«УТВЕРЖДАЮ»

Ио руководителя Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук, доктор биологических наук Мартыненко В.Б.

bb Ny

2022 г.

ЗАКЛЮЧЕНИЕ

Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук

Диссертация «Превращения пероксидных продуктов озонолиза алкенов в присутствии гидразидов карбоновых кислот и пиридина» выполнена в Уфимском Институте химии — обособленном структурном подразделении Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук, в лаборатории биорегуляторов насекомых.

В период подготовки диссертации с 18.09.2017 по 17.09.2021 соискатель Беляева Эвелина Рашитовна обучалась в очной аспирантуре бюджетного научного учреждения государственного Федерального Уфимского федерального исследовательского центра Российской академии наук (УФИЦ РАН). С апреля 2019 года по настоящее время Эвелина научного сотрудника должности младшего Рашитовна работает В лаборатории биорегуляторов насекомых Уфимского Института химии обособленного структурного подразделения Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук (УфИХ УФИЦ РАН).

В 2017 году Беляева Эвелина Рашитовна окончила химический факультет Федерального государственного бюджетного образовательного образования «Башкирский высшего государственный учреждения университет» с присвоением квалификации «Химик. Преподаватель химии» специальности 04.05.01 специалитета ПО (освоила программу Фундаментальная и прикладная химия), после чего поступила в аспирантуру УФИЦ РАН по направлению подготовки 04.06.01 Химические науки, направленность (профиль) образовательной программы: Органическая химия, которую окончила в 2021 году с присвоением квалификации «Исследователь. Преподаватель-исследователь».

Справка № 11-22 о сдаче кандидатского экзамена по специальности 1.4.3. Органическая химия выдана 01 марта 2022 года Федеральным государственным бюджетным образовательным учреждением высшего образования «Башкирский государственный университет».

Справка № 37-21 о сдаче кандидатских экзаменов по дисциплинам: история и философия науки (химические науки), иностранный язык (английский язык) выдана 30 ноября 2021 года Федеральным государственным бюджетным образовательным учреждением высшего образования «Башкирский государственный педагогический университет им. М. Акмуллы».

Научный руководитель — Ишмуратов Гумер Юсупович, доктор химических наук (02.00.03 — Органическая химия), профессор, заведующий лабораторией биорегуляторов насекомых Уфимского Института химии — обособленного структурного подразделения Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук.

По итогам обсуждения диссертационной работы принято следующее заключение.

Оценка выполненной соискателем работы

Диссертационная работа Беляевой Эвелины Рашитовна является цельной, самостоятельной и законченной научно-исследовательской работой, выполненной на высоком профессиональном уровне, и отвечает критериям пп. 9-11, 13, 14 Постановления Правительства РФ от 24 сентября 2013 г. № 842 «О порядке присуждения ученых степеней», предъявляемым к кандидатским диссертациям.

Основные научные результаты, полученные соискателем

В ходе выполнения диссертационной работы получены следующие результаты:

- впервые выявлены особенности взаимодействия пероксидных продуктов озонолиза моно-, ди- и тризамещенных алкенов с гидразидами ряда алифатических и ароматических кислот в МеОН и апротонных (ТГФ и CH₂Cl₂) растворителях;
- разработан однореакторный озонолитический метод получения ацилгидразонов из нон-1-ена и природных терпенов ((-)-α-пинена и (+)-3-карена) под действием гидразидов алифатических (каприновой, циклогексановой) и ароматических (бензойной, *n* и *o*-гидроксибензойных, изоникотиновой, никотиновой) карбоновых кислот;
- разработан эффективный вариант синтеза с количественными выходами 3β ,28-дигидрокси-20-оксо-29-норлупана (мессагенина) из бетулина и 3β ,28-диацетокси-20-оксо-29-норлупана из диацетата бетулина низкотемпературным (-70 °C) озонолизом в этаноле с последующей обработкой пероксидов избытком ледяной уксусной кислоты, на их основе синтезирован ряд ранее не описанных N-ацилгидразонов конденсацией с гидразидами алифатических и ароматических карбоновых кислот;

- окисление (S)-(-)-лимонена показано, ЧТО ОДНИМ мольным эквивалентом озона в присутствии пиридина приводит к селективному эндо-циклической двойной связи c образованием расщеплению ненасыщенных (3S)-4-метил-3-(3-оксобутил)пент-4-еналя или (3S)-4-метил-3-(3-оксобутил)пент-4-еновой кислоты зависимости В ОТ природы используемого растворителя: CH₂Cl₂ или MeOH. Его исчерпывающий озонолиз как в CH_2Cl_2 , так и в MeOH в присутствии Ру приводит к (3S)-3ацетил-6-оксогептановой кислоте, причем в МеОН эта кислота образуется в смеси с её метиловым эфиром;
- установлено, что исчерпывающий озонолиз R-(-)-карвона в CH_2Cl_2 в присутствии пиридина приводит к 3-ацетилпентадиовой кислоте, в MeOH образуется ее монометиловый эфир и продукт его циклизации *бис*-лактон 2,8-диоксо-1-метилбицикло[3.3.0]октан-3,7-дион;
- озонолиз холестерина в CH₂Cl₂ в присутствии пиридина протекает с образованием смеси 1,2,4-триоксоланового производного и продукта его расщепления 3β-гидрокси-5-оксо-секохолестан-6-овой кислоты;
- среди синтезированных *N*-ацилгидразонов (производных (–)-α-пинена, (+)-3-карена, бетулина, диацетата бетулина) найдены 5, проявляющих умеренную цитотоксическую активность в отношении условно-нормальных и опухолевых клеточных линий эмбриональной почки человека Hek23, гепатоцеллюлярной карциномы человека HepG2, рака толстой кишки человека HTC-116, лейкемии THP-1, карциномы молочной железы МСF-7, острого Т-клеточного лейкоза Jurkat и нейробластомы человека SH-SY5Y в интервале IC₅₀ от 11.38 до 88.45 мкМ.

Личный вклад Беляевой Э.Р. состоит в выполнении всего объема экспериментальных исследований, обработке и обсуждении экспериментальных результатов, подготовке данных для научных публикаций, апробации результатов и написании работы.

Достоверность полученных результатов

Достоверность представленных результатов обеспечена высоким методическим уровнем проведения работы и основана на значительном объеме экспериментальных данных, полученных с применением современного испытательного и аналитического оборудования, и статистической обработке полученных результатов.

Научная новизна полученных результатов

В работе впервые получены следующие результаты:

- гидразиды карбоновых (каприновой, циклогексановой, никотиновой, изоникотиновой, бензойной, *о*-оксибензойной и *п*-оксибензойной) кислот применены в качестве восстановителей пероксидных продуктов озонолиза алкенов;
- активность гидразидов карбоновых кислот процессах восстановления пероксидов из нон-1-ена, (-)- α -пинена, (+)-3-карена и последующего нуклеофильного присоединения К промежуточным карбонильным производным определяется нуклеофильностью незамещенного атома азота реагентов И возрастает ряду: гидроксибензойная < *п*-гидроксибензойная < бензойная < никотиновая < изоникотиновая < циклогексановая < каприновая;
- разработан однореакторный озонолитический метод получения ацилгидразонов из алкенов (нон-1-ена, (-)-α-пинена и (+)-3-карена) под действием гидразидов алифатических и ароматических карбоновых кислот;
- предложен эффективный вариант синтеза с количественными выходами мессагенина из бетулина и 3β ,28-диацетокси-20-оксо-29-норлупана из диацетата бетулина низкотемпературным (-70 °C) озонолизом в этаноле с последующей обработкой пероксидов 15-кратным мольным избытком ледяной уксусной кислоты;

• в результате изучения озонолитических превращений S-(-)-лимонена, R-(-)-карвона и холестерина в хлористом метилене или метаноле в присутствии пиридина получены различные в зависимости от природы растворителя кислородсодержащие производные и предложены механизмы их образования. Один из них — $\mathit{биc}$ -лактон — 2,8-диоксо-1-метилбицикло[3.3.0]октан-3,7-дион, является универсальным мономером в синтезе полиэфиров.

Практическая значимость результатов

Разработан однореакторный озонолитический метод получения ацилгидразонов из алкенов под действием гидразидов карбоновых кислот. Из более 30 впервые полученных N-ацилгидразонов на основе нон-1-ена, (-)- α пинена и (+)-3-карена, бетулина, диацетата бетулина 5 проявили умеренную цитотоксическую активность В отношении условно-нормальных опухолевых клеточных линий (эмбриональной почки человека Hek23, гепатоцеллюлярной карциномы человека HepG2, рака толстой кишки человека HTC-116, лейкемии THP-1, карциномы молочной железы MCF-7, острого Т-клеточного лейкоза Jurkat и нейробластомы человека SH-SY5Y) в интервале IC_{50} от 11.38 до 88.45 мкМ *in vitro*.

Разработан эффективный вариант синтеза с количественными выходами мессагенина из бетулина и 3β ,28-диацетокси-20-оксо-29-норлупана из диацетата бетулина низкотемпературным (-70 °C) озонолизом в этаноле с последующей обработкой пероксидов 15-кратным мольным избытком ледяной уксусной кислоты.

Полнота изложения материалов диссертации в опубликованных работах

По материалам работы опубликовано 8 статей в журналах, входящих в международные базы данных Web of Science, Scopus, 3 статьи в журналах,

индексируемых в базе данных РИНЦ и тезисы 15 докладов всероссийских и международных конференции.

Основные публикации по теме диссертации:

- 1. Ozonolytic transformations of (R)-(-)-carvone in the presence of pyridine / Myasoedova Y.V., Garifullina L.R., **Belyaeva E.R.**, Ishmuratov G.Y. // J. Chin. Chem. Soc. 2022. Vol. 69 (4). P. 744-749.
- 2. Синтез производных изоникотиновой и салициловой кислот из (-)- α -пинена и (+)- Δ^3 -карена / Мясоедова Ю.В., **Нуриева (Беляева)** Э.Р., Гарифуллина Л.Р., Ишмуратов Г.Ю. // Журнал общей химии. − 2020. − Т. 90. № 11. С. 1654–1660.
- 3. Гидразиды органических кислот в превращениях пероксидных продуктов озонолиза нон-1-ена / Мясоедова Ю.В., Гарифуллина Л.Р., **Нуриева (Беляева)** Э.Р., Ишмуратов Г.Ю. // Журнал органической химии. 2019. Т. 55. № 11. С. 1746—1750.
- 4. Превращения пероксидных продуктов озонолиза (–)-α-пинена и (+)-3-карена под действием гидразида *п*-гидроксибензойной кислоты / Мясоедова Ю.В., **Нуриева (Беляева)** Э.Р., Гарифуллина Л.Р., Ишмуратов Г.Ю. // Журнал органической химии. 2020. Т. 56. № 9. С. 1471–1475.
- 5. Превращения пероксидных продуктов озонолиза нон-1-ена под действием гидразидов карбоновых кислот / Мясоедова Ю.В., **Нуриева** (**Беляева**) **Э.Р.**, Гарифуллина Л.Р., Ишмуратов Г.Ю., Ишмуратова Н.М. // Журнал органической химии. − 2020. − Т. 57. − №1. − С. 109−114.
- 6. Первый синтез C^{20} -ацилгидразонов из бетулина / Мясоедова Ю.В., **Беляева Э.Р.**, Гарифуллина Л.Р., Просвирнина Д.А., Ишмуратов Г.Ю. // Журнал органической химии. -2022. Т. 58. № 1. С. 96-101.
- 7. Озонолитические трансформации (S)-(-)-лимонена и абиетиновой кислоты в присутствии пиридина / Мясоедова Ю.В., Гарифуллина Л.Р., **Нуриева (Беляева) Э.Р.**, Кравченко А.А., Ишмуратов Г.Ю. // Химия природных соединений. 2019. Вып. 3. С. 406-408.

- 8. Превращения пероксидных продуктов озонолиза (-)-α-пинена и (+)-3-карена под действием гидразидов каприновой и бензойной кислот / Мясоедова Ю.В., Гарифуллина Л.Р., **Нуриева (Беляева) Э.Р.**, Ишмуратова Н.М., Ишмуратов Г.Ю. // Химия природных соединений. − 2020. − № 2. − С. 217-220.
- 9. Озонолиз холестерина в присутствии пиридина / Легостаева Ю.В., Гарифуллина Л.Р., **Нуриева (Беляева)** Э.Р., Ишмуратова Н.М. // Вестник Башкирского университета. 2018. Т. 23, № 4. С. 1052-1055.
- 10. Превращения пероксидных продуктов озонолиза природных монотерпенов под действием гидразида циклогексанкарбоновой кислоты / **Нуриева (Беляева) Э.Р.**, Мясоедова Ю. В., Гарифуллина Л. Р., Дунаева, Н. В. Ишмуратова Н. М. // Вестник Башкирского университета. 2021. Т. 26. №2. С. 350-354.
- 11. Гидразиды кислот в превращениях пероксидных продуктов озонолиза монотерпенов / Мясоедова Ю.В., Гарифуллина Л.Р., **Нуриева** (**Беляева**) **Э.Р.**, Ишмуратов Г.Ю. // Известия Уфимского научного центра РАН. − 2020. − №1. − С. 24-31.

Соответствие содержания диссертации паспорту специальности

Диссертационная работа Беляевой Эвелины Рашитовны соответствует паспорту научной специальности 1.4.3. Органическая химия, а именно по пункту1 (выделение и очистка новых соединений), пункту 3 (развитие рациональных путей синтеза сложных молекул) и пункту 7 (выявление закономерностей типа «структура-свойство»).

Диссертация «Превращения пероксидных продуктов озонолиза в присутствии гидразидов карбоновых кислот и пиридина» Беляевой Эвелины Рашитовны рекомендуется к представлению к защите на соискание ученой степени кандидата химических наук по специальности 1.4.3. Органическая химия.

Заключение принято на заседании объединенного научного семинара Уфимского института химии – обособленного структурного подразделения Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук.

Присутствовало на заседании 36 человек. Результаты голосования: «за» – 36 чел., «против» – нет, «воздержалось» – нет, протокол № 3 от 6 июня 2022 г.

Председатель объединенного научного семинара УфИХ УФИЦ РАН, д.х.н.

_Хурсан С.Л.

Секретарь объединенного научного семинара УфИХ УФИЦ РАН, к.х.н.

Юсупова А.Р.