 30.64.

Дибицикло[2.2.1] гепт-2-илэтилбораната (49а)

Выход: 90% (1.18 г, 4.5 ммоль). Желтая маслянистая жидкость, температура кипения 140 °C (5 мм. рт. ст.). Найдено, (%): С 73.15; Н 10.51. С₁₆Н₂₇ВО₂. Вычислено, (%): С 73.23; Н 10.30. ИК спектр, v, см⁻¹: 2916, 2900,

2859, 2831, 2189, 1470, 1430, 1388, 1335, 1263, 1233, 1201, 1150, 1113, 1063,

980, 855, 790, 760, 726, 695, 670. Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 0.73 (квинтет, 2H, B–CH₂, J = 8.1 Гц), 0.87–0.95 (м, 3H, B–CH₂–C<u>H₃</u>), 1.00–1.12 (м, 4H, 4CH), 1.25–1.52 (м, 8H, 4CH, 2CH₂), 1.57–1.67 (м, 4H, 4CH), 2.12 (уш.с, 2H, 2CH), 2.23 (уш.с, 2H, 2CH), 3.85–4.15 (м, 2H, 2CH–O). Спектр ЯМР ¹³C (CDCl₃, м.д., 100.62 МГц): δ = 5.43 (уш., B–CH₂), 7.94 (8.00) (В–CH₂–<u>C</u>H₃), 24.33, 28.41, 34.78, 35.38, 42.23 (42.30), 43.70 (43.75), 75.25. Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 30.94.

Дибицикло[2.2.1] гепт-2-илпентилборанат (49b)

Выход: 86% (1.31 г, 4.3 ммоль). Желтая маслянистая жидкость, т.кип. 145 °С (1 мм рт. ст.). Найдено, (%): С 74.65; Н 10.91. С₁₉Н₃₃ВО₂. Вычислено, (%): С 74.93; Н 10.84. ИК спектр, ν , см⁻¹: 2910, 2850, 2828, 2190, 1450, 1425, 1398, 1359, 1300, 1269, 1235, 1160, 1107, 1065, 970, 875, 795, 750,

699, 660, 637. Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.65–1.00 (м, 5H, B–CH₂, CH₃), 1.04–1.21 (м, 22H, 5CH₂, 12CH), 2.05–2.25 (м, 4H, 4CH), 3.70–3.85 (м, 2H, 2CH–O). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 14.03 (алкил), 15.89 (уш., B–CH₂, алкил), 22.42 (22.52) (алкил), 23.72 (23.83) (алкил), 24.28, 28.36, 34.78, 34.83 (алкил), 35.35, 42.25 (42.32), 43.73 (43.77), 75.24 (75.30). Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 30.96.

3.14 Синтез транс-1-алкенил(хлордиизопропиламино)боран

В стеклянный реактор (50 мл) в атмосфере сухого аргона при 0°C загружали при перемешивании ТГФ 30 мл, 2 ммоль (0.498 г) Cp_2TiCl_2 , 20 ммоль (0.486 г) Mg (порошок), 10 ммоль соответствующего олефина и 12 ммоль (1.819 г) *i*-Pr₂NBCl₂. Температуру повышали до комнатной температуры (~ 20–22 °C) и смесь перемешивали в течение 8 ч. Затем

реакционную смесь центрифугировали, растворитель выпаривали и остаток перегоняли при пониженном давлении в токе аргона.

N-{Xлор[(E)-2-(4-метилфенил)венилборил}-N-изопропилпропан-2амин (60a)

Выход: 95% (2.50 г, 9.5 ммоль). Бесцветная маслянистая жидкость, т.кип. 125 °C (1 мм рт. Ст.). ИК спектр, *v*, см⁻¹: 2972, 2927, 2869, 2479, 2452, 1621, 1568, 1510, 1474, 1449, 1367, 1263, 1204, 1134,

1084, 1042, 989, 878, 840, 803, 561.Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 1.22 (д, 6H, *i*-Pr, J = 6.8 Гц), 1.25 (д, 6H, *i*-Pr, J = 6.4 Гц), 2.38 (с, 3H, Ar-C<u>H</u>₃), 3.40 (гепт, 1H, N–CH, J = 6.7 Гц), 4.16 (гепт, 1H, N–CH, J = 6.7 Гц), 6.79 (дд, 1H, B–CH=, ${}^2J_{\rm BH}$ = 6.6, 3J = 17.4 Гц), 7.12–7.20 (м, 3H, B–CH=С<u>H</u>, 2CH_{Ar}), 7.40–7.47 (м, 2H, 2CH_{Ar}). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): δ = 21.3 (CH₃–Ar), 22.8 (*i*-Pr), 26.4 (*i*-Pr), 46.3 (N–CH), 49.2 (N–CH), 126.9, 127.5 (B–CH=), 129.2, 136.1, 138.0, 150.6 (B–CH=<u>C</u>H). Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 37.0.

N-{хлор[(E)-2-(3-метилфенил)винил]борил}-N-изопропилпропан-2-амин (60b)

$$\begin{array}{c|c}
Cl & I4 \\
\hline
B & N & I3 \\
\hline
II & I2
\end{array}$$

Выход: 95% (2.5 г, 9.5 ммоль). Бесцветная маслянистая жидкость, т.кип. 120 °C (1 мм рт. ст.). ИК спектр, *v*, см⁻¹: 2970, 2935, 2899, 2450, 1633, 1578, 1537, 1481, 1450, 1370, 1261, 1258, 1199, 1125, 1055, 1032, 980, 871, 850, 651.

Спектр ЯМР ¹H (CDCl₃, м.д., 400.13 МГц): δ = 1.10–1.30 (м, 12H, 2 *i*-Pr), 2.40 (с, 3H, C<u>H</u>₃–Ar), 3.42 (гепт, 1H, N–CH, J = 6.7 Гц), 4.18 (гепт, 1H, N–CH, J =

6.7 Гц), 6.84 (дд, 1H, B–CH=, ${}^2J_{\rm BH}=5.0~^3J=18.4~$ Гц), 7.10–7.50 (м, 5H, B–CH=C<u>H</u>, 4CH_{Ar}). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): $\delta=21.3$ (CH₃–Ar), 22.7 (*i*-Pr), 26.3 (*i*-Pr), 46.3 (N–CH), 49.2 (N–CH), 124.1, 127.4, 128.3, 128.7 (B-CH=), 128.8, 137.9, 138.7, 150.7 (B–CH=<u>C</u>H). Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): $\delta=36.7$.

N-{Xлор[(E)-2-(2-метилфенил)венил]борил}-N-изопропилпропан-2амин (60c)

Выход: 93% (2.45 г, 9.3 ммоль). Бесцветная маслянистая жидкость, т.кип. 116 °C (1 мм рт. ст.). ИК спектр, *v*, см⁻¹: 2991, 2988, 2871, 2850, 2455, 2430, 1648, 1591, 1527, 1495, 1477, 1451, 1380, 1258, 1230, 1115, 1039, 988,

890, 820, 755, 650. . Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 1.20 (д, 6H, i-Pr, J = 6.7 Гц), 1.24 (д, 6H, i-Pr, J = 6.6 Гц), 2.35 (с, 3H, C_{H_3} -Ar), 3.42 (гепт, 1H, N-C 10 H, J = 6.8 Гц), 4.25 (гепт, 1H, N-C 13 H, J = 6.8 Гц), 6.82 (дд, 1H, B-CH=, $^2J_{\rm BH}$ = 6.0, 3J = 17.4 Гц), 7.13–7.28 (м, 3H, C^2 H, 2CH_{Ar}), 7.45–7.55 (м, 2H, 2CH_{Ar}). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): δ = 19.9 (CH₃-Ar), 22.5 (i-Pr), 26.9 (i-Pr), 46.5 (N-CH), 49.6 (N-CH), 125.3, 126.6, 127.9, 128.8 (B-CH=), 129.7, 136.7, 138.2, 151.5 (B-CH= \underline{C} H). Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 37.0.

N-(Хлор[(Е)-2-фенилвенил]борил $\}$ -N-изопропилпропан-2-амин (60d)

$$\begin{array}{c|c}
C1 & 14 \\
\hline
B & 12 \\
\hline
 & 10 \\
\hline
 & 11
\end{array}$$

Выход: 69% (1.72 г, 6.9 ммоль). Бесцветная маслянистая жидкость, т.кип. 113 °C (1 мм рт ст). ИК спектр, *v*, см⁻¹: 2925, 2854, 2219, 1619, 1582, 1438, 1381, 1267, 1216, 1147, 1069, 1031, 993, 910, 807, 732, 645, 613. Спектр

ЯМР ¹Н (CDCl₃, м.д., 400.13 МГц): δ = 1.23 (д, 6H, i-Pr, J = 6.8 Гц), 1.26 (д,

6H, *i*-Pr, J = 6.8 Гц), 3.41 (гепт, 1H, N–CH, J = 6.8 Гц), 4.16 (гепт, 1H, N–CH, J = 6.8 Гц), 6.85 (дд, 1H, B–CH=, $^2J_{\rm BH} = 6.4$, $^3J = 17.6$ Гц), 7.15–7.45 (м, 4H, B–CH=C<u>H</u>, 3CH_{Ar}), 7.50–7.60 (м, 2H, 2CH_{Ar}). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): $\delta = 22.8$ (*i*-Pr), 26.3 (*i*-Pr), 46.4 (N–CH), 49.2 (N–CH), 126.9, 128.1, 128.5, 128.7 (B–CH=), 136.8, 150.5 (B–CH=<u>C</u>H). Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): $\delta = 36.7$.

N-{Хлор[(IE)-окт-1-ен-1-ил]борил}-N-изопропилпропан-2-амин (61а)

Выход: 36% (0.97 г, 3.6 ммоль). Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): $\delta = 0.87$ –0.94 (м, 3H, CH₃), 1.10–1.25 (м, 12H, 2 i-Pr), 1.25–1.48 (м, 8H, 4CH₂), 2.19 (квинтет, 2H,

В–СН=СН–С \underline{H}_2 , J=7.1 Гц), 3.48 (гепт, 1H, N–СH, J=6.7 Гц), 4.00 (гепт, 1H, N–СH, J=6.8 Гц), 6.03 (дд, 1H, B–СH, $^2J_{\rm BH}=6.6$, $^3J=17.2$ Гц), 6.34–6.43 (м, 1H, B–СH=С \underline{H}). Спектр ЯМР 13 С (CDCl₃, м.д., 100.62 МГц): $\delta=14.1$, 22.6, 22.7 (*i*-Pr), 26.3 (*i*-Pr), 28.9, 29.0, 31.8, 36.3, 46.0 (N–CH), 48.8 (N–CH), 129.7 (B–CH=), 155.7 (B–CH= \underline{C} H). Спектр ЯМР 11 B (CDCl₃, м.д., 128.33 МГц): $\delta=37.1$.

N-[Хлор(дец-1-ен-1-ил)борил]-N-изопропилпропан-2-амин (61b)

Выход: 35% (1.05 г, 3.5 ммоль). Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.88–0.98 (м, 3H, CH₃), 1.08–1.24 (м, 12H, 2 i-Pr),

1.24–1.51 (м, 12H, 6CH₂), 2.20 (к, 2H, B–CH=CH–CH₂, J = 7.0 Гц), 3.50 (гепт, 1H, N–CH, $J = 6.7 \, \Gamma$ ц), 4.02 (гепт, 1H, N–CH, $J = 6.7 \, \Gamma$ ц), 6.08 (дд, 1H, B–CH, $^2J_{\rm BH}=6.4,~^3J=17.4~\Gamma$ ц), 6.30–6.44 (м, 1H, B–CH=С<u>Н</u>). Спектр ЯМР 13 С (CDCl₃, M.J., 100.62 M Γ II): δ = 14.1, 22.6, 22.8 (*i*-Pr), 26.3 (*i*-Pr), 29.0, 29.1, 29.4, 29.9, 31.9, 36.5, 46.1 (N-CH), 48.7 (N-CH), 130.0 (B-CH=), 155.9 (B-CH=CH). Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 36.8.

N-[Хлор(октил)борил]-N-изопропилпропан-2-амин (62a)

Выход: 54% (1.48 г. 5.4 4 2 CI 14 12 ммоль). Спектр ЯМР 1 Н (CDCl₃, м.д., 400.13 МГц): $\delta = 0.80-0.86$ (м. 24 В $^{-}$ СН₂) 0.87-0.94 (м. 3H, CH₃). 2H, B-CH₂), 0.87-0.94 (M, 3H, CH₃), 1.10–1.25 (M, 12H, 2 *i*-Pr), 1.25–1.48

(м, 12H, 6CH₂), 3.28 (гепт, 1H, N–CH, $J = 6.7 \, \Gamma$ ц), 3.86 (гепт, 1H, N-CH, J = 6.8 Γ ц). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 М Γ ц): δ = 14.1, 18.5 (B–CH₂), 22.4 (*i*-Pr), 22.8, 26.6 (i-Pr), 26.8, 29.4, 29.7, 32.0, 32.7, 45.4 (N-CH), 48.4 (N-CH). Спектр ЯМР ¹¹В (CDCl₃, м.д., 128.33 МГц): δ = 42.1.

N-[Хлор(децил)борил]-N-изопропилпропан-2-амин (62b)

Выход: 53% (1.58 г., 2 В 16 5.3 ммоль). Спектр ЯМР 15 1 Н (CDCl₃, м.д., 400.13 МГц): δ = 0.81–0.85 (м, 2H, $B-CH_2$), 0.88-0.98 (M, 3H,

CH₃), 1.08–1.24 (м, 12H, 2 *i*-Pr), 1.24–1.51 (м, 16H, 8CH₂), 3.30 (гепт, 1H, N– CH, $J = 6.8 \, \Gamma$ ц), 3.88 (гепт, 1H, N–CH, $J = 6.8 \, \Gamma$ ц). Спектр ЯМР ¹³С (CDCl₃, м.д., 100.62 МГц): $\delta = 14.1$, 19.0 (B-CH₂), 22.3 (*i*-Pr), 22.5, 26.4 (*i*-Pr), 26.7, 29.2, 29.6, 29.7, 30.1, 32.0, 32.8, 45.5 (N–CH), 48.8 (N-CH). Спектр ЯМР 11 В (CDCl₃, м.д., 128.33 МГц): δ = 42.1.

3.15 Квантовохимические расчеты

Квантовохимические расчеты были проведены с использованием программы PRIRODA-06, разработанной Лайковым [129]. Оптимизация геометрических параметров, анализ колебательных частот, поиск переходных состояний, сканирование вдоль внутренней координаты реакции, расчёт энтропии и термодинамических поправок к полной энергии соединений были проведены на уровне DFT с помощью функционала Perdew-Burke-Ernzerhof (РВЕ) [130] в комбинации с базисным набором 3ζ [131]. Метод ранее успешно применялся для расчета энергетических параметров с участием Тісодержащих систем [132]. Термодинамичсекие параметры и свободные энергии активации определяли при 298.15 °К. Квантовохимические данные визуализировали с помощью программы Chemcraft [133].

ЗАКЛЮЧЕНИЕ

Выполнена программа фундаментальных исследований по разработке нового однореакторного каталитического метода синтеза трехчленных циклических борорганических соединений — бориранов, основанного на взаимодействии α -олефинов с галогенидами бора BX_3 (X=F, CI) или дихлорборанами $RBCl_2$ (R= алкил, циклоалкил, арил, диалкиламин) под действием каталитической системы Cp_2TiCl_2/Mg . На хемоселективность Ti-катализируемой реакции α -олефинов с дихлорборанами $RBCl_2$ оказывает природа заместителя R. В разработанных для циклоборирования условиях катализируемая Cp_2TiCl_2 реакция α -олефинов с i- Pr_2NBCl_2 приводит к продуктам борилирования (или смеси продуктов борилирования и гидроборирования), в то время как алкил(циклоалкил,арил)дихлорбораны $RBCl_2$ (R=Ar, Alk, cyclo-Alk) в тех же условиях образуют исключительно борираны.

Раскрыты новые возможности использования доступного катализатора Cp_2TiCl_2 в синтезе практически важных борорганических соединений (бориранов, 1-алкенилборанов, алкилборанов).

выводы

- 1. Впервые осуществлено прямое циклоборирование α-олефинов с помощью BCl₃·SMe₂ в присутствии катализатора Cp₂TiCl₂ и Mg (акцептора ионов галогена) с получением ранее неописанных 1-хлор-2-замещенных бориранов в составе комплекса с SMe₂.
- 2. Осуществлено катализируемое Cp_2TiCl_2 циклоборирование алифатических α -олефинов с помощью BF_3 · $T\Gamma\Phi$ с получением труднодоступных 1-фтор-2-замещенных бориранов в виде комплексов с BF_3 . На основе 1-хлор(фтор)бориранов получены ранее неописанные 1-гидроксиборираны.
- 3. Предложен механизм катализируемой Cp_2TiCl_2 реакции циклоборирования α-олефинов галогенидами бора, на основе квантовхимического моделирования, ключевой стадии взаимодействия α-олефинов с BCl_3 (а именно, переметаллирование титанациклопропана хлоридом бора), методом теории функционала плотности.
- 4. Синтезированы новые реагенты для циклоборирования RBCl₂ (EtBCl₂, PentBCl₂, HexBCl₂, Ph(CH₂)₂BCl₂, cyclo-Oct, NorbBCl₂), которые при взаимодействии с α -олефинами под действием катализатора Cp₂TiCl₂ образуют соответствующие 1,2-дизамещенные борираны.
- 5. Обнаружено влияние структуры олефинов на направление реакции с дихлорборанами RBCl₂. Циклические олефины в отличие от α-олефинов при взаимодействии с RBCl₂ под действием каталитической системы Cp₂TiCl₂/Mg образуют продукты гидроборирования, на основе которых получены новые эфиры бороновой кислоты дициклоалкилалкилборонаты.
- 6. Показано влияние природы заместителя R в дихлорборанах $RBCl_2$ на хемоселективность реакции с олефинами, катализируемой Cp_2TiCl_2 . Дихлорбораны $RBCl_2$, где $R=i-Pr_2N$, $\mu-Pr_2N$ в условиях реакции

циклоборирования образуют продукты борилирования (mpanc-1-алкенилбораны), а в случаях R = Alkyl, Cycloalkyl, Aryl — исключительно продукты циклоборирования (борираны).

СПИСОК СОКРАЩЕНИЙ

м.д. – миллионная доля

УФ – ультрафиолетовая спектроскопия

ЯМР – ядерный магнитный резонанс

COSY – correlated spectroscopy (гомоядерная корреляционная спектроскопия)

DEPT – distortionless enhancement by polarization transfer (усиление без искажений за счет переноса поляризации)

HMBC – heteronuclear multiple bond correlation (гетероядерная корреляционная спектроскопия через несколько связей)

HSQC – heteronuclear single quantum coherence (гетероядерная корреляционная спектроскопия)

TMS – триметилсилил

ГЖХ – газожидкостная хроматография

ИК – оптическая спектроскопия в инфракрасной области

МСРВА – мета-хлорнадбензойная кислота

9-ВВN – 9-борабицикло[3.3.1]нонан

 $BHMA-6\hbox{-}[B(ppy)Mes_2] oксигексилметакрилат$

Вп – бензил

Cbz – бензилоксикарбонил

COD – 1,5-циклооктадиен

Су – циклогексил

dba – дибензилиденацетон

DFT – теория функционала плотности

Dipp – 2,6-диизопропилфенил

DMAP – 4-диметиламинопиридин

DMSO – диметилсульфоксид

Dur - 2,3,5,6-тетраметилфенил

EDCI – 1-этил-3-(3-диметиламинопропил)карбодиимид

IMe - 1,3-диметилимидазолинилиден-2

МСРВА – мета-хлорнадбензойная кислота

Mes – мезитил (2,4,6-триметилфенил)

Naph – нафтил

NHC – N-гетероциклический карбен

пру – 2-(нафталин-1-ил)пиридин

PMDETA - N,N,N',N'',N''-пентаметилдиэтилентриамин

рру – 2-фенилпиридил

Ру – пиридин

rt – комнатная температура

ТВАF – фторид тетрабутиламмония

TIPS – триизопропилсилил

Тірр – 2,4,6-триизопропилфенил

TMEDA – тетраметилэтилендиамин

TS – переходное состояние

ТГФ – тетрагидрофуран

СПИСОК ЛИТЕРАТУРЫ

- Timms P. L. Chemistry of boron and silicon subhalides / P. L. Timms. DOI 10.1021/ar50064a002. // Acc. Chem. Res. 1973. V. 6. Is. 4. P. 118–123.
- Klusik H., A Boron-Carbon Double Bond. / H. Klusik, A. Berndt. DOI 10.1002/anie.198308771. // Angew. Chem. Int. Ed. Engl. 1983. V. 22. Is. 11. P. 877–878.
- 3. Krogh-Jespersen K. Molecular orbital theory of the electronic structure of molecules. 39. Highly unusual structures of electron-deficient carbon compounds. Reversal of van't Hoff stereochemistry in BBC ring systems / K. Krogh-Jespersen, D. Cremer, D. Poppinger, J.A. Pople, P. v. R. Schleyer, J. Chandrasekhar. DOI 10.1021/ja00511a011. // J. Am. Chem. Soc. 1979 V. 101. №. 17. P. 4843–4851.
- 4. Frenking G. The Nature Of The Boron-Carbon Double Bond in 2,4-diboramethylenecyclopropane / G. Frenking, H. F. Schaefer III. DOI 10.1016/0009-2614(84)85417-2. // Chem. Phys. Lett. 1984. V. 109. Is. 6. P. 521–524.
- Meyer H. Dianion of a Methylenediborirane, Synthesis of its Alkali and Magnesium Salts and Structure of its Dipotassium Salt / H. Meyer, G. Schmidt-Lukasch, G. Baum, W. Massa, A. Berndt. – DOI 10.1515/znb-1988-0703. // Z. Naturforsch. B. – 1988. – V. 43. – Is. 7. – P. 801–806.
- Wieczorek C. Structure of a Non-classically Bridged Methyleneborane in the Crystal / C. Wieczorek, J. Allwohn, G. Schmidt-Lukasch, R. Hunold, W. Massa, A. Berndt. – DOI 10.1002/anie.199003981. // Angew. Chem. Int. Ed. – 1990. – V. 29. – Is. 4. – P. 398–399.
- Willershausen P. Effect of Substituents on σ-π-Interaction: Distortion of Angles in C-Borylmethyleneboranes / P. Willershausen, A. Höfner, J. Allwohn, M. Pilz, W. Massa, A. Berndt. DOI 10.1515/znb-1992-0715. // Z. Naturforsch. B. 1992. V. 47. Is. 7. P. 983–991.

- Berndt A. Classical and Nonclassical Methyleneboranes / A. Berndt. DOI 10.1002/anie.199309851. // Angew. Chem. Int. Ed. 1993. V. 32. Is. 7. P. 985–1009.
- Balzereit C. A Highly Distorted and an Undistorted Borirane, C-B-H Hyperconjugation Induced by C-Si-H Hyperconjugation / C. Balzereit, C. Kybart, H.-J. Winkler, W. Massa, A. Berndt. DOI 10.1002/anie.199414871. // Angew. Chem. Int. Ed. 1994. V. 33. Is. 14. P. 1487–1489.
- Willerhausen P. Boriranes: Structures and Thermal Ring Openings / P. Willerhausen, G. Schmidt-Lukasch, C. Kybart, J. Allwohn, W. Massa, M.L. McKee, P. v. R. Schleyer, A. Berndt. DOI 10.1002/anie.199213841. // Angew. Chem. Int. Ed. 1992. V. 31. Is. 10. P. 1384–1386.
- Höfner A. The Structure of a C-borylborirene with Strong C-H Hyperconjugation / A. Höfner, B. Ziegler, W. Massa, A. Berndt. DOI 10.1002/anie.198901861. // Angew. Chem. Int. Ed. 1989. V. 28. Is. 2. P. 186–187.
- 12. Michel H. Equilibria between Nonclassical and Classical Boron Compounds, Competition between Aromaticity in Two and Three Dimensions / H. Michel, D. Seiner, S. Wočadlo, J. Allwohn, N. Stamatis, W. Massa, A. Berndt. DOI 10.1002/anie.199206071. // Angew. Chem. Int. Ed. 1992. V. 31. Is. 5. P. 607–610.
- 13. Denmark S.E. On the generation and configurational stability of (2S,3S)-1.2,3-triphenylborirane / S. E. Denmark, K. Nishide, A.-M. Faucher. DOI 10.1021/ja00017a050. // J. Am. Chem. Soc. 1991. V. 113. Is. 17. P. 6675–6676.
- 14. Wilkey J.D. Irradiation of tetraphenylborate does not generate a boren anion
 / J. D. Wilkey, G. B. Schuster. DOI 10.1021/jo00387a001. // J. Org. Chem.
 1987. V. 52. Is. 11. P. 2117–1222.

- Wilkey J.D. 2,5,7,7-Tetraphenyl-7-boratabicyclo[4.1.0]hepta-2,4-diene: The First Isolation and Characterization of a Boratanorcaradiene / J. D. Wilkey, G. B. Schuster. DOI 10.1021/ja00230a065. // J. Am. Chem. Soc. 1988. V. 110. Is. 22. P. 7569–7571.
- 16. Boyatzis S. Photochemistry of 2,5,7,7-Tetrapheny1-7-boratabicyc1o[4.1.0]hepta-2,4-diene (α-Boratanorcaradiene Anion): No Evidence for Diphenylborene Anion / S. Boyatzis, J. D. Wilkey, G. B. Schuster. DOI 10.1021/jo00302a015. // J. Org. Chem. 1990. V. 55. Is. 15. P. 4537–4544.
- 17. Wilkey J.D. Photochemistry of Tetraarylborate Salts (Ar₄B⁻): Formation of 2,5,7,7-Tetraphenyl-7-boratabicyclo[4.1.0]hepta-2,4-diene (a Boratanorcaradiene) by Irradiation of (*p*-Biphenyly1)triphenyl Borate / J. D. Wilkey, G. B. Schuster. DOI 10.1021/ja00006a037. // J. Am. Chem. Soc. 1991. V. 113. Is. 6. P. 2149–2155.
- 18. Kropp M. A. Boratirane: Preparation and Characterization of trans-1,1,2,3-tetraphenylboratirane / M. A. Kropp, K. Bhamidapaty, G. B.Schuster. DOI 10.1021/ja00226a054. // J. Am. Chem. Soc. 1988. V. 110. Is. 18. P. 6252–6254.
- 19. Kropp M. A. Photochemistry of Alkynyl-, Alkenyl-, and Cyclopropyl-Substituted Borate Salts: The Di-π- and Cyclopropy-π-borate Rearrangements / M. A. Kropp, M. Baillargeon, K. M. Park, K. Bhamidapaty, G. B. Schuster. DOI 10.1021/ja00006a038. // J. Am. Chem. Soc. 1991. V. 113. Is. 6. P. 2155–2163.
- 20. Rao Y. L. Reversible Intramolecular C-C Bond Formation/Breaking and Color Switching Mediated by a N,C-Chelate in (2-ph-py)BMes2 and (5-BMes2-2-ph-py)BMes2 / Y. L. Rao, H. Amarne. DOI 10.1021/ja8052046. // J. Am. Chem. Soc. 2008. V. 130. P. 12898–12900.
- 21. Baik C. Enhancing the Photochemical Stability of *N*,*C*-Chelate Boryl Compounds: C-C Bond Formation versus C=C Bond *cis,trans*-Isomerization

- / C. Baik, Z. M. Hudson, H. Amarne, S. Wang. DOI 10.1021/ja906430s. // J. Am. Chem. Soc. 2009. V. 131. Is. 40. P. 14540–14559.
- 22. Rao Y.-L. Four-Coordinate Organoboron Compounds with a π-Conjugated Chelate Ligand for Optoelectronic Applications / Y.-L. Rao, S. Wang. DOI 10.1021/ic200658v. // Inorg. Chem. 2011. V. 50. Is. 24. P. 12263–12274.
- 23. Mellerup S. K. Photochemical Transformations Involving Organoboron / S. K. Mellerup, S. Wang. DOI 10.1002/9780470682531.pat0974. // Wiley 2019. P. 1–43.
- 24. Baik C. Switching of a Single Boryl Center in π-Conjugated Photochromic Polyboryl Compounds and Its Impact on Fluorescence Quenching / C. Baik, S. K. Murphy, S. Wang. DOI 10.1002/anie.201003144. // Angew. Chem. Int. Ed. 2010. V. 49. Is. 44. P. 8224–8227.
- 25. Murphy S. K. Single Boryl Isomerization in Silyl-Bridged Photochromic Diboryl Dyes / S. K. Murphy, C. Baik, J.-S. Lu, S. Wang. – DOI 10.1021/ol102319t. // Organic Letters. – 2010. – V. 12. – Is. 22. – P. 5266– 5269.
- 26. Kawa M. Antenna Effects of Aromatic Dendrons and Their Luminescence Applications / M. Kawa. DOI 10.1007/b11011. // Top. Curr. Chem. 2003. V. 228. P. 193–204.
- 27. Rao Y.-L., Wang S. Impact of Cyclometalation and π-Conjugation on Photoisomerization of an N,C-Chelate Organoboron Compound / Y.-L. Rao, S. Wang. DOI 10.1021/om200534m. // Organometallics. 2011. V. 30. Is. 16. P. 4453–4458.
- 28. Amarne H. Photoisomerization of 1-phenyl-2-(pyridine-2-yl)indol BMes₂: the dark isomer / H. Amarne, C. Baik, R.-Y. Wang, S. Wang. DOI 10.1021/om101111p. // Organometallics. 2011. V. 30. Is. 4. P. 665–668.

- 29. Rao Y.-L. Photochromic four-coordinate N,C-chelate boron compounds / Y.-L. Rao, H. Amarne, S. Wang. DOI 10.1016/j.ccr.2011.11.009. // Coord. Chem. Rev. 2012. V. 256. Is. 5–8. P. 759–770.
- 30. Rao Y.-L., Amarne H., Lu J.-S., Wang S. Impact of a dithienyl unit on photostability of N,C-chelating boron compounds / Y.-L. Rao, H. Amarne, J.-S. Lu, S. Wang. DOI 10.1039/C2DT31370G. // Dalton Trans. 2013. V. 42. Is. 3. P. 638–644.
- 31. Rao Y.-L. Photo- and Thermal-Induced Multistructural Transformation of 2-Phenylazolyl Chelate Boron Compounds / Y.-L. Rao, H. Amarne, L. D. Chen, M. L. Brown, N. J. Mosey, S. Wang. DOI 10.1021/ja400917r. // J. Am. Chem. Soc. 2013. V. 135. Is. 9. P. 3407–3410.
- Rao Y.-L. Reversible Photochemical and Thermal Isomerization of Azaboratabisnorcaradiene to Azaborabenzotropilidene / Y.-L. Rao, C. Hörl, H. Braunschweig, S. Wang. DOI 10.1002/anie.201404435. // Angew. Chem. Int. Ed. 2014. V. 53. Is. 34. P. 9086–9089.
- 33. Hudson Z. M. Modulating the Photoisomerization of N,C-Chelate Organoboranes with Triplet Acceptors / Z. M. Hudson, S. B. Ko. DOI 10.1021/ol302742g. // Am. Chem. Soc. 2012 V. 14. №. 21. P. 5610–5613.
- 34. Wang N. Tuning the Photoisomerization of a N,C-Chelate Organoboron Compound with a Metal-Acetylide Unit / N. Wang, S.-B. Ko, J.-S. Lu, L. D. Chen, S. Wang. DOI 10.1002/chem.201204048. // Chem. Eur. J. 2013. V. 19. Is. 17. P. 5314–5323.
- Wang J. Organoboron-Based Photochromic Copolymers for Erasable Writing and Patterning / J. Wang, B. Jin, N. Wang, T. Peng, X. Li, Y. Luo, S. Wang. DOI 10.1021/acs.macromol.7b00632. // Macromolecules. 2017. V. 50. Is. 12. P. 4629–4638.
- 36. Amarne H. Steric and Electronic Influence on Photochromic Switching of N,C-Chelate Four-Coordinate Organoboron Compounds / H. Amarne, C.

- Baik, S. K. Murphy, S. Wang. DOI 10.1002/chem.200903582. // Chem. Eur. J. 2010. V. 16. Is. 16. P. 4750–4761.
- 37. Mellerup S. K. Regioselective Photoisomerization/C-C Bond Formation of Asymmetric B(ppy)(Mes)(Ar): The Role of the Aryl Groups on Boron / S.
 K. Mellerup, C. Li, T. Peng, S. Wang. DOI 10.1002/anie.201700096. // Angew. Chem. Int. Ed. 2017. V. 56. Is. 22. P. 6093–6097.
- Mellerup S. K. Donor-Appended N,C-Chelate Organoboron Compounds: Influence of Donor Strength on Photochromic Behaviour / S. K. Mellerup, K. Yuan, C. Nguyen, Z.-H. Lu, S. Wang. – DOI 10.1002/chem.201602410. // Chem. Eur. J. – 2016. – V. 22. –Is. 35. – P. 12464–12474.
- 39. Mellerup S. K. Controlling Isomerization Selectivity in Chiral, Photochromic N,C-Chelate Organoboron Systems With Extended π-Conjugation / S. K. Mellerup, C. Li, X. Wang, S. Wang. DOI 10.1021/acs.joc.8b01856. // J. Org. Chem. 2018. V. 83. P. 11970.
- 40. Mellerup S. K. Photochemical Generation of Chiral N,B,X-Heterocycles by Heteroaromatic C–X Bond Scission (X = S, O) and Boron Insertion / S. K. Mellerup, C. Li, J. Radtke, X. Wang, Q.-S. Li, S. Wang. DOI 10.1002/anie.201803760. // Angew. Chem. Int. Ed. 2018. V. 57. Is. 31. P. 9643–9639.
- 41. Mellerup S. K. Isomerization and rearrangement of boriranes: from chemical rarities to functional materials / S. K. Mellerup, S. Wang. DOI 10.1007/s40843-018-9306-8. // Science China Materials. 2018. V. 61. Is. 10. P. 1249–1256.
- 42. He Z.-C. Reversible Photoisomerization from Borepin to Boratanorcaradiene and Double Aryl Migration from Boron to Carbon / Z.-C. He, S. K. Mellerup, L. Liu, X. Wang, C. Dao, S. Wang. DOI 10.1002/anie.201902231. // Angew. Chem. Ind. Ed. 2019. V. 58. Is. 20. P. 6683–6687.

- 43. Rao Y.-L. Stepwise Intramolecular Photoisomerization of NHC-Chelate Dimesitylboron Compounds with C–C Bond Formation and C–H Bond Insertion / Y.-L. Rao, L. D. Chen, N. J. Mosey, S. Wang. DOI 10.1021/ja304211v. // J. Am. Chem. Soc. 2012. V. 134. Is. 26. P. 11026–11034.
- 44. Wang H. Reversible Photothermal Isomerization of Carborane-Fused Azaborole to Borirane: Synthesis and Reactivity of Carbene-Stabilized Carborane-Fused Borirane / H. Wang, J. Zhang, Z. Xie. DOI 10.1002/anie.201704642. // Angew. Chem. Ind. Ed. 2017. V. 56. Is. 31. P. 9198–9201.
- 45. Bissinger P. Trapping the elusive borylene / P. Bissinger, H. Braunschweig, K. Kraft, T. Kupfer. DOI 10.1002/anie.201007543. // Angew. Chem. Int. Ed., 2011. V. 50. P. 4704–4707.
- 46. Braunschweig H. A facile and selective route to remarkably inert monocyclic NHC-stabilized boriranes / H. Braunschweig, C. Claes, A. Damme, A. Deißenberger, R. D. Dewhurst, C. Hörl, T. Kramer. DOI 10.1039/C4CC09036E. // Chem. Comm. 2015. V. 51. Is. 9. P. 1627–1630.
- 47. Claes C. «Reduktive Synthese zu neuartigen cyclischen und acyclischen Borverbindungen» : Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades / Christina Claes : Angefertigt am Institut für Anorganische Chemie. Würzburg, 2016. 1–214 P. Текст : непосредственный.
- 48. McFadden T. R. Synthesis of boriranes by double hydroboration reactions of N-heterocyclic carbene boranes and dimethyl acetylenedicarboxylate / T. R. McFadden, Ch. Fang, S. J. Geib, E. Merling, P. Liu, D. P. Curran. – DOI 10.1021/jacs.6b09873. // J. Am. Chem. Soc. – 2017. – V. 139. – Is. 5. – P. 1726–1729.

- Walton C. Generation and Structure of Unique Boriranyl Radicals / C.
 Walton, T. R. McFadden, D. P. Curran. DOI 10.1021/jacs.7b10788. // J.
 Am. Chem. Soc. 2017. V. 139. Is. 46. P. 16514–16517.
- 50. Boussonnière A. Borenium-Catalyzed Hydroborations of Silyl-Substituted Alkenes and Alkynes with a Readily Available N-Heterocyclic Carbene–Borane / A. Boussonnière, X. Pan, S. J. Geib, D. P. Curran. DOI 10.1021/om400932g. // Organometallics 2013. V. 32. Is. 24. P. 7445–7450.
- Dai W. Ring-Opening Reactions of NHC-Boriranes with In Situ Generated HCl: Synthesis of a New Class of NHC-Boralactones / W. Dai, S. J. Geib,
 D. P. Curran. DOI 10.1021/jacs.8b13010. // J. Am. Chem. Soc. 2019. V. 141. Is. 8. P. 3623–3629.
- 52. Dai W. 5-Endo Cyclizations of NHC-Boraallyl Radicals Bearing Ester Substituents: Characterization of Derived 1,2-Oxaborole Radicals and Boralactones / W. Dai, T. R. McFadden, D. P. Curran, H. A. Früchtl, J. C. Walton. DOI 10.1021/jacs.8b09288. // J. Am. Chem. Soc. 2018. V. 140. Is. 46. P. 15868–15875.
- 53. Shimoi M. The Thermal Rearrangement of an NHC-Ligated 3-Benzoborepin to an NHC-Boranorcaradiene / M. Shimoi, I. Kevlishvili, T. Watanabe, K. Maeda, S. J. Geib, D. P. Curran, P. Liu, T. Taniguchi. DOI 10.1002/anie.201912234. // Angew. Chem. Ind. Ed. 2020. V. 59. Is. 2. P. 903–909.
- 54. Krogh-Jespersen K. Aromaticity in Small Rings Containing Boron and Carbon ((CH)₂(BH)_n, n = 1,2). Comparisons with Isoelectronic Carbocations. The Decisive Roles of Orbital Mixing and Nonbonded 1,3-Interactions in the Structures of Four-Membered Rings / K. Krogh-Jespersen, D. Cremer, J. A. Pople, P.v.R. Schleyer. DOI 10.1021/ja00400a018. // J. Am. Chem. Soc. 1981. V. 103. Is. 10. P. 2589–2594.

- 55. Budzelaar P. H. M. Effects of boron substituents in borirenes, boriranes, and boranes. The energies of B-X bonds / P. H. M. Budzelaar, A. J. Kos, T. Clark, P.v.R. Schleyer. DOI 10.1021/om00122a001. // Organometallics. 1985. V. 4. Is. 3. P. 429–437.
- 56. Budzelaar P. H. M. Remarkable structures of C₂B₂H₄ isomers / P. H. M. Budzelaar, K. Krogh-Jespersen, T. Clark, P.v.R. Schleyer. DOI 10.1021/ja00295a033. // J. Am. Chem. Soc. 1985. V. 107. Is. 9. P. 2773–2779.
- 57. Taylor C. A. Ab initio electronic structure calculations of the C₂H₅B potential energy surface: The stability of borirane. / C. A. Taylor, M. C. Zerner, B. Ramsey. DOI 10.1016/S0022-328X(00)99339-2. // J. Organomet. Chem. 1986. V. 317. Is. 1. P. 1–10.
- 58. Hannachi Y. Reaction of boron atoms with ethylene: ab initio study of the borirane radical / Y. Hannachi, P. Hassanzadeh, L. Andrews. DOI 10.1016/0009-2614(95)01447-0. // Chem. Phys. Lett. 1996. V. 250. Is. 3–4. P. 421–427.
- 59. Galland N. Theoretical study of structures, energetics and vibrational properties of BC_2H_5 species / N. Galland, Y. Hannachi, D. V. Lanzisera, L. Andrews. DOI 10.1016/S0301-0104(00)00091-4. // Chem. Phys. 2000. V. 255. Is. 2–3. P. 205–215.
- 60. Sillars D. Crossed-Beam Reaction of Boron Atoms, B (²P_j), with Dimethylacetylene, CH₃CCCH₃ (X¹A_{1g}): Untangling the Reaction Dynamics to Form the 1,2-Dimethylene-3-bora-cyclopropane Molecule / D. Sillars, R. I. Kaiser, N. Galland, Y. Hannachi. DOI 10.1021/jp022469h. // J. Phys. Chem. A. 2003. V. 107. Is. 26. P. 5149–5156.
- 61. Kalaiselvan A. Ring opening of boriranes vis-à-vis aziridines: An ab initio and DFT probe on the mechanisms / A. Kalaiselvan, P. Venuvanalingam. DOI 10.1002/qua.21302. // Int. J. Quantum Chem. 2007. V. 107. Is. 7. P. 1590–1597.

- 62. Gershoni-Poranne R. An MO-Based Identification of Charge-Shift Bonds /
 R. Gershoni-Poranne, A. Stanger. DOI 10.1002/cphc.201200147. //
 ChemPhysChem. 2012. V. 13. Is. 9. P. 2377–2381.
- 63. Krasowska M. Reactivity of Borylenes toward Ethyne, Ethene, and Methane / M. Krasowska, H. F. Bettinger. DOI 10.1021/ja306346h. // J. Am. Chem. Soc. 2012. V. 134. Is. 41. P. 17094–17103.
- 64. Krasowska M. Ring Enlargement of Three-Membered Boron Heterocycles upon Reaction with Organic π Systems: Implications for the Trapping of Borylenes / M. Krasowska, H. F. Bettinger. DOI 10.1002/chem.201600933. // Chem. Eur. J. 2016. V. 22. Is. 30. –P. 10661–10670.
- 65. Krasowska M. Computational Study of the Isomerization Reactions of Borirane / M. Krasowska, H. F. Bettinger. DOI 10.1021/acs.joc.7b02715. // J. Org. Chem. 2018. V. 83. Is. 4. P. 1804–1809.
- 66. Li F.-P. Theoretical study on the regioselective photoisomerization of asymmetric N,C-chelate organoboron compounds / F.-P. Li, H.-Y. Zhu, Q.-S. Li, Z.-S. Li. DOI 10.1039/C9CP00569B. // Phys. Chem. Chem. Phys. 2019. V. 21. Is. 16. P. 8376–8383.
- 67. Zhu H.-Y. Insights into the Photoinduced Isomerization Mechanisms of a N,C-Chelate Organoboron Compound: A Theoretical Study / H.-Y. Zhu, Q.-S. Li. DOI 10.1002/cphc.202000049. // ChemPhysChem. 2020. V. 21. Is. 6. P. 510–517.
- 68. Pues C. 1-*tert*-Butylborirenes / C. Pues, A. Berndt. DOI 10.1002/anie.198403131. // Angew. Chem. Int. Ed. 1984. V. 23. Is. 4. P. 313–314.
- 69. Habben C. Synthese und Eigenschaften von 1-[Bis(trimethylsilyI)amino]-borirenen / C. Habben, A. Meller. DOI 10.1002/cber.19841170725. // Chem. Ber. 1984 V. 117. P. 2531–2537.

- Fisch J. J. Generation and capture of triphenylborirene in the di-π-methane-like photorearrangement of diphenyl(phenylethynyl)borane-pyridine / J. J. Eisch, F. Shen, K. Tamao. DOI 10.3987/S(B)-1982-01-0245. // Heterocycles. 1982. V. 18. Is. 1. P. 245–250.
- 71. Eisch J. J. Bora-aromatic systems. 9. Di-.pi.-methane-like photorearrangement of dimesityl(mesitylethynyl)borane: synthesis, structure, and aromaticity of trimesitylborirene / J. J. Eisch, B. Shafii, A. L. Rheingold. DOI 10.1021/ja00242a055. // J. Am. Chem. Soc. 1987. V. 109. Is. 8. P. 2526–2528.
- 72. Eisch J. J. Rearrangements of organometallic compounds. XII. Generation of boracarbenoid and boracyclopropene intermediates from the photolysis of tetraorganoborate salts in aprotic media / J. J. Eisch, K. Tamao, R. J. Wilcsek. DOI 10.1021/ja00837a037. // J. Am. Chem. Soc. 1975. V. 97. Is. 4. P. 895–897.
- 73. Eisch J. J. Aromatic stabilization of the triarylborirene ring system by tricoordinate boron and facile ring opening with tetracoordinate boron / J. J. Eisch, B. Shafii, J. D. Odom, A. L. Rheingold. DOI 10.1021/ja00161a031. // J. Am. Chem. Soc. 1990. V. 112. Is. 5. P. 1847–1853.
- 74. Eisch J. J. Di-π-methane-like photorearrangements of α,β-unsaturated organoboranes in the synthesis of borirenes and boracarbenoid intermediates / J. J. Eisch, B. Shafii, M. P. Boleslawski. DOI 10.1351/pac199163030365. // Pure Appl. Chem. 1991. V. 63. Is. 3. P. 365–368.
- 75. Volpin M. E. Three-membered heteroaromatic compounds—I / M. E. Volpin, Yu. D. Koreshkov, V. G. Dulova, D. N. Kursanov. DOI 10.1016/0040-4020(62)80030-1 // Tetrahedron. 1962. V. 18. Is. 1. P. 107—122.
- 76. Braunschweig H. Electronic and structural effects of stepwise borylation and quaternization on borirene aromaticity / H. Braunschweig, A. Damme, R. D. Dewhurst, S. Ghosh, T. Kramer, B. Pfaffinger, K. Radacki, A. Vargas. –

- DOI 10.1021/ja3110126. // J. Am. Chem. Soc. 2013. V. 135. Is. 5. P. 1903–1911.
- 77. Braunschweig H. Recent developments in the chemistry of antiaromatic boroles / H. Braunschweig, T. Kupfer. DOI 10.1039/C1CC13071D. // Chem. Commun. 2011. V. 47. Is. 39. P. 10903–10914.
- 78. Braunschweig H. Oligo(borolyl)benzenes—Synthesis and Properties / H. Braunschweig, C.-W. Chiu, A. Damme, B. Engels, D. Gamon, C. Hörl, T. Kupfer, I. Krummenacher, K. Radacki, C. Walter. DOI 10.1002/chem.201202345. // Chem. Eur. J. 2012. V. 18. P. 14292.
- 79. Braunschweig H. Unsupported boron–carbon σ-coordination to platinum as an isolable snapshot of σ-bond activation / H. Braunschweig, P. Brenner, R. D. Dewhurst, I. Krummenacher, B. Pfaffinger, A. Vargas. DOI 10.1038/ncomms1884. // Nat. Commun. 2012. V. 3. P. 872.
- 80. Van Der Kerk S. M. The addition of metylborylene to acetylenes / S. M. Van Der Kerk, A. L. M. Van Eekeren, G. J. M. Van Der Kerk. DOI 10.1016/S0022-328X(00)82886-7. // J. Organomet. Chem. 1980 V. 190. P. C8–C10.
- 81. Van der Kerk S. M. Synthesis of Borirenes and Diboretenes a Novel Class of 2π-Aromatic Compounds / S. M. Van der Kerk, P. H. M. Budzelaar, A. Van der Kerk-van Hoof, G. J. M. Van der Kerk, P. von R. Schleyer. DOI 10.1002/anie.198300481. // Angew. Chem. Int. Ed. 1983. V. 22. Is. 1. P. 48.
- 82. Van der Kerk S. M. The addition of methylborylene to acetylenes: Synthesis of 1,4-diboracyclohexa-2,5-dienes, and of a borirene and a diboretene derivative / S. M. Van der Kerk, P. H. M. Budzelaar, A. L. M. Van Eekeren, G. J. M. Van der Kerk. DOI 10.1016/S0277-5387(00)88107-3. // Polyhedron. 1984. V. 3. Is. 3. P. 271–280.
- 83. Pachaly B. Photochemical Generation of Triphenylsilylboranediyl (C6H5)3SiB: from Organosilylboranes / B. Pachaly, R. West. DOI

- 10.1002/anie.198404541. // Angew. Chem. Int. Ed. 1984. V. 23. Is. 6. P. 454–455.
- 84. Eisch J. J. Rearrangements of organometallic compounds. XII. Generation of boracarbenoid and boracyclopropene intermediates from the photolysis of tetraorganoborate salts in aprotic media / J. J. Eisch, K. Tamao, R. J. Wilcsek. DOI 10.1021/ja00837a037. // J. Am. Chem. Soc. 1975. V. 97. Is. 4. P. 895–897.
- 85. Braunschweig H. Synthesis of borirenes by photochemical borylene transfer from [(OC)₅M=BN(SiMe₃)₂] (M=Cr,Mo) to alkynes / H. Braunschweig, T. Herbst, D. Rais, F. Seeler. DOI 10.1002/anie.200502524. // Angew. Chem. Int. Ed. 2005. V. 44. Is. 45. P. 7461–7463.
- 86. Braunschweig H. Chemoselective Boron–Carbon Bond Cleavage by Hydroboration of Borirenes / H. Braunschweig, T. Herbst, K. Radacki, G. Frenking, M. A. Celik. DOI 10.1002/chem.200901749. // Chemistry A European Journal. 2009. V. 15. Is. 44. P. 12099–12106.
- 87. Braunschweig H. Borylene-based direct functionalization of organic substrates: synthesis, characterization, and photophysical properties of novel π-conjugated borirenes / H. Braunschweig, T. Herbst, D. Rais, S. Ghosh, T. Kupfer, K. Radacki. DOI 10.1021/ja902198z. // J. Am. Chem. Soc. 2009. V. 131. Is. 25. P. 8989–8999.
- 88. Anderson C. E. Borylene Transfer from Transition Metal Borylene Complexes / C. E. Anderson, H. Braunschweig, R. D. Dewhurst. DOI 10.1021/om800883m. // Organometallics. 2008. V. 27. Is. 24. P. 6381–6389.
- 89. Entwistle C. D. Boron Chemistry Lights the Way: Optical Properties of Molecular and Polymeric Systems. Angew / C. D. Entwistle, T. B. Marder. DOI 10.1002/1521-3773(20020816)41:16<2927::AID-ANIE2927>3.0.CO;2-L. // Chem., Int. Ed. 2002. V. 41. Is. 16. P. 2927–2931.

- 90. Ji L. Recent developments in and perspectives on three-coordinate boron materials: a bright future / L. Ji, S. Griesbeck, T. B. Marder. DOI 10.1039/C6SC04245G. // Chem. Sci. 2017. V. 8. Is. 2. P. 846–863.
- 91. Braunschweig H. Borylene-based functionalization of Pt–alkynyl complexes by photochemical borylene transfer from [(OC)₅Cr=BN(SiMe₃)₂] / H. Braunschweig, Q. Ye, K. Radacki. DOI 10.1039/B915926F. // Chem. Commun. 2009. Is. 45. P. 6979–6981.
- 92. Braunschweig H. Reactivity of a platinum-substituted borirene / H. Braunschweig, Q. Ye, K. Radacki, T. Kupfer. DOI 10.1039/C0DT01694B. . // Dalton Trans. 2011. V. 40. Is. 14. P. 3666–3670.
- 93. Braunschweig H. Synthesis and electronic structure of a ferroborirene / H. Braunschweig, I. Fernandez, G. Frenking, K. Radacki, F. Seeler. DOI 10.1002/anie.200700382. // Angew. Chem. Int. Ed. 2007. V. 46. Is. 27. P. 5215–5218.
- 94. Braunschweig H. Boron-Metallated Borirenes and Bis(Borirenes) / H. Braunschweig, M. A. Celik, R. D. Dewhurst, K. Ferkinghoff, K. Radacki, F. Weißenberger. DOI 10.1002/chem.201600651. // Chem. Eur. J. 2016. V. 22. Is. 25. P. 8596–8602.
- 95. Braunschweig H. Carbene-induced synthesis of the first borironium cations using the $[(\eta^5-C_5Me_5)Fe(CO)_2]^-$ anion as an unlikely leaving group / H. Braunschweig, R. D. Dewhurst, K. Ferkinghoff. DOI : 10.1039/C5CC07503C. // Chem. Commun. 2016. V. 52. Is. 1. P. 183-185.
- 96. Braunschweig H. Trihapto Ligation of a Borirene to a Single Metal Atom: A Heterocyclic Analogue of the η³-Cyclopropenyl Ligand / H. Braunschweig,
 R. D. Dewhurst, K. Radacki, C. W. Tate, A. Vargas. DOI 10.1002/anie.201402815. // Angew. Chem. Int. Ed. 2014. V. 53. Is. 24. P. 6263–6266.

- 97. Braunschweig H., Damme A. Platinum trans-Bis(borirene) Complexes Displaying Coplanarity and Communication Across a Platinum Metal Center / H. Braunschweig, A. Damme. DOI 10.1002/chem.201405803. // Chem. Eur. J. 2015 V. 21. P. 2377–2386.
- 98. Schacht W. Thermolyse von Arylhalogenboranen; Synthese von 1,3-Diboraund 1,3-Borasilaindanen / W. Schacht, D. Kaufmann. DOI 10.1016/0022-328X(87)80015-3. // J. Organomet. Chem. 1987. V. 331. Is. 2. P. 139–152.
- 99. Kaufmann D. E. Benzoannulated cycloboranes / D. E. Kaufmann, W. Schacht. DOI 10.1351/pac199163030383. // Pure Appl. Chem. 1991. V. 63. Is. 3. P. 383–386.
- 100. Kaiser R. I. Gas-Phase Detection of the Elusive Benzoborirene Molecule / R. I. Kaiser, H. F. Bettinger. DOI 10.1002/1521-3773(20020703)41:13<2350::AID-ANIE2350>3.0.CO;2-T. // Angew. Chem. Ind. Ed. 2002. V. 41. Is. 13. P. 2350–2352.
- 101. Bettinger H. F. Reaction of Benzene and Boron Atom: Mechanism of Formation of Benzoborirene and Hydrogen Atom / H. F. Bettinger, R. I. Kaiser. – DOI 10.1021/jp0375259. // J. Phys. Chem. A. – 2004. – V. 108. – Is. 21. – P. 4576–4586.
- 102. Zhang F. A crossed molecular beam study on the reaction of boron atoms, $B(^2P_j)$, with benzene, $C_6H_6(X^1A_{1g})$, and D6-benzene $C_6D_6(X^1A_{1g})$ / F. Zhang, Y. Guo, X. Gu, R. I. Kaiser. DOI 10.1016/j.cplett.2007.04.012. // Chem. Phys. Lett. 2007. V. 440. Is. 1–3. P. 56–63.
- 103. Bettinger H. F. Generation of iodobenzoborirene, a boraaromatic cyclopropabenzene derivative / H. F. Bettinger. DOI 10.1039/B419415B. // Chem. Commun. 2005. V. 21. Is. 21. P. 2756–2757.
- 104. Bettinger H. F. Phenylborylene: Direct Spectroscopic Characterization in Inert Gas Matrices / H. F. Bettinger. – DOI 10.1021/ja0548642. // J. Am. Chem. Soc. – 2006. – V. 128. – Is. 8. – P. 2534–2535.

- 105. Edel K. Photoreactions of Phenylborylene with Dinitrogen and Carbon Monoxide / K. Edel, M. Krieg, D. Grote, H. F. Bettinger. DOI 10.1021/jacs.7b08497. // J. Am. Chem. Soc. 2017. V. 139. P. 15151–15159.
- 106. Hahn J. Synthesis and Ring Strain of a Benzoborirene-N-Heterocyclic Carbene Adduct. Chemistry / J. Hahn, C. Keck, C. Maichle-Mössmer, E. Grotthuss, P. N. Ruth, A. Paesch, H. F. Bettinger. DOI 10.1002/chem.201804629. // Chem.— Eur. J. 2018. V. 24. P. 18634–18637.
- 107. Eisch J. J. Di-π-methane-like photorearrangements of α,β-unsaturated organoboranes in the synthesis of borirenes and boracarbenoid intermediates / J. J. Eisch, B. Shafii, M. P. Boleslawski. DOI 10.1351/pac199163030365. // Pure Appl. Chem. 1991. V. 63. №. 3. P. 365–368.
- 108. Pachaly B. Photochemical Generation of Triphenylsilylboranediyl (C6H5)3SiB: from Organosilylboranes / B. Pachaly, R. West. DOI 10.1002/anie.198404541. // Angew. Chem., Int. Ed. 1984. V. 23. P. 454–455.
- 109. Isagawa K. Roles of titanium complex in the catalytic hydrometalation and isomerization of olefins / K. Isagawa, K. Tatsumi, H. Kosugi, Y. Otsuji. DOI 10.1246/cl.1977.1017. // Chem. Lett. 1977. V. 6. P. 1017–1120.
- 110. Ashe A. J. Evaluation of the aromaticity of borepin: synthesis and properties of 1-substituted borepins / A. J. Ashe, W. Klein, R. Rousseau. DOI 10.1021/om00032a051. // Organometallics. 1993. V. 12. Is. 8. P. 3225–3231.
- 111. Brown H. C. Hydroboration. XLI. Hydroboration of alkenes and alkynes with dichloroborane etherates. Convenient procedures for the preparation of alkyl- and alkenyldichloroboranes and their derivatives / H. C. Brown, N. Ravindran. DOI 10.1021/ja00423a026. // J. Am. Chem. Soc. 1976. V. 98. Is. 7. P. 1798–1806.

- 112. Wrackmeyer B. NMR Spectrscopy of boron compounds containing two-, three- and four coordinate boron / B. Wrackmeyer. DOI 10.1016/S0066-4103(08)60170-2. // Annu. Rep.NMR Spectrosc. 1988. V. 20. P. 61–203.
- 113. Köster R. Halogen-organoborane durch katalytische Komproportionierung von Trihalogenboranen und Organoboranen / R. Köster, M. A. Grassberger.
 DOI 10.1002/jlac.19687190119. // Liebigs Ann. Chem. 1968. V. 719.
 Is. 1. P. 169–186.
- 114. Cohen S. A. Structure and reactivity of bis(pentamethylcyclopentadienyl)(ethylene)titanium(II), a simple olefin adduct of titanium / S. A. Cohen, P. R. Auburn, J. E. Bercaw. DOI 10.1021/ja00343a012. // J. Am. Chem. Soc. 1983. V. 105. Is. 5. P. 1136–1143.
- 115. Laikov D. N. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets / D.
 N. Laikov. DOI 10.1016/S0009-2614(97)01206-2. // Chem. Phys. Lett. 1997. V. 281. P. 151–156.
- 116. Midland M. M. Controlled reaction of oxygen with alkyldichloroborane etherates. Synthesis of alkyl hydroperoxides in high yield / M. M. Midland, H. C. Brown. DOI 10.1021/ja00793a052. // J. Am. Chem. Soc. 1973. V. 95. Is. 12. P. 4069–4070.
- 117. Sobota P. Reaction of tetrahydrofuran with transition metal compounds in low oxidation states part I / P. Sobota, T. Pluzinski, B. Jezowska-Trzebiatowska, S. Rummel. DOI 10.1016/S0022-328X(00)94401-2. // J. Organomet. Chem. 1980. V. 185; Is. 1. P. 69–74.
- 118. Euzenat L. Stereospecific palladium-catalyzed borylation reaction of 1-alkenyl halides with diispropylaminoborane / L. Euzenat, D. Horhant, C. Brielles, G. Alcaraz, M. Vaultier. DOI 10.1016/j.jorganchem.2005.01.054. // J. Organomet. Chem. 2005. V. 690. P. 2721–2724.

- 119. Mkhalid I. A. I. Rhodium Catalysed Dehydrogenative Borylation of Alkenes: Vinylboronates via C–H Activation / I. A. I. Mkhalid, R. B. Coapes, S. N. Edes, D. N. Coventry, F. E. S. Souza, R. LI. Thomas, J. J. Hall, S.-W. Bi, Z. Lin, T. B. Marder. DOI 10.1039/b715584k. // Dalton Trans. 2008. V. 8. Is. 8. P.1055–1064.
- 120. Murata M. Rhodium- and Ruthenium-Catalyzed Dehydrogenative Borylation of Vinylarenes with Pinacolborane: Stereoselective Synthesis of Vinylboronates / M. Murata, K. Kawakita, T. Asana, S. Watanabe, Y. Masuda. DOI 10.1246/bcsj.75.825. // Bull. Chem. Soc. Jpn. 2002. V. 75. P. 825–829.
- 121. Selender N. Selective C–H Borylation of Alkenes by Palladium Pincer Complex Catalyzed Oxidative Functionalization / N. Selender, B. Willy, K. J. Szabo. – DOI 10.1002/anie.201000690. // Angew. Chem., Int. Ed. – 2010. – V. 49. – P. 4051–4053.
- 122. Рыбак Б. М. Анализ нефти и нефтепродуктов / Б. М. Рыбак ; 5-е издание дополненное и переработанное ; Государственное научнотехническое издательство нефтяной и горно-топливной литературы. Москва : Гостоптехиздат, 1962. ил ; 27 см. Библиогр.: с. 60–66. 6620 экз. Текст : непосредственный.
- 123. Беккер Г. Органикум. Практикум по органической химии / Г. Беккер, В. Бергер, Г. Домшке, Э. Фанхенель, Ю. Фауст, М. Фишер, Ф. Гентц и др.; перевод с немецкого В. М. Потапов и С.В. Пономарева. 1-ое издание, том 2. Москва : Издательство «Мир», 1979. Библиогр.: с. 60—68. Текст : непосредственный.
- 124. Гордон А. Спутник химика / А. Гордон, Р. Форд ; перевод с английского Е. Л. Розенберга, С. И. Коннель. Физико-химические свойства, методики, библиография. Москва : Издательство «Мир», 1976. Библиогр.: с. 437–444. Текст : непосредственный.

- 125. Brown H. C. New general synthesis of alkyldihaloboranes via hydroboration of alkenes with dihaloborane-dimethyl sulfide complexes. Unusual trends in the reactivities and directive effects / H. C. Brown, N. Ravindran, S. U. Kulkarni. DOI 10.1021/jo01291a003. // J. Org. Chem. 1980. V. 45. Is. 3. P. 384–389.
- 126. Brown H. C. A convenient synthesis of alkyldibromoboranes and dialkylbromoboranes via hydroboration-redistribution / H. C. Brown, D. Basavaiah, N. G. Bhat. DOI 10.1021/om50004a007. // Organometallics 1983. V. 2. Is. 10. P. 1309–1311.
- 127. Brown H. C. A simple convenient procedure for the preparation of alkyldichloroboranes via hydroboration-redistribution / H. C. Brown, A. B. Levy. DOI 10.1016/S0022-328X(00)82909-5. // J. Organomet. Chem. 1972. V. 44. Is. 2. P. 233–236.
- 128. Brown H. C. Hydroboration. 42. Cyclic hydroboration of representative acyclic α, ω -dienes with monochloroborane etherate / H. C. Brown, M. Zaidlewicz. DOI 10.1021/ja00432a037. // J. Am. Chem. Soc. 1976. V. 98. \mathbb{N} 16. P. 4917–4925.
- 129. Laikov D. N. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets / D.
 N. Laikov. DOI 10.1016/S0009-2614(97)01206-2. // Chemical Physics Letters. 1997. V. 281. P. 151-156.
- 130. Perdew J. P. Generalized Gradient Approximation Made Simple / J. P. Perdew, K. Burke, M. Ernzerhof. DOI 10.1103/PhysRevLett.77.3865. // Physical Review Letters. 1996. V. 77. P. 3865-3868.
- 131. Лайков Д. Н. Развитие экономного подхода к расчету молекул методом функционала плотности и его применение к решению сложных химических задач / Дмитрий Николаевич Лайков; МГУ им. М.В. Ломоносова. Москва, 2000. 102 с.

- 132. Ustynyuk L. Yu. Activation of C-H bonds in C1-C3 alkanes by titanium(IV) and zirconium(IV) cationic complexes: a DFT study / L. Yu. Ustynyuk, Yu. A. Ustynyuk, D. N. Laikov, V. V. Lunin. DOI 10.1023/A:1011332401298. // Russ. Chem. Bull. 2001. V. 50. P. 376.
- 133. Chemcraft graphical software for visualization of quantum chemistry computations: [сайт]. URL: https://www.chemcraftprog.com (дата обращения: 29.01.2021).