Федеральное государственное автономное образовательное учреждение высшего образования «Крымский федеральный университет им. В. И. Вернадского» Институт «Медицинская академия имени С. И. Георгиевского»

На правах рукописи

ЛАЗАРЕВА ЗОЯ СТАНИСЛАВОВНА

ВАРИАБЕЛЬНОСТЬ МИТОХОНДРИАЛЬНЫХ И ЯДЕРНЫХ ГЕНОВ У ПРЕДСТАВИТЕЛЕЙ СЕМЕЙСТВА ZYGAENIDAE И ЕЁ ЗНАЧЕНИЕ ДЛЯ ИЗУЧЕНИЯ СИСТЕМАТИКИ И ФИЛОГЕНИИ ДАННОГО СЕМЕЙСТВА

1.5.7. Генетика (биологические науки)

Диссертация на соискание учёной степени кандидата биологических наук

> Научный руководитель: доктор биологических наук, профессор К. А. Ефетов

Симферополь – 2022

оглавление

ВВЕДЕНИЕ	5
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ	11
1.1. Молекулярно-генетические маркеры, используемые для изучения Insecta	11
1.2. Секвенирование гена цитохромоксидазы как один из инструментов	
молекулярно-генетических исследований	16
1.2.1. ДНК-штрихкодирование Insecta	16
1.2.2. Изменения в структуре цитохромоксидазы, выявленные в ходе	
изучения ДНК-штрихкодов, и их влияние на функционирование молекулы	24
1.3. Общая характеристика и современное систематическое положение	
семейства Zygaenidae	28
1.4. Степень изученности и проблематика молекулярно-генетической	
идентификации у представителей семейства Zygaenidae	33
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ	41
2.1. Общая характеристика экземпляров, выбранных для проведения	
исследования	41
2.2. Выбор ДНК-маркеров	43
2.3. МЕТОДЫ	46
2.3.1. Выделение ДНК	46
2.3.2. Полимеразная цепная реакция 5'-участка гена, кодирующего первую	
субъединицу цитохромоксидазы	48
2.3.3. Полимеразная цепная реакция ядерных генов EF-1a, GAPDH, IDH,	
MDH, RpS5, wingless	51
2.3.4. Очистка продуктов ПЦР и секвенирование нуклеотидных	
последовательностей ДНК	52
2.3.5. Статистические алгоритмы и компьютерные программы,	
использованные для анализа полученных последовательностей 5'-участка	
гена, кодирующего первую субъединицу цитохромоксидазы	53

ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ	57
3.1. Общая характеристика полученных нуклеотидных	
последовательностей 5'-участка гена, кодирующего первую субъединицу	
цитохромоксидазы y Zygaenidae	57
3.2. Вариабельность 5'-участка гена, кодирующего первую субъединицу	
цитохромоксидазы, у представителей рода Illiberis	65
3.3. Вариабельность 5'-участка гена, кодирующего первую субъединицу	
цитохромоксидазы, у представителей рода Rhagades	71
3.4. Вариабельность 5'-участка гена, кодирующего первую субъединицу	
цитохромоксидазы, у представителей рода Zygaenoprocris	75
3.5. Вариабельность 5'-участка гена, кодирующего первую субъединицу	
цитохромоксидазы, у представителей рода Adscita	80
3.6. Вариабельность 5'-участка гена, кодирующего первую субъединицу	
цитохромоксидазы, у представителей рода Jordanita	85
3.7. Вариабельность 5'-участка гена, кодирующего первую субъединицу	
цитохромоксидазы, у представителей рода Zygaena	92
3.8. Сравнительный анализ секвенирования митохондриальных и ядерных	
генов	97
3.9. Исследование аминокислотных последовательностей,	
соответствующих ДНК-штрихкодам у Zygaenidae	99
ЗАКЛЮЧЕНИЕ	114
ВЫВОДЫ	115
СПИСОК СОКРАЩЕНИЙ	116
СПИСОК ЛИТЕРАТУРЫ	117
СПИСОК ИЛЛЮСТРАТИВНОГО МАТЕРИАЛА	155
ПРИЛОЖЕНИЯ	159
Приложение А. Часть 1. Список экземпляров, использованных в	
исследовании	159
Приложение А. Часть 2. Список последовательностей ДНК-штрихкодов,	

полученных в процессе исследования, которые в Генбанке можно увидеть,	
только перейдя по ссылке номера последовательности	187
Приложение В. Дендрограмма, построенная с помощью программного	
инструментария проекта BOLD (двухпараметрическая модель Кимуры,	
СОІ, длина > 550 п.н.)	246
Приложение С. Дендрограмма, построенная с использованием данных	
секвенирования митохондриальной ДНК и ядерных генов	256

введение

Актуальность темы исследования. Со второй половины ХХ столетия происходит бурное развитие биохимии И молекулярной биологии, исследования жизнедеятельности всех аспектов живых организмов перемещаются на молекулярный уровень. Современные методы решили проблему прочтения любого гена или его фрагмента, поэтому интенсивно массивные базы данных, содержащие информацию создаются 0 последовательностях нуклеотидов различных участков генома такие, например, как GenBank и т. д. (Benson et al., 2013). Молекулярногенетические подходы все большее значение приобретают в решении вопросов эволюционной биологии, биосистематики, таксономии (DeSalle et al., 2005; Hebert, Gregory, 2005; De Moya et al., 2017). Представляют интерес результаты секвенирования ДНК также для биогеографии, агроэкологии и для биологии сохранения живой природы, например, для изучения и разграничения обычных и эндемичных или редких видов (Vernooy et al., 2010; Stein et al., 2014; Nazari et al., 2016; Souza et al., 2016). Сравнение последовательностей определенных участков ДНК позволяет определять степень филогенетической близости исследуемых таксонов, разграничивать морфологически сходные виды, виды-двойники, описывать новые виды и т. д. (Chapple, Ritchie, 2013; Efetov, Tarmann, 2013a; Ratnasingham, Hebert, Gopurenko, 2016). Также результаты 2013; Mitchell, секвенирования митохондриального и/или ядерного геномов используются в решении вопросов популяционной генетики и селекции (Hajibabaei et al., 2007; Ilyasov et al., 2018). Виды являются основными единицами биологического разнообразия, но их идентификация и разграничение часто затруднено. Степень выраженности затруднений различна, в частности, достаточно высока в таксоне Insecta. Штрихкоды ДНК, короткие стандартизированные участки генома, в последнее время стали популярным инструментом для корректной делимитации видов (Неретина, Мюге, 2013; Pentinsaari, 2016;

Pentinsaari et al., 2016). В последние годы создаются массивные электронные базы данных последовательностей ДНК-штрихкодов, эта информация используется для описания новых видов, подродов, родов, уточнения границ уже имеющихся таксонов (Аникин и соавт., 20156; Kekkonen et al., 2015; Mutanen et al., 2016; Praz et al., 2019).

Для эволюционных биологов семейство Zygaenidae (Пестрянки) является крайне интересной группой из-за обширного индивидуального и географического разнообразия их ярко окрашенных видов, а также широкого распространения и специфической системы химической защиты (Efetov, 2004; Niehuis et al., 2006с; Briolat et al., 2018; Zagrobelny et al., 2018). Представители изучаемого семейства имеют большое народнохозяйственное значение (Efetov, 2004) и являются хорошими индикаторными видами для природных сообществ животных и растений (Schmitt, 2003). Некоторые виды Zygaenidae являются вредителями сельскохозяйственных культур (Tarmann, 2009). К настоящему времени известно более 1000 видов Zygaenidae, и эта цифра увеличивается с каждым годом (Efetov, Tarmann, 2012; Hofmann, Tremewan, 2017). Систематика этого таксона находится в динамике, всё время совершенствуется, при этом большое внимание в последние годы уделяется и молекулярным признакам (Nichuis et al., 2006с; Efetov, Tarmann, 2017; Hofmann, Tremewan, 2017; Litman et al., 2018).

Таким образом, особую важность представляет правильный подбор молекулярных методов и использование их в комплексе с изучением данных морфологии, биологии и экологии для исследования данного семейства.

Степень разработанности. Комплексное изучение Zygaenidae с использованием молекулярных данных предпринималось Niehuis с соавторами (2006а, 2006b, 2006с, 2007). К сожалению, эти исследования фокусировались в основном только на подсемействе Zygaeninae, род *Zygaena* Fabricius, 1775 (Niehuis et al., 2006а, 2007), с единичными включениями видов Procridinae и Chalcosiinae (Niehuis et al., 2006b). Некоторые ДНК- и РНК-последовательности Zygaenidae получены в рамках научных проектов,

направленных на изучение других групп насекомых, и чаще всего эти последовательности использованы в качестве дополнительного аспекта исследований (Huemer et al., 2014; Ashfaq et al., 2017; Peng et al., 2017; Litman et al., 2018); эти работы в основном включали данные для видов рода *Zygaena* (Huemer et al., 2014), в то время как представители других родов представлены в них единично (Ashfaq et al., 2017; Peng et al., 2017; Litman et al., 2018).

Тем не менее, информативности этих маркеров оказалось недостаточно для полного разрешения спорных вопросов, как на уровне всего семейства, так и подсемейств, родов, подродов.

Цели и задачи исследования. Цель – изучить изменчивость митохондриальных и ядерных генов у видов семейства Zygaenidae и показать возможность использования для изучения систематики и филогении видов данного семейства. Для достижения настоящей цели были поставлены следующие задачи:

– расшифровать нуклеотидные последовательности участков митохондриального гена СОІ и провести их сравнительный анализ.

– определить эффективность ДНК-штрихода как молекулярного маркера для дифференцировки таксонов в семействе Zygaenidae.

– оценить информативность ядерных генов: EF-1α, GAPDH, IDH, MDH, RpS5, wingless, для видовой делимитации представителей семейства Zygaenidae.

– выявить изменения в аминокислотном составе и степень вариабельности аминокислотных последовательностей, соответствующих участку ДНК-штрихкода видов семейства Zygaenidae.

Научная новизна исследований. Впервые в мире была создана библиотека штрихкодов видов семейства Zygaenidae для 242 видов, представляющих 4 подсемейства Procridinae, Chalcosiinae, Callizygaeninae и Zygaeninae, а также расшифрованы соответствующие 5'-участку гена COI (ДНК-штрихкоду) аминокислотные последовательности (длиной 219

аминокислот). Впервые в мире были получены последовательности генов EF-1α, GAPDH, IDH, MDH, RpS5 и wingless для 33 видов Zygaenidae. Показана необходимость сочетанного применения митохондриальных и ядерных маркеров для молекулярно-генетического анализа биоразнообразия.

На основе исследования последовательности гена цитохромоксидазы построены дендрограммы и проанализированы данные, полученные с помощью этих дендрограмм, с целью выяснения возможности использования молекулярных признаков для улучшения существующей систематики данного таксона, а также применения этих признаков для разделения криптических видов, выяснения систематического положения некоторых родов, подродов, видов и подвидов семейства Zygaenidae.

Теоретическая и практическая значимость работы. Результаты исследования вносят существенный вклад в область систематики и филогении Zygaenidae. Работа может служить фундаментальной основой для проведения ревизии таксономической структуры семейства Zygaenidae. Полученные результаты важны для понимания микроэволюционных процессов, происходящих в геноме животных, данные о несинонимичных заменах позволяют оценить их вклад в функционирование белковых молекул. Результаты диссертационной работы могут быть использованы при чтении курсов лекций для студентов биологических специальностей вузов и для проведения практических занятий.

Методология и методы исследования. В работе были использованы современные методы молекулярной биологии, а именно: выделение ДНК, постановка полимеразной цепной реакции (ПЦР) со специфичными праймерами для 5'-участка гена СОІ и ядерных генов (EF-1α, GAPDH, IDH, MDH, RpS5, а также wingless), подготовка проб и секвенирование.

Для качественного, количественного и филогенетического анализов полученных последовательностей были использованы специальные компьютерные программы, позволяющие выравнивать последовательности, переводить их в соответствующие аминокислотные, строить дендрограммы и

8

анализировать состав полученных последовательностей.

Основные положения, выносимые на защиту.

1. Молекулярные методы (например, ДНК-штрихкодирование) могут быть использованы для решения задач филогении и таксономии Zygaenidae.

2. ДНК-штрихкоды и ядерные гены являются дополнительными молекулярными критериями для делимитации видов Zygaenidae.

Степень достоверности результатов. Достоверность результатов обеспечена использованием современных молекулярно-филогенетических подходов, обработкой полученных данных с помощью актуальных методов: ближайшего связывания (Neighbor Joining, NJ) с использованием двухпараметрической модели Кимуры (Kimura 2 parameter, K2P). Для построения деревьев и статистической обработки результатов использованы современные компьютерные программы: MEGA 6, DNAsp v.5, BioEdit, Chromas. Для подтверждения результатов исследования приведены табличные данные, филогенетические деревья, дендрограммы, графические данные.

Апробация работы. Результаты работы были представлены на украинских, российских и международных конференциях: Х Украинском биохимическом съезде (Одесса, 2010); XII, XIII, XV, XVI International Symposia on Zygaenidae (Hatay, Turkey, 2010; Innsbruck, Austria, 2012; Mals, Italy, 2016; İzmir, Turkey, 2018); XVII, XVIII European Congresses of Lepidopterology (Luxembourg, Luxembourg, 2011; Blagoevgrad, Bulgaria, 2013), 89-ой и 90-ой Международной научно-практической конференции студентов и молодых ученых «Теоретические и практические аспекты современной медицины» 2017. IV (Симферополь, 2018). научно-практической конференции профессорско-преподавательского состава, аспирантов, студентов и молодых ученых «Дни науки КФУ им. В. И. Вернадского» (Симферополь, 2018), VIII научно-практической конференции «Генетика – фундаментальная основа инноваций в медицине и селекции» (Ростов-на-Дону, 2019).

Публикации. По теме диссертации опубликовано 18 работ, в том числе 3 статьи в рецензируемых журналах из списка ВАК Минобразования России, 2 –

в журналах, рецензируемых в базах Scopus и Web of Science, а также 13 тезисов представлены в материалах международных съездов, конгрессов, симпозиумов и конференций.

Структура и объём работы. Диссертация состоит из введения, 3 глав, заключения, выводов и списка литературы. Работа изложена на 256 страницах, иллюстрирована 11 рисунками и содержит 34 таблицы в основной части и две таблицы в приложении. Список литературы насчитывает 310 наименований, из них 262 на иностранном языке.

Благодарности. Автор искренне благодарит научного руководителя профессора К. А. Ефетова за обучение, всестороннюю помощь, поддержку на всех этапах исследования и многолетнее сотрудничество. Автор благодарен исследователями из разных стран: д.б.н. О. Г. Горбунову, А. Н. Замесову (Россия), Dr G. M. Tarmann (Австрия), В. Mollet, Е. Drouet и J.-М. Desse (Франция) за предоставленный биологический материал. Также автор считает своим долгом выразить благодарность Prof. P. D. N. Hebert (Канада) и Dr R. Rougerie (Франция), а также д.б.н. О. Г. Горбунову и И. Г. Мещерскому (Россия) за плодотворное сотрудничество и техническую поддержку при проведении исследований.

Данная работа частично выполнена при финансовой поддержке проекта программы развития ФГАОУ ВО Крымский Федеральный Университет им. В. И. Вернадского «Сеть академической мобильности «Академическая мобильность молодых ученых России – АММУР» ГСУ/2016/3.

Личное участие автора. Автор лично участвовал в планировании и проведении экспериментов, обработке и интерпретации полученных результатов, подготовке и написании научных публикаций, апробации результатов и представлении их на конференциях. Сбор материала проводился научным руководителем и лично автором, морфологический анализ проводился научным руководителем. Некоторые результаты анализа ДНК получены лично автором. Вся работа по молекулярному анализу была проведена лично автором. Выводы сделаны на основании собственных оригинальных данных.

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Молекулярно-генетические маркеры, используемые для изучения Insecta

Класс Insecta является самым многочисленным в царстве животных и характеризуется широким распространением. При этом многие виды являются вредителями сельского хозяйства (Armstrong, Ball, 2005; Mitchell, Gopurenko, 2016). С другой стороны, среди представителей этого класса много редких или эндемичных видов (Brehm et al., 2016). Некоторые насекомые используются в качестве биоиндикаторов при мониторинге состояния окружающей среды (Schmitt, 2003; Tarmann, 2004, 2009; Pentinsaari et al., 2014).

В настоящее время большинство исследований включают в себя в качестве основного либо дополнительного инструмента анализ нуклеотидных последовательностей в ДНК так же, как и анализ соответствующих аминокислотных последовательностей белков (Лухтанов, Кузнецова, 2009; Туранов и соавт., 2012; Young, Hebert, 2015). Эти исследования можно проводить для изучения различных систематических групп организмов, в том числе обитающих в разных географических регионах и т. д. (Банникова, 2004; Водолажский, Страдомский, 2008а, 2008б; Mikkola, Stahls, 2008; Водолажский и соавт., 2009; Moriniére et al., 2019). В основном проводят изучение нуклеиновых кислот по таким направлениям:

1. Расшифровка последовательностей нуклеотидов в генах и сравнение полученных результатов у различных организмов. Выявление замен нуклеотидов в анализируемом участке генома в разных филетических линиях позволяет решить вопросы биосистематики, филогении, видовой делимитации и т.п.

2. Выявление генов, их участков или отдельных копий известных повторов, общих для ДНК разных видов, но имеющих специфичность для

конкретного таксона. Эта область является интересной для поиска соответствия между эволюцией отдельных таксонов и появлением/распространением отдельных элементов или повторяющихся групп в геномах.

3. Исследование крупных участков генома с невыясненными функциями и иногда с неясной локализацией методом сканирования мутаций по всему геному – ПЦР, ПДРФ (полиморфизм длин рестрикционных фрагментов), молекулярная ДНК×ДНК гибридизация. Эти методы позволяют дать общую оценку сходства видов на молекулярно-генетическом уровне (Банникова, 2004).

Фрагменты митоДНК, которые обычно используются для видовой идентификации особей, а также в популяционном и/или филогенетическом анализах разных групп организмов, как правило, включают в себя: цитохром c оксидазу 1 (COI), цитохром c оксидазу 2 (COII) и цитохром b (Brown et al., 1999; Simmons, Weller, 2001; Levy et al., 2002; Funk, Omland, 2003; Островерхова и соавт., 2015; Fuller et al., 2015; Конусова и соавт., 2016; Ильясов и соавт., 2016). Белковые молекулы, полученные при трансляции копий митохондриальных генов COI и цитохрома b, являются важными компонентами цепи тканевого дыхания, так как представляют собой часть комплексов, способствующих созданию Н⁺ градиента для образования АТФ. Очевидность консервативности последовательностей этих генов вытекает из необходимости и универсальности процессов образования энергии в митохондриях всех живых организмов (Воронова и соавт., 2012; Pentinsaari, Pentinsaari al.. 2016; et 2016). Оправданность использования митохондриальных генов в филогенетических реконструкциях подтверждена во многих работах (Lunt et al., 1996; Remigio, Hebert, 2003; Воронова и соавт., 2011; Дурнова и соавт., 2014; Демин, Полуконова, 2014; Вишневская, 2018). Митохондриальные гены в качестве инструментов для таксономических и обладают эволюционных исследований рядом преимуществ: лёгкое выделение, наследование по материнской линии, отсутствие рекомбинации,

большое копий. определённый уровень консервативности число последовательностей, и в то же время наличие сайтов мутационной активности (Lunt et al., 1996; Janzen et al., 2005; Shashank et al., 2015). Также митохондриальные гены имеют более высокий уровень эволюционных изменений по сравнению с ядерными (например, генами, кодирующими РНК малой субъединицы рибосом) и поэтому с их помощью эффективнее проводить делимитацию эволюционно близких видов. COI ген – один из наиболее консервативных белок-кодирующих генов у эукариотов, поэтому он лучше демонстрирует филогенетический сигнал (Strüder-Kypke, Lynn, 2010). Согласно Hill (2015) митохондриальные гены (в том числе ген COI), которые используются в качестве штрихкодов ДНК, не просто несут нейтральные признаки аллопатрического видообразования, они могут выступать в качестве эффективных маркеров границ вида, потому что играют значительную роль в видообразовании.

некоторых публикациях авторы используют участки В другие митохондриального генома (Mardulyn, Whitfield, 1999). Например, в работе Cristescu и соавторов (2001) использован митохондриальный ген ND5. В работе Vila и Björklund (2004) показано успешное применение генов контролирующего региона рДНК, ND1 и ND4. Результаты секвенирования гена 16S PHK используются наряду с COI и цитохромом b в работе Nicolas и соавторов (2012). Результаты секвенирования гена 16S РНК обсуждались Niehuis и соавторами (2006b, 2006c, 2007) в работах по филогенетическому анализу надсемейства Zygaenoidea и семейства Zygaenidae. В этих были исследованиях В лополнение использованы ланные полного секвенирования митохондриального гена первой субъединицы НАДНдегидрогеназы, генов лейциновой и валиновой тРНК, участка гена рРНК малой субъединицы (12S PHK). Тем не менее, несмотря на успехи в решении вопросов эволюционной биологии, биосистематики, таксономии с помощью молекулярно-генетических исследований (Hajibabaei et al., 2005; Huemer et al., 2014; Brehm et al., 2016; Mitchell, Gopurenko, 2016), данные, полученные в

13

результате секвенирования только митохондриальных генов (или их участков), в некоторых случаях вступают в контрадикцию с концепциями, разработанными на основе традиционных методов (Niehuis et al., 2007; Hausmann, Huemer, 2011).

Основные морфологических гипотезы различия ланных И молекулярных реконструкций говорят о том, что только небольшая часть генетического материала проявляется на морфологическом уровне. При изучении молекулярных данных анализируются также нейтральные, не проявляющиеся в фенотипе мутации, участки генома с невыясненными функциями, большей степени подверженные параллельной В И конвергентной эволюции (Tenaillon et al.. 2008). Определённые молекулярные своё маркеры оказывают влияние на результаты филогенетического анализа. Те участки генома, которые кодируют белки, прямо проявляются в фенотипе. Контролируемые ими признаки, вполне возможно отражаются на приспособленности организма (Pentinsaari, 2016; Pentinsaari et al., 2016). Следовательно, изменения в таких генах происходят с меньшей скоростью, чем в некодирующих участках, и в связи с этим, в кодирующих областях может происходить конвергентная эволюция, что, естественно, отражается на реконструкциях филогении, выполненных на основе этих данных (Банникова, 2004; Smith et al., 2008). Возможной причиной расхождения данных при реконструкциях с использованием последовательностей ядерных и митохондриальных генов может быть тип наследования митохондриальной ДНК, потому что она передается потомкам только по материнской линии и, следовательно, ее наследование не подчиняется законам Менделя (Ballard, Whitlock, 2004). Последовательности ДНК, находящейся в митохондриях, могут быть изменены в связи с действием внутриклеточных бактерий-симбионтов таких, например, как Wolbachia (Wu et al., 2004; Hilgenboecker et al., 2008; Smith et al., 2012; Kodandaramaiah et al., 2013). С другой стороны, ядерная и митохондриальная ДНК могут обмениваться наследственной информацией, что приводит к обнаружению в ядерной ДНК копий митохондриальных генов, которые при этом не экспрессируются и являются псевдогенами (Arctander, 1995; Williams, Knowlton, 2001). Ошибочные филогенетические реконструкции возможны также вследствие того, что исследуемые фрагменты ДНК могут на самом деле представлять собой ядерные гомологи митохондриальных генов. Противоречивые результаты могут возникать при недостаточно качественном выборе генных маркеров, использовании слишком малой выборки, ошибочных использовании первичной методов интерпретации филогенетической информации (Банникова, 2004). Исходя из вышесказанного, ядерные гены, кодирующие рибосомную РНК (18S рДНК, 28S рДНК), являются востребованными при использовании В молекулярно-генетических исследованиях насекомых и, в частности, Lepidoptera (Markmann, Tautz, 2005; Lukhtanov et al., 2014). Также большое внимание исследователей привлекают ядерные гены EF-1α, EF-2α, wingless и др. (Wahlberg, Wheat, 2008; Водолажский и соавт., 2009; Ishiwata et al., 2011; Nieukerken et al., 2012; Wang et al., 2015).

Ядерные гены вступают как в процессы согласованной эволюции, так и могут подвергаться действию ретикулярной эволюции, присущей всем ядерным генам у организмов с половым размножением, в отличие от простого механизма наследования митохондриальных генов (Schlötterer et al., 1994; Schlötterer, Tautz, 1994; Ефимова, 2016). Результаты, полученные на основании различных данных, молекулярных В редких случаях согласуются не как С морфологическими данными, так и между собой (Moritz, Cicero, 2004; Chapple, Ritchie, 2013; Hausmann et al., 2013). Тем не менее, дополнительное использование молекулярных критериев представляется необходимым в тех случаях, когда на основе только морфологических признаков наблюдается неоднозначность в таксономии, выявляется конвергентная морфология или фенотипическая пластичность. Такие ситуации могут маскировать истинное разнообразие (Trewick, 2000; Smith et al., 2006; Witt et al., 2006; Lukhtanov et al., 2008, 2009; Dinca et al., 2011, 2013; Raupach et al., 2018).

1.2. Секвенирование гена цитохромоксидазы как один из инструментов молекулярно-генетических исследований

1.2.1. ДНК-штрихкодирование Insecta

На протяжении почти трёх столетий проводится инвентаризация видов, изучаются их взаимоотношения и выясняются признаки, позволяющие провести однозначную и окончательную делимитацию таксонов (Smith et al., 2005; Carstens et al., 2013). Миллионы видов многоклеточных организмов ждут описания, и это является серьёзным барьером для научного прогресса. Более того, морфологические подходы не могут обеспечить перепись этих описание своевременным ИЛИ доступным способом; на видов пяти миллионов видов животных необходимо потратить В среднем 250 миллиардов долларов (Carbayo, Marques, 2011). Если бы изучение биоразнообразия продолжалось с использованием классических подходов, то на создание полного каталога Природы понадобилось бы несколько десятилетий (Mitchell, 2008; Chapple, Ritchie, 2013; Ratnasingham, Hebert, 2013; Young, Hebert, 2015). Традиционные таксономические методы являются в некоторых случаях трудоёмкими и узкоспециализированными (Scotland et al., 2003). Согласно Woodruff (2001) на текущий момент в мире имеется примерно 15 тысяч морфологов-таксономистов, при этом есть о таксоны, которые могут быть определены лишь несколькими специалистами. На сегодня примерно 1,7 млн. видов живых организмов известно науке, в то время как по различным оценкам существует их не менее 10 млн. (Gaston, Hudson, 1994). Следовательно, примерно 80 % видов еще ждут своего описания (Godfray et al., 1999; Gregory, 2005; Waugh, 2007; Ratnasingham, Hebert, 2013). Согласно мнению некоторых авторов число неописанных видов достигает 90 % (Mitchell, 2008). В частности в таксоне Lepidoptera считаются описанными 160 000 видов и около 500 000 еще ждут своего описания (Kristensen et al., 2007; Mutanen et al., 2010).

Для поиска доказательств идеи о существовании видоспецифичных участков ДНК митохондриального генома с высокой степенью стабильности, которые можно успешно и эффективно использовать для разграничения видов, в 2003 году был инициирован международный проект BOLD: The Barcode of Life Data Systems с центром в Biodiversity Institute of Ontario (University of Guelph, Канада). Стандартным ДНК-маркером (ДНКбыл выбран 5'-концевой штрихкодом) для животных фрагмент митохондриального гена I субъединицы цитохромоксидазы (COI), состоящий из 658 пар нуклеотидов (Hebert et al., 2003a, 2003b; Ratnasingham, Hebert, 2007), по некоторым источникам – 648 пар нуклеотидов (Wiemers, Fiedler, 2007; Huemer et al., 2014). Savolainen с соавторами (2005) считают, что ДНКштрихкодирование поможет интенсифицировать написание «Энциклопедии Жизни». Проект BOLD доказал высокую эффективность этого метода идентификации организмов. Выяснено, что межвидовая вариабельность 5'концевого участка СОІ достоверно выше, чем внутривидовая (Hebert et al., 2010; Chapple, Ritchie, 2013; Zahiri et al., 2014). Для растений поиски стандартного универсального ДНК-маркера еще продолжаются (Шнеер, 2007, 2009; Hollingsworth et al., 2011; Pećnikar et al., 2014).

Цель международной программы «Штрихкод Жизни» – создать библиотеку ДНК-штрихкодов для всех видов, обитающих на Земле, путём расшифровки одного и того же участка генома каждого из них. По полученному ДНК-штрихкоду получается однозначно идентифицировать любой организм даже имея в наличии всего лишь маленький участок ткани, практически без его повреждения. Определение по ДНК очень актуально в тех случаях. когда классические методы не позволяют однозначно определить положение таксона, например, криптические виды, или виды обладающие половым диморфизмом (Savolainen et al., 2005). Важный аспект применения данного метода заключатся в том, что, что последовательности ДНК будут идентичными у особей на любой стадии развития, большое значение это имеет, например, для класса Insecta (Miller et al., 2005; Caterino,

Тіshechkin, 2006; Ahrens et al., 2007). ДНК-штрихкодирование делает более простым определение видов с малым размером особей, а также особей одного вида с выраженной морфологической вариабельностью. Важную роль этот метод играет в изучении редких видов, представителей которых нежелательно уничтожать даже в научных целях. Немаловажно, что ДНК также можно выделить из заспиртованных препаратов, засушенных образцов и т. д. (Pook, McEwing, 2005; Smith et al., 2012; Stein et al., 2014). В последние годы создаются массивные базы данных последовательностей ДНК-штрихкодов, эта информация используется для описания новых видов, подвидов, уточнения границ таксонов (Демин, 2011; Hausmann et al., 2011; Huemer, Mutanen, 2012; Mutanen et al., 2013).

Жизни» особенное Проект «Штрихкод внимание уделяет стандартизации и координированию работы. Информация об организмах, последовательности ДНК которых добавляются в библиотеку, обязана быть максимально полной и чёткой и включать в себя данные о времени и месте сбора, точные координаты местности, фотографии образцов и валидное систематическое положение данного таксона (Huemer et al., 2014; Zahiri et al., 2014; Young, Hebert, 2015). Полученные штрихкоды хранятся на сайте проекта BOLD (http://www.barcodinglife.com/) и могут использоваться для идентификации новых образцов, либо, если последовательность ДНК какоголибо образца не имеет достаточно совпадений с уже имеющимися в базе, для описания нового вида. Стандартный порог дивергенции последовательностей в большинстве таксономических единиц составляет 2 % (Воронова и соавт., 2012; Kekkonen et al., 2015; Hebert et al., 2016). Ланные ДНКправило, штрихкодирования показывают, высокую как степень разграничения видов, подтверждаемую морфологическими, экологическими и другими признаками. Например, Lin и соавторы (2015) утверждают, что такое разграничение является успешным в 95 % случаев, хотя в работе Elias и соавторов (2007)при использовании только ДНК-штрихкода лля делимитации видов тропических бабочек эффективность была достигнута

лишь в 77 % случаев. В настоящее время выполняется множество проектов по ДНК-штрихкодированию, преимущественно на основе уже имеющихся полных музейных коллекций (Timmermans et al., 2016), либо в результате сбора материала в полевых условиях, либо путем сочетания первого и второго подходов (Hausmann et al., 2013; Moriniére et al., 2014; Stein et al., 2014; Nazari et al., 2016). Инициировано много проектов для штрихкодирования всех живых организмов в некоторых географических регионах, например в Альпах, Баварии, Андах Bce программы, правило, И Т. Д. ЭТИ как имеют мощную правительственную поддержку, либо финансируются различными фондами и выполняются на базе крупных научных учреждений в тесном взаимодействии с Biodiversity Institute of Ontario, University of Guelph, Канада (Brehm et al., 2016; Pohjoismäki et al., 2016; Litman et al., 2018).

К настоящему моменту во многих работах показано, насколько хорошо работает ДНК-штрихкодирование в различных группах организмов, например, в некоторых семействах Lepidoptera, классе Arachnida и т. д. (Hausmann et al., 2013; Huemer et al., 2014; Young, Hebert, 2015; Mitchell, Gopurenko, 2016). Основные постулаты ДНК-штрихкодирования неоднократно подвергались критике (Ebach, Holdrege, 2005; Whitworth et al., 2007; Collins, Cruickshank, 2013; Stein et al., 2014; Stoeckle, Thaler, 2014), но большинство учёных в своих исследованиях показывают высокую эффективность этого метода в определении границ таксонов, особенно на видовом уровне, выявлении криптических видов, либо, наоборот, в решении проблем чрезмерного дробления некоторых систематических групп (Dittrich et al., 2006; van Velzen et al., 2007; Hausmann et al., 2013; Ступникова и соавт., 2013; Praz et al., 2019). Так, в работе Hebert и (2004)ДНКсоавторов показано, что использование метола штрихкодирования позволило однозначно разграничить 10 криптических Hesperiidae (Lepidoptera). Данные ДНК-штрихкодирования видов используются для реконструкции филогенетических связей в различных таксономических единицах, например, успешным данное исследование оказалось в семействе Chironomidae (Аникин и соавт., 2015a; 2016a; 2016б). В последнее время ДНК-штрихкодирование также применяется в качестве основного или дополнительного инструмента как для установления границ видов, так и для оценки скорости видообразования (Chapple, Ritchie, 2013; Hausmann et al., 2013; Zahiri et al., 2014; Kekkonen et al., 2015; Mutanen et al., 2016). Результаты ДНК-штрихкодирования являются дополнительным аргументом при описании новых видов или наоборот – сведении нескольких таксонов в один при чрезмерном дроблении (Efetov, Tarmann, 2014b; Efetov et al., 2014; Mutanen et al., 2016).

Многие исследователи проводят сравнительный анализ данных, полученных при ДНК-штрихкодировании, с данными, полученными при секвенировании других участков митохондриального либо ядерного генома, так как считают, что результаты ДНК-штрихкодирования могут быть искажены интрогрессией, наличием псевдогенов, дупликацией генов и т. д. (Arctander, 1995; Ballard, Whitlock, 2004; Алешин и соавт, 2007; Абрамсон, 2009; Buhay, 2009; Kodandaramaiah et al., 2013). Результаты сочетанного секвенирования участков митохондриального и ядерного генома, как правило, хорошо коррелируют друг с другом. Тем не менее, авторы некоторых работ указывают на контрадикцию результатов, полученных при секвенировании ДНК-штрихкода в сравнении с данными секвенирования последовательностей других генов, либо на несовместимость этих ланных с результатами морфологических, биохимических, этологических и других типов исследований (Hausmann, Huemer, 2011; Nazari et al., 2016).

К числу наиболее часто используемых митохондриальных генов относят гены, кодирующие цитохром *b* и COII, наиболее часто используемые ядерные гены – EF-1 α , EF-2 α , wingless и др. (Friedlander et al., 1992; Kandul et al., 2004; Zahiri et al., 2011; Kang et al., 2012; Mitchell, Gopurenko, 2016).

Кроме того, в некоторых работах обсуждаются эволюционные механизмы, приводящие к появлению «штрихкодового интервала». Этим термином обозначается количественно определяемая разница в последовательностях различных экземпляров, позволяющая отнести их к

разным таксономическим единицам. Как уже было сказано выше, в большинстве работ эта разница принимается равной 2 % (Chapple, Ritchie, 2013; Kekkonen et al., 2015).

Также разрабатываются подходы к усовершенствованию методов молекулярной идентификации живых объектов путем поиска специфичных молекулярных маркеров для различных таксонов (Summerbell et al.,2005; Wahlberg, Wheat, 2008; Pazhenkova, Lukhtanov, 2018). Например, Mir с соавторами (2013) предложили короткие последовательности для использования в качестве ДНК-штрихкодов.

Интерпретация результатов ДНК-штрихкодирования требует мощной поддержки статистическими программами, а также разработки различных методов сравнения нуклеотидных последовательностей. К числу наиболее часто используемых алгоритмов относят Neighbor Joining (NJ) метод (Kumar, Gadagkar, 2000), метод Кимуры, соотнесение с определенными Индексами (ИШ. BIN). штрихкода либо принадлежность Оперативной к таксономической единице (ОТЕ, ОТU) и т. д. (Blaxter et al., 2005; Павлинов, 2005, 2007; Абрамсон, 2009; Лукашов, 2009; Ratnasingham, Hebert, 2013; Pentinsaari et al., 2014). Как правило, на видовом и подвидовом уровне наиболее часто используются двухпараметрическая модель Кимуры (К2Р), которая предполагает различный вес для таких единичных нуклеотидных замен, как транзиции (замены в пределах одного класса азотистых оснований) и трансверсии (замены, приводящие к изменению класса оснований) (Kimura, 1980; Chapple, Ritchie, 2013; Zahiri et al., 2014; Mitchell, Gopurenko, 2016). В некоторых исследованиях проводится сравнительный анализ эффективности интерпретации результатов ДНК-штрихкодирования с помощью различных статистических программ (Luo et al., 2018). Например, Chapple Ritchie (2013)наиболее эффективным И показали, что статистическим методом обработки результатов ДНК-штрихкодирования в исследуемой группе животных оказался NJ метод, a Automatic Barcode Gap Discovery (ABGD) – наименее эффективным.

Во многих работах проводится анализ распределения образцов в пределах одного ИШ и обсуждаются случаи несовпадения ИШ, а также распределения образцов одного вида в пределах различных ИШ, либо нескольких видов в пределах одного ИШ (Hausmann et al., 2013; Young, Hebert, 2015; Mitchell, Gopurenko, 2016). Все эти данные позволяют обсуждать эффективность ДНК штрихкодирования внутри различных групп животных, а также возможные погрешности метода и пути улучшения качества результатов (Schindel, Miller, 2005).

Большое значение для эффективного ДНК-штрихкодирования имеет срок и правильность хранения материала. Идеальным считается использование свежих или свежезамороженных образцов, также хороший результат дает использование высушенного материала или хранящегося в этаноле (Hajibabaei et al., 2005). В частности, показано, что для некоторых групп насекомых предпочтительнее для анализа использовать сухие образцы, а не хранящиеся в спирте и других консервантах (Pohjoismäki et al., 2016). Для другой группы представителей этого класса показано, что хранение образцов в 80 % этаноле результаты ДНК-штрихкодирования, имеет негативное влияние на предпочтительно хранение в 96 % этаноле (Mitchell, Gopurenko, 2016). Отрицательный эффект на результаты ДНК-штрихкодирования оказывают такие консерванты, как этилацетат и формальдегид (Hajibabaei et al., 2005). Большинство исследователей подтверждают постулат, ДНК-ЧТО для штрихкодирования нужны как можно более свежие образцы, и возраст старше 10 лет значительно снижает успех секвенирования ДНК (Абрамсон, 2013; Hajibabaei et al., 2005; Pohjoismäki et al., 2016). Тем не менее, некоторым исследователям удалось получить ДНК-штрихкоды даже для образцов, собранных более века назад, принадлежащих к уже вымершему виду (Nazari et al., 2016). В некоторых работах обсуждается, какое количество образцов каждого вида необходимо для получения валидных результатов (Phillips et al.. 2018). Неполнота таксономической выборки при проведении молекулярно-генетического анализа также может привести к артефактным результатам (Абрамсон, 2013).

Также следует отметить влияние географической изоляции популяций на результаты ДНК-штрихкодирования (Bergsten et al., 2012). Так, показано, что степень чрезмерного расщепления ИШ внутри одного таксона выше у представленных изолированными островными видов, популяциями (Hausmann et al., 2013). В другом источнике утверждается, что с помощью штрихкодирования островных популяциях возможно В подтвердить процессы видообразования, также этот метод можно использовать для оценки степени угрозы вымирания (Nazari et al., 2016).

Необходимо принять во внимание, что присутствие В геноме исследуемых образцов внутриклеточных симбиотических бактерий риккетсиального типа таких, как Wolbachia pipientis Hertig 1936, усиливает погрешности результатов. Так как этот микроорганизм влияет на передачу наследственных признаков путем переноса генетической информации от другой, мужской одной особи К индукции стерильности И Т. Д. Подчеркивается, что инфицирование Wolbachia искажает результаты оценки внутривидового разнообразия, если различные штаммы инфицируют популяции разных видов или особей внутри популяции. В этом случае можно говорить о горизонтальном переносе генов (Wu et al., 2004; Hilgenboecker et al., 2008; Smith et al., 2012; Kodandaramaiah et al., 2013).

Интересно, что в работе Zahiri и соавторов (2014) показано влияние пищевых предпочтений и специализации по отношению к определенному источнику пищи на результаты ДНК-штрихкодирования. Полифаги имели меньший штрихкодовый интервал (соответственно в большей степени перекрывались их ИШ), чем монофаги. В работе Smith и соавторов (2007) результаты ДНК-штрихкодирования также были использованы для выяснения пищевых предпочтений предположительно всеядных насекомых, и было показано, что эти насекомые таковыми не являются.

23

Таким образом, ДНК-штрихкодирование Insecta с учетом факторов, влияющих на его эффективность, на сегодняшний день для многих таксонов является эффективным инструментом по разграничению видов.

1.2.2. Изменения в структуре цитохромоксидазы, выявленные в ходе изучения ДНК-штрихкодов, и их влияние на функционирование молекулы

Определённый интерес представляет изучение последовательностей полипептидов, соответствующих участку ДНК-штрихкода. Этот фрагмент длиной 219 аминокислот, является участком фермента цитохромоксидазы. Несинонимичные замены нуклеотидов ДНК (миссенс-мутации) приводят к появлению новой аминокислоты в полипептиде. Количество этих замен может использоваться для определения времени дивергенции таксона от общего предкового ствола, а также для изучения молекулярной адаптации к изменяющимся условиям среды (Хусаинов, Фролова, 2015; Pappalardo et al., 2015; Young, Hebert, 2015; Pentinsaari, 2016; Pentinsaari et al., 2016).

Кристаллическая структура цитохромоксидазы, выделенной ИЗ сердечной мышцы быка, изученная с разрешением 2,8 Å, представляет собой 13 различных субъединиц (часть из которых кодируется ядерными генами, часть митохондриальными) И содержит пять молекул фосфатидилэтаноламина, три – фосфатидилглицерина, а также два хелатных комплекса: два гема А, три атома меди, один атом магния и один – цинка. Содержит 3606 аминокислотных остатков в димере (Tsukihara et al., 1996; Balsa et al., 2012). Цитохромоксидаза является последним ферментом в цепи переноса электронов (ЦПЭ), окисляет кислород и перекачивает протоны через внутреннюю митохондриальную мембрану (Воронова и соавт., 2012; Blomberg, 2016). Следовательно, вариации В аминокислотной последовательности могут влиять на энергетический обмен. Изменения в участках, располагающихся вблизи активных центров или в областях,

контактирующих с простетическими группами, имеют наиболее выраженный эффект (Betts, Russell, 2003).

Первая субъединица цитохромоксидазы представлена у разных видов животных 510-530 аминокислотами. В этой молекуле находят 25 структурных частей, в том числе пять внутренних и шесть внешних петель, а также 12 участков, расположенных во внутренней мембране митохондрии. СОІ делят на N- и С-регионы. N-участок содержит первые 263 аминокислоты. Фрагмент гена, кодирующий эту часть белка, используется в качестве ДНК-штрихкода. Анализ вариабельности белка у различных видов Insecta показал, что карбоксильный конец обладает высокой степенью вариабельности, следовательно, непригоден лля использования в геносистематике. Bce внешние петли характеризуются стабильными показателями средней вариабельности. Петля № 4, локализующаяся в области второго протонного насоса оказалась менее вариабельной. Этот участок белка COI образует функционально наиболее важные домены: здесь локализован биядерный центр, содержащий два гема А и атом меди, первый из двух протонных каналов, а также участки, отвечающие за связывание с субъединицами III и VIIa (Воронова и соавт., 2012; Pentinsaari et al., 2016; Sharma, Wikstrom, 2016).

По литературным данным участок СОІ, соответствующий ДНКштрихкоду, имеет пространственную структуру в виде шести α-спиральных участков, соединённых пятью петлями, состоящими из 60 аминокислот (Pentinsaari et al., 2016; Pentinsaari, 2016). У Меtazoa выявлены 23 высококонсервативные аминокислотные позиции в данном фрагменте, остальные имеют различную степень вариабельности. У Pentinsaari (2016) показано, что мера эволюционной консервативности отдельно взятой позиции в белке выражается энтропией (S). Полностью консервативный значение сайт энтропии аминокислотный имеет 0, И значение S увеличивается с увеличением вариации содержания аминокислот. Наибольшее число консервативных аминокислот (16 из 23) находят в

спиральных участках, пронизывающих внутреннюю мембрану митохондрии. Тем не менее, одна петля, контактирующая с гемом в активном центре фермента, также характеризуется высокой консервативностью. Пять консервативных аминокислотных сайтов расположены на расстоянии атомарного взаимодействия с простетическими группами и поэтому имеют наибольшее влияние на процесс транспорта электронов. По крайней мере, половина точек вариабельности с S > 1,1, определенных для Metazoa, локализуется в петлевых участках (Pentinsaari et al., 2016; Pentinsaari, 2016).

данным литературы у Coleoptera детектировано По 39 точек вариабельности, а у Lepidoptera соответственно 14. Вариабельные участки у Lepidoptera совпадают с таковыми у Coleoptera, за исключением одного участка у Lepidoptera (позиция 93), который не был вариабельным у Coleoptera (S < 0,5). Pentinsaari и соавторы (2016) связывают накопление большего количества несинонимичных замен в данном фрагменте белка с двумя факторами: временем дивергенции таксона и уровнем метаболизма, а соответственно интенсивностью работы цепи переноса электронов для обеспечения организма энергией. У активно летающих насекомых (например, большинство Lepidoptera) даже уровни метаболизма покоя обычно выше, чем у нелетающих или редколетающих видов, к которым относятся Coleoptera (Reinhold, 1999).

Подавляющее большинство точек вариабельности аминокислот располагается относительно далеко от центров взаимодействия апофермента COI с простетическими группами. Это неудивительно, учитывая решающую роль COI в работе дыхательной цепи. Однако некоторые переменные сайты в последовательности штрихкода непосредственно могут влиять на ферментативную активность, находясь на расстоянии атомарного взаимодействия от гемовых групп – центра ферментативной активности COI (Pentinsaari, 2016). Было идентифицировано шесть таких переменных сайтов в наборе данных у Metazoa и два у Coleoptera. На расстоянии атомарного взаимодействия от гема локализованы два вариабельных участка: 8 и 57

аминокислоты встречаются на расстояниях 3,6 Å и 4,4 Å от гема соответственно. Для Coleoptera указано, что в одном из двух участков (8 или 57) может появляться гидрофобная аминокислота фенилаланин с объёмным радикалом (Pentinsaari et al., 2016; Pentinsaari, 2016).

Решающая роль СОІ в обеспечении организма энергией имеет два существенных следствия для молекулярной филогенетики. Во-первых, эволюция этого участка гена находится под действием, так называемого, функционального ограничения, то есть в этой части могут происходить только аминокислотные замены, которые не имеют существенного влияния на функционирование белка, поскольку нарушение работы этой молекулы приведет к остановке ЦПЭ митохондрий. Такие особи будут элиминированы, поскольку митохондрии, как известно, гаплоидны. Более того, учитывая важность эффективного функционирования ЦПЭ и ее эволюционную древность, можно предположить, что отбор по этому признаку будет сугубо стабилизирующим (Воронова 2012). Гены, И соавт., кодирующие митохондриальные белки ЦПЭ, находятся под действием очищающего отбора. (Meiklejoh et al., 2007; Galtier et al., 2009). Pesole и соавторы (1999) указывают, что аминокислотные замены особенно редко встречаются в генах цитохромоксидазы. Селективные ограничения последовательностей аминокислот отражаются на уровне нуклеотидов: ДНК-штрихкоды не могут свободно изменяться, и их эволюция далека от нейтральной (Meiklejohn et al., 2007; Galtier et al., 2009). Также были найдены доказательства влияния положительного отбора на мтДНК (Da Fonseca et al., 2008; James et al., 2015). В то же время модель эволюции СОІ может варьироваться в зависимости от таксонов: в исследованиях Pentinsaari и соавторов (2014), а также в диссертации Pentinsaari (2016) показано, что более высокая степень дивергенции мтДНК наблюдается между видами Coleoptera, чем У Lepidoptera. Редизайн этого митохондриального белка наблюдался у некоторых позвоночных, вероятно, из-за адаптации к образу жизни, например температуре окружающей среды (Castoe et al., 2007; Pappalardo et al.. 2015). Аналогично некоторые эндопаразитарные таксоны характеризуются необычно высокими показателями аминокислотных замен в митохондриальных генах, потенциально связанных с адаптацией к жизни в бескислородных средах (Bernt et al., 2013). Таким образом, несинонимичные замены в ДНК в пределах области штрихкода могут отражать как ограничения, так и новые возможности на уровне функционирования данного белка. В целом эти два информационных уровня (ДНК и белок) могут быть использованы для идентификации и делимитации видов, а также для понимания значения накопленного на сегодняшний день большого набора данных (Pentinsaari et al., 2016; Pentinsaari, 2016). Высокая скорость замен нуклеотидов В митохондриальных генах коррелирует с необходимостью консервативности в соответствующих аминокислотных последовательностях, следовательно, обнаруженные будут замены находиться в одних и тех же вырожденных участках. Так как появление нуклеотидных замен – это в целом стохастический процесс, который происходит с определенной частотой при каждой репликации, с течением эволюционного времени нуклеотидные замены могут происходить снова, на месте уже случившихся, и маскировать их (Воронова и соавт., 2012). Тем не менее, вероятность индивидуальных или многочисленных замен нуклеотидов будет сведена к минимуму, и, следовательно, такой ген или его участок полностью отвечает принципу ограниченной вариабельности, что повышает его ценность как филогенетического маркера (Hebert et al., 2003a, 2003b; Ratnasingham, Hebert, 2007; Воронова и соавт., 2012).

1.3. Общая характеристика и современное систематическое положение семейства Zygaenidae

В настоящее время в семейство Zygaenidae (Lepidoptera) включают пять подсемейств: Inouelinae Efetov & Tarmann, 2017; Procridinae Boisduval, 1898; Chalcosiinae Walker, 1865; Callizygaeninae Alberti, 1954 и Zygaeninae Latreille,

28

1809; каждое из которых имеет хорошо выраженные аутапоморфии и сильно отличается от других (Ефетов, 2005; Efetov, 2005; Hofmann, Tremewan, 2010; Efetov, Tarmann, 2017). Ранее из семейства Zygaenidae было исключено подсемейство Phaudinae, в настоящее время эта группа видов образует обособленное семейство Phaudidae (Ефетов, 2005; Niehuis et al., 2006с; Efetov, et al., 2014a).

Три подсемейства Zygaeninae, Procridinae, Chalcosiinae образуют монофилетическую ветвь, в то время как их взаимоотношения с Callizygaeninae остаются недостаточно изученными (Ефетов, 2005). Новое подсемейство Inouelinae описано в 2017 году и включает представителей рода *Inouela* Efetov, 1999 (Efetov, 1999), которых по морфологии нельзя причислить ни к одному из ранее известных подсемейств (Efetov, Tarmann, 2017).

Представители данного семейства имеют широкое распространение во всех зоогеографических регионах. К настоящему времени известно более 1000 видов этого семейства, и число их увеличивается с каждым годом (Efetov, 1997a, 1997b, 1998, 1999, 2001b, 2005, 2006, 2010, 2012; Kallies, Mollet, 2011; Efetov, Tarmann, 1995b, 2004, 2012, 2013a, 2013b, 2014a, 2014b, 2016a, 2016b; Tarmann, 2012). Распространение подсемейства Zygaeninae Палеарктической ограничено преимущественно И Эфиопской зоогеографическими областями. Большинство видов Chalcosiinae обитают в Восточной и Южной Азии, и только 2 вида, относящиеся к роду Aglaope Latreille, 1809, распространены в Западной Палеарктике. Procridinae обитают по всему миру за исключением Антарктиды. Callizygaeninae распространены только в Индомалайской зоогеографической области (Efetov, 2005; Ефетов, 2005; Niehuis et al., 2006с), Inouelinae – в Восточной Азии (Efetov, 1999; Efetov, Tarmann, 2017).

Представители семейства Zygaenidae имеют большое значение для человека, так как среди них есть и вредители сельского хозяйства, и редкие виды (Tarmann, 2003; Ефетов, 2005), некоторые являются эндемиками (Efetov et al., 2019а). В подсемействе Procridinae 16 видов внесены в списки вредителей, в подсемействе Zygaeninae – 3 вида, в Chalcosiinae – 9 видов (Рейнхард, Римский-Корсаков, 1932; Некрутенко, Плющ, 1988; Hofmann, Tremewan, 1996; Tarmann, 2003). Например, Theresimima ampellophaga (Bayle-Barelle, 1808) – вредитель винограда в Южной Европе и Западной Азии, известный со времен древнего Рима. В Америке Harrisina metallica Stretch, 1885 и в Восточной Азии Hedina tenuis (Butler, 1877) также являются вредителями винограда. Rhagades pruni ([Denis & Schiffermüller], 1775), Illiberis rotundata Jordan, 1907 и Illiberis pruni Dyar, 1905 повреждают плодовые розоцветные в Азии, Palmartona catoxantha (Hampson, 1892) – кокосовые пальмы в этом же регионе (Tarmann, 2003, 2004; Efetov et al., 2012а). С другой стороны, Zygaena laeta (Hübner, 1790) внесена в Красные Книги СССР, Украины, Крыма, Краснодарского края и др. (Efetov, 2005; Ефетов, 2007). Огромное биоценотическое значение имеют массовые виды Zygaenidae в качестве опылителей растений и звеньев пищевых цепей (Назаров, Ефетов, 1993; Efetov, 2004).

представители данного семейства являются Многие удачными биоиндикаторами степени загрязнения окружающей среды, поэтому их изучение представляет большой интерес для профилактической медицины, гигиены, а также экотоксикологии (Tarmann, 2004; Efetov, 2005). Виды родов Zygaena, Rhagades Wallengren, 1863, Jordanita Verity, 1946, Adscita Retzius, 1783 используются для мониторинга окружающей среды в Европе. В северной Италии показано, что Zygaenidae – отличный индикатор для мониторинга изменений в окружающей среде, связанных с использованием ингибиторов Ha линьки. протяжении многих лет эти вещества использовались в яблоневых садах против плодожорки. Доказано, что Zygaenidae являются более чувствительными к этим реагентам, чем большинство других чешуекрылых, при этом они удобны для наблюдения вследствие широкого распространения и дневной активности. В результате проведенных исследований было предложено использовать для обработки

садов аналоги природных феромонов вредителей (вещества, нетоксичные для остальных животных и человека), а некоторые виды Zygaenidae были использованы в этих исследованиях как ключевые виды для биомониторинга по наблюдению за восстановлением фауны (Tarmann, 2004).

Имаго Zygaenidae чрезвычайно разнообразны по форме, размерам и окраске крыльев, особенно представители подсемейства Chalcosiinae в Юго-Восточной Азии. Это связано с явлением мимикрии. Чаще представители семейства небольшие или средней величины бабочки с размахом крыльев 16– 38 мм. Исключением являются некоторые виды подсемейства Chalcosiinae, например, у обитающей в России *Elcysma westwoodii* (Snellen van Vollenhoven, 1863) размах крыльев достигает 60 см (Efetov, 2005; Ефетов, 2005). Полёт часто медленный и линейный, за исключением некоторых видов (Tarmann, 2004). Бабочки активны преимущественно в дневное время суток, лишь немногие виды прилетают к источникам света ночью. В состоянии покоя складывают крылья кровлеобразно. Виды, имеющие развитый хоботок, могут в массе собираться на цветущих растениях в солнечную погоду (Efetov, 2005; Ефетов, 2005).

Как показали исследования последних лет, большое диагностическое значение имеет хетотаксия гусениц первого возраста, а также особенности строения щетинок взрослых гусениц (Efetov et al., 2000, 2006, 2008; Efetov, 2005; Ефетов, 2005). Кутикула гусениц некоторых родов подсемейства Procridinae покрыта характерными склеротизированными бугорками, несущими шипы. Существуют два типа шипиковых бугорков: микробугорки (высотой менее 0,02 мм), и макробугорки (высотой более 0,04 мм). Бугорки обоих типов могут нести один шипик или несколько. Гусеницы имеют восемь пар ног, живут открыто на листьях и стеблях кормовых растений, но некоторые виды являются минёрами, например представители родов *Adscita* и *Jordanita* (Efetov, 2005; Ефетов, 2005).

Личинки Zygaenidae в основном олигофаги или даже монофаги. Полифагия известна только для нескольких видов, например Zygaena exulans

31

(Reiner & Hohenwarth, 1792) использует 14 семейств растений, a Rh. pruni - 6 семейств растений в качестве источника корма для гусениц (Hofmann, Tremewan, 1996; Efetov, 2001а). Личинки примитивных Zygaeninae питаются исключительно на Celastraceae, более высокоразвитые группы этого подсемейства питаются на растениях семейств Fabaceae, Apiaceae, Asteraceae, Личинки Chalcosiinae Lamiaceae. питаются разнообразных на палеарктических и тропических растениях, некоторые группы тоже специализированы. Например, для родов Aglaope и Agalope Walker, 1854 растениями служат Rosaceae. Личинки Procridinae кормовыми специализированно питаются на некоторых группах растений семейств Vitaceae, Rosaceae, Asteraceae, Polygonaceae, Cistaceae, Geraniaceae и др. (Efetov, 2001a). Некоторые американские виды скелетируют листья, например представители рода *Harrisina* (Packard, 1864). Личинки ряда видов живут в стеблях растений семейства Asteraceae, например Jordanita (Solaniterna) subsolana (Staudinger, 1862) (Efetov, 2001a). Как показали исследования (Efetov et al., 2004; 2015), семейство Zygaenidae (в особенности подсемейство Procridinae) является чрезвычайно интересной группой с точки зрения изучения кариотипов. Гаплоидные числа хромосом у разных видов варьируют от 12 до 47 (Efetov, 1998, 2005; Ефетов, 2005; Efetov et al., 2004, 2015).

Четырнадцать семейств Lepidoptera, включая и семейство Zygaenidae, способны к цианогенезу (Tarmann, 2004; Niehuis et al., 2006a; 2006b; 2006c, 2007; Zagrobelny et al., 2008, 2014). Цианогенез у Zygaenidae был открыт в 1962 году, но химические источники HCN были выяснены позже, когда были выделены в 1979 году линамарин и лотаустралин, являющиеся продуктами метаболизма аминокислот валина и изолейцина (Efetov, 2004; 2005; Zagrobelny et al., 2013, 2015). При ферментативном расщеплении линамарина и лотаустралина образуется синильная кислота. Кутикула гусениц Zygaeninae и Chalcosiinae содержит специализированные полости для хранения вязких защитных секретов, полости имеют выводные отверстия, снабженные специальными клапанами, что позволяет выделять защитные капли, которые эффективно действуют на хищников (Efetov, 2004; Ефетов, 2005; Fürstenberg-Hägg et al., 2014; Zagrobelny et al., 2015). Эксперименты на насекомых, земноводных, пресмыкающихся И млекопитающих подтвердили биологическую значимость цианогенных соединений как отпугивающего средства и показали, что некоторые хищники учатся распознавать рисунок крыльев и личиночную окраску пестрянок и избегают их (Niehuis et al., 2007). Линамарин и лотаустралин ранее были известны для цианогенных семейств растений (например, Fabaceae), поэтому Zygaenidae, питающиеся этими растениями, высоко устойчивы к HCN. Известно, что личинки многих видов рода Zygaena являются олигофагами на цианогенных Fabaceae, и некоторые из них обладают способностью изолировать цианогенные компоненты из кормовых растений (Niehuis et al., 2006а; Fürstenberg-Hägg et al., 2014; Pentzold et al., 2014; Zagrobelny et al., 2015, 2018; Briolat et al., 2018).

1.4. Степень изученности и проблематика молекулярно-генетической идентификации у представителей семейства Zygaenidae

Молекулярно-генетические методы широко используются во многих научных проектах как дополнительные инструменты, позволяющие решать некоторые проблемы систематики и филогенетики (Лухтанов, Кузнецова, 2009; Лукашов, 2009). Несмотря на широкое внедрение этих методов в работу зоологов, эволюционных биологов, специалистов по биологии сохранения (Tautz et al., 2002; Ball, Armstrong, 2006; Caesar et al., 2006; Rubinoff, 2006; Ahrens et al., 2007; Machado et al., 2018) для семейства Zygaenidae систематических исследований структуры генов и соответствующих аминокислотных последовательностей не проводилось.

Только некоторые ДНК- и РНК-последовательности Zygaenidae были получены ранее в рамках отдельных фаунистических и биогеографических проектов (Niehuis et al., 2006a, 2006b, 2006c, 2007; Zagrobelny et al., 2009; Mutanen et al., 2010, 2016; Huemer et al., 2014; Ashfaq et al., 2017, Litman et al., 2018). Эти исследования в основном коснулись видов рода *Zygaena* (Zagrobelny et al., 2009; Niehuis et al., 2007; Huemer et al., 2014), в то время как виды других родов представлены в них единично (Niehuis et al., 2006b; Ashfaq et al., 2017; Litman et al., 2018). Также данные о секвенировании некоторых генов Zygaenidae встречаются в работах, посвященных уточнению систематики Lepidoptera (Mutanen et al., 2010; Cho et al., 2011; Regier et al., 2013).

На уровнях надсемейства Zygaenoidea и семейства Zygaenidae у различных авторов нет четкого картины положения некоторых таксономических единиц, производятся различные ревизии, происходит синонимизация определенных таксонов, или, наоборот, их дробление, изменение ранга таксонов и т. д. (Niehuis et al., 2006b, 2006c). В семейство Zygaenidae (Lepidoptera) в настоящее время включают пять подсемейств: Inouelinae Efetov & Tarmann, 2017; Procridinae Boisduval, 1898; Chalcosiinae Walker, 1865; Callizygaeninae Alberti, 1954 и Zygaeninae Latreille, 1809; каждое из которых имеет выраженные аутапоморфии и хорошо отличается от других (Ефетов, 2005; Tarmann, 1994; Hofmann, Tremewan, 2010, 2017; Efetov, Общая Tarmann, 2017). таксономическая система Zygaenidae была Альберти (1954, 1958–1959). предложена Эта система постепенно совершенствовалась (Naumann, Tremewan, 1984; Efetov, 1992, 2001a, 2004; Tarmann, 1994; Efetov, Tarmann, 1995a, b, 1999, 2012; Hofmann, Tremewan, 1996). В основном изменения базировались на морфологических признаках, а также данных биологии, этологии, экологии, на изучении структуры феромонов, исследовании кариотипов и результатах моноклональной иммуносистематики (Efetov, Hayashi, 2008; Efetov, Tarmann, 2013b, 2017; Efetov, Savchuk, 2013; Efetov et al., 2018a; Subchev et al., 1998, 2010, 2012, 2013, 2016; Cengiz Can et al., 2018).

Несмотря на комплексное изучение, таксономия данного семейства не является совершенной, и филогенетические взаимоотношения во многом

остаются невыясненными, среди учёных нет по некоторым вопросам единого мнения (Leraut, 2012; Efetov et al., 2014а). Три подсемейства (Zygaeninae, Procridinae, Chalcosiinae) образуют монофилетическую ветвь, в то время как их взаимоотношения с Callizygaeninae были недостаточно изученными (Ефетов, 2005). В 2017 году было описано новое подсемейство Inouelinae на основании морфологических признаков, характерных для представителей рода *Inouela*, не позволяющих причислить представителей данного рода ни к одному из ранее известных подсемейств (Efetov, Tarmann, 2017).

Niehuis с соавторами изучали филогению Zygaenidae с использованием молекулярных данных (2006а, 2006b, 2006с, 2007). К сожалению, эти исследования фокусировались в основном только на представителях рода Zygaena подсемейства Zygaeninae (Niehuis et al., 2006a, 2007) с единичными включениями видов Procridinae и Chalcosiinae (Niehuis et al., 2006b). Были представлены результаты исследования одинаковых участков генома, себя ДНК. включаюших митохондриальную в И ядерную, И Филогенетический базировался анализ на секвенировании полном митохондриального гена первой субъединицы НАДН-дегидрогеназы, генов лейциновой и валиновой тРНК, фрагмента гена рРНК малой субъединицы (12S PHK), а также рРНК большой субъединицы (16S PHK). В дополнение к этому были изучены участки ядерной ДНК, включающие почти полный фрагмент гена рРНК малой субъединицы (18S РНК) и 5'-конца гена, кодирующего рРНК большой субъединицы (28S РНК).

В статье Niehuis с соавторами (2006с) были проведены исследования молекулярных данных для семейства Zygaenidae, одним из следствий этой публикации стало исключение подсемейства Phaudinae из семейства Zygaenidae, в настоящее время эта группа видов образует обособленное семейство Phaudidae (Ефетов, 2005; Niehuis et al., 2006с; Efetov et al. 2014а). Позже (Niehuis et al., 2007) были опубликованы результаты исследования ядерных и митохондриальных генов у представителей рода *Zygaena*. Для этого таксона ещё не предложена приемлемая гипотеза филогенеза, что

представляет проблему лля эволюционного биогеографического И исследования данной группы. Авторы, изучавшие Zygaena panee, указали в своей систематической классификации рода на возможные филогенетические связи (Alberti, 1958–1959; Reiss, 1958), но в этих работах нет строгого различия апоморфных и плезиоморфных признаков. Naumann (1977, 1985), а также Hofmann и Tremewan (1996) уже обращали внимание на эти недостатки. Тем не менее, существующее подродовое деление рода Zygaena всё ещё следует типологической классификации, которую рекомендовал Alberti (1958–1959). Те виды, личинки которых питаются на Apiaceae (или вторично на Asteraceae и Lamiaceae), объединены в подрод Mesembrynus Hübner, 1819, а живущие на Fabaceae отнесены к подродам Agrumenia Hübner, 1819 и Zygaena. Ключевым признаком различия видов Agrumenia и Zygaena является рисунок передних крыльев. Попытки реконструкции филогенетических отношений в роде Zygaena на основе морфологических и экологических признаков были успешными лишь для нескольких малых видовых кластеров. Niehuis с соавторами (2007) был проведен анализ 5.4 приблизительно килобит данных секвенирования ядерных И митохондриальных ДНК для всех 20 видовых групп рода Zygaena, принятых в систематическом каталоге Zygaeninae (Hofmann, Tremewan, 1996), включая позже описанную группу haematina (Hofmann, Tremewan, 2003).

Филогения Zygaena, определённая по молекулярным данным, доказала монофилию ранее принятых видовых кластеров некоторых групп (например, группа manlia-cuvieri, группа cambysea-rubicundus-purpuralis и т. д.). Монофилия других ранее установленных видовых групп не была подтверждена (например, группа cocandica, nevadensis-persephone-viciae и т. д.) Некоторые группы в результате исследования распались на большое число кластеров (например, группа hilaris-fausta-carniolica). Среди трёх подродов, на которые род Zygaena подразделяется в настоящее время, только подрод Mesembrynus был определён как монофилетический таксон. Тем самым авторы в публикации 2007 года противоречат ранее опубликованным
(2006а) данным о признании данного таксона полифилетическим на основе исследований вторичной структуры pPHK. Подроды Zygaena и Agrumenia при байесовском анализе распались на некоторое число кластеров, тем самым опровергнув предполагаемую монофилию. Также результаты анализа ДНК были использованы авторами для филогенетической реконструкции рода Zygaena. Полученные молекулярные данные способствовали изменению мнения о месте географического происхождения данного таксона в пользу западного Средиземноморья. Проведенные филогенетические реконструкции на основе сочетания морфологических, биогеографических и молекулярных данных показали, что значительное количество признанных в настоящее время видовых групп рода Zygaena не соответствует естественным комплексам, поэтому нуждаются в дальнейшем изучении, в том числе с использованием молекулярно-генетических методов (Niehuis et al., 2007).

Изучение нуклеиновых кислот не ограничивается только определением последовательностей нуклеотидов в молекуле ДНК, одним из перспективных направлений в филогенетических исследованиях является изучение и моделирование пространственной организации нуклеиновых кислот, В частности, анализ вторичной структуры молекул рибосомной РНК (рРНК). Содержащаяся в малой субъединице митохондриальных рибосом 12S рРНК является регулярно применяемым маркером в молекулярной систематике насекомых (Caterino et al., 2000). Ранее было доказано, что сложная трехмерная структура 12S рРНК проявляет уникальные особенности в индивидуальных таксономических группах (Van de Peer et al., 1997; Cannone et al., 2002; Wuyts et al., 2004). Также информация о вторичной структуре РНК была успешно применена для решения проблем систематики (например, Billoud et al., 2000). Niehuis с соавторами (2006b) было показано, что, по 12S крайней мере, две спирали молекулы рРНК имеют таксоноспецифические различия. Анализируемые регионы включали домены I, II, III и IV. При сравнении модели вторичной структуры 12S рРНК Bombyx mori (Linnaeus, 1758) с последовательностями, полученными для Zygaenoidea,

авторы обнаружили существенные различия между моделью и фактической структурой в исследуемой группе. Структурная вариация у Zygaenoidea оказалась незначительной и ограничивалась количественными признаками. В этом смысле молекула 12S рРНК оказалась высококонсервативной. Тем не менее, заметные структурные изменения наблюдались в спиралях 31, 34, 47 и 49. С помощью изучения структуры 12S рРНК исследовалось также систематическое положение и характеристики семейства Zygaenidae в рамках надсемейства Zygaenoidea (Niehuis et al., 2006b). Ранее установить филогенетические отношения в таксоне Zygaenoidea, базируясь только на молекулярных признаках, не представлялось возможным. Изучение последовательностей ДНК позволило в некоторой степени разъяснить положение этой группы. К основным результатам данного исследования подсемейства Phaudinae следует отнести исключение ИЗ семейства Zygaenidae (c выделением его В отдельное семейство Phaudidae), подтверждение монофилии таксона Zygaenidae, состоящего из подсемейств: Chalcosiine, Procridinae, Callizygaeninae, Zygaeninae. Также молекулярные данные доказали правомочность выделения рода Callizygaena Felder, 1874 из Procridinae (Tarmann, 1994). Подтверждены предложенные Naumann с соавторами (1999) филогенетические отношения в этом семействе. Однако данных для того, чтобы признать Chalcosiine и Zygaeninae сестринскими группами не было обнаружено. Кластер Procridinae, Callizygaeninae и Chalcosiinae оказался монофилетическим (Niehuis et al., 2006с), при этом он находится на большой дистанции от Zygaeninae, что подтверждает предположение Alberti (1954), но нельзя забывать, что последний автор включил в эту группу ещё и Himantopteridae, и Anomoeotidae.

Положение надсемейства Zygaenoidea в публикациях при изучении Lepidoptera с использованием различных молекулярных признаков менялось. Так Kristensen (2003) при исследовании только данных морфологии и физиологии помещает Zygaenoidea в комплексе с Cossoidea и Sessioidea. В исследовании Mutanen с соавторами (2010), в котором обсуждаются

полученные результаты, с использованием ланных сочетанного секвенирования митохондриального участка гена СОІ и семи ядерных генов: EF-1α, wingless, RpS5, MDH, GAPDH, CAD, IDH, Zygaenoidea образуют кластер с представителями Tineoidea и Sessioidea. В работе Cho с соавторами (2011) ученые попытались сократить количество генов, необходимых для филогенетических исследований с целью экономии средств и времени проведения исследований. Так были использованы только 5 ядерных генов, и в результате "core" Zygaenoidea на дендрограмме образовал отдельную кладу, противопоставленную количеству некоторому клад, представленных дневными бабочками, совками, другими группами и, в том числе, Sessioidea. Regier с соавторами (2013) провели глобальную ревизию Lepidoptera с помощью данных секвенирования 19 генов. Этот анализ был выполнен для 483 таксонов данного отряда. Положение Zygaenoidea сместилось снова в сторону родства с Cossoidea и Sessioidea. В публикации Kawahara и соавторов (2019), в которой исследовались транскриптомы и геномы 186 видов Lepidoptera, Zygaenoidea (представленные видами Dalceridae, Lacturidae, Limacodidae, Megalopygidae и Zygaenidae) также находятся на одной бифуркации с Sessioidea.

С 2003 года все больший интерес вызывает изучение различий в последовательностях фрагмента гена первой субъединицы митохондриальной цитохромоксидазы, используемого ДНК-В штрихкодировании. Так для Zygaenidae в последнее десятилетие эти данные привели к описанию нескольких новых видов (Efetov, 2010, 2012; Efetov, Tarmann, 2013a, 2013b, 2014a, 2014b, 2016a, 2016b; Efetov et al., 2014b). Ha основе морфологии, биологии и молекулярных данных была проведена ревизия рода Illiberis Walker, 1854 из которого выделена группа видов в отдельный род *Hedina* Alberti, 1954 (Efetov, Tarmann, 2012). В 2019 году на основе данных морфологии и ДНК секвенировния было показано, что таксон Ino budensis var. mollis Grum-Grshimailo, 1893 является самостоятельным видом Jordanita (Roccia) mollis (Grum-Grshimailo, 1893) (Efetov et al., 2019c).

Проанализировав литературные данные, можно сделать вывод, что использование молекулярных данных при изучении таргетного таксона позволило значительно прояснить филогению и систематику данной группы; тем не менее, в связи с тем, что некоторые вопросы остаются нерешенными, следует интенсифицировать поиск ДНК-маркеров, эффективно работающих в исследуемой группе животных.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ

2.1. Общая характеристика экземпляров, выбранных для проведения исследования

B работе использован биологический материал, полученный ОТ представителей семейства Zygaenidae (Lepidoptera), обитающих В Палеарктическом, Неарктическом, Афротропическом, Восточном, Австралийском и Неотропическом регионах. Экземпляры были любезно предоставлены научным руководителем профессором К. А. Ефетовым, а также исследователями из разных стран: д.б.н. О. Г. Горбуновым, А. Н. Замесовым (Россия), Dr G. M. Tarmann (Австрия), В. Mollet, Е. Drouet и J.-M. Desse (Франция) или собраны в природе автором и научным руководителем. Также были использованы образцы из музейных коллекций, таких как Tiroler (Инсбрук, Австрия); Australian National Insect Collection Landesmuseen (Канберра, Австралия); Royal Museum for Central Africa (Тервюрен, Бельгия), Bavarian State Collection of Zoology (Мюнхен, Германия); Museum für Naturkunde, Humboldt Universität Berlin (Берлин, Германия) и др. Список экземпляров, использованных для секвенирования 5'-участка гена СОІ, видовая принадлежность, номера доступа базы данных BOLD, BIN, номера GenBank приведены в приложении А. При выборе материала (или после полевых сборов) профессором К. А. Ефетовым и доктором G. M. Tarmann было проведено определение экземпляров, в большинстве случаев на основании изучения гениталий. Выбор материала проводили критериям: (1)по двум принадлежность к определенной таксономической единице, при этом старались охватить все известные подсемейства, роды и подроды и исследовали по несколько (в среднем 2–5) экземпляров одного вида Zygaenidae (Lepidoptera); (2) возраст образца, который в большинстве случаев не превышал 10 лет, так как из публикации Pohjoismäki и соавторов (2016) известно, что из старых образцов выделение ДНК часто оказывается неудачным. Но для редких и особо

важных экземпляров возрастом пренебрегали. Таксономия и номенклатура базировались на наиболее актуальных публикациях, посвященных семейству Zygaenidae (Lepidoptera) (Efetov, 2001b, 2001c; Efetov, Tarmann, 2008, 2012, 2017; Hofmann, Tremewan, 2009; 2017). При подготовке материала для отправки в Центр ДНК-штрихкодирования (Гуэлф, Канада) данные о дате, месте сбора (включая координаты), коллекторе, а также о таксономическом положении образца заносили в стандартизированную таблицу SpecimenData (Exel). Каждый образец получал индивидуальный номер (Sample ID), также обязательным этапом подготовки материала являлось фотографирование экземпляра, от которого был взят материал для исследования (Ratnasingham, Hebert, 2007). Всего были отобраны И отправлены В Канадский центр ДНКштрихкодирования 1235 экземпляров изучаемого семейства: 881 экземпляр – представители подсемейства Procridinae, 283 – Zygaeninae, 70 – Chalcosiinae, 1 – Callizygaeninae.

Для 15 образцов, зафиксированных в 96% этаноле, выделение ДНК и ПЦР проводилось нами в лаборатории кафедры биохимии Медицинской академии им. С. И. Георгиевского с последующим секвенированием в Москве в лаборатории фирмы Синтол. При подготовке образцов для исследования в Институте проблем экологии и эволюции им. А. Н. Северцова РАН (Москва, Россия), а также в лаборатории Лундского университета (Лунд, Швеция), каждому экземпляру присваивался уникальный номер, в отдельный файлтаблицу в программе Exel выписывались данные о месте, дате сбора, и таксономическом положении образца. Всего для секвенирования ядерных генов EF-1α, GAPDH, IDH, MDH, RpS5 и wingless было отобрано 60 экземпляров, принадлежащих к 33 видам восьми родов семейства Zygaenidae. Список образцов, для которых удалось получить сиквенсы ядерных генов в лаборатории Лундского университета (Лунд, Швеция), приведен в таблице 1. Так как не из всех образцов удалось выделить ДНК и провести успешное секвенирование, то количество экземпляров, использованных в анализе, сократилось до 51. Таким образом, всего для получения данных секвенирования митохондриального гена COI и ядерных генов EF-1α, GAPDH, IDH, MDH, RpS5 и wingless было отобрано 1297 экземпляров 242 видов Zygaenidae.

2.2. Выбор ДНК-маркеров

В литературе данные о применении ДНК маркеров для изучения всех подсемейств семейства Zygaenidae (Lepidoptera) отсутствуют. В ряде работ проводилось секвенирование определённых участков митохондриального и ядерного геномов для представителей рода Zygaena (Niehuis et al., 2006a, 2007; Zagrobelny et al., 2009). В рамках различных биогеографических, эволюционных, таксономических исследований были получены сиквенсы COI и других генов для небольшого числа видов Procridinae и Chalcosiinae (Zygaenidae, Lepidoptera) (Niehuis et al., 2006b, 2006c; Mutanen et al., 2010; Huemer et al., 2014; Ashfaq et al., 2017, Litman et al., 2018). Поэтому при выборе ДНК локусов для дальнейшего использования в работе учитывали нижеперечисленные критерии. Гены (или их участки) должны иметь консервативности степень последовательностей, определенную но И содержать достаточное количество вариабельных сайтов. Для этих генов (или быть разработаны участков) должны стандартные ИХ методики секвенирования. Также важную роль в выборе маркеров сыграл факт, что эти (или участки генов) неоднократно успешно использовались в гены исследованиях различных групп Lepidoptera (Wahlberg, Wheat, 2008; Mutanen et al., 2010; Huemer et al., 2014; Litman et al., 2018). В случаях, когда была показана неэффективность изучения данных секвенирования только митохондриальных генов, проводились поиски ядерных маркеров с целью проведения комбинированного анализа. В результате учётом с вышеперечисленных характеристик отобраны следующие участки генома: митохондриальный ген I субъединицы цитохромоксидазы; ядерные гены EF-1α, GAPDH, IDH, MDH, RpS5 и wingless.

Таблица 1 – Список экземпляров, использованных для секвенирования ядерных генов EF-1α, GAPDH, IDH, MDH,

Код	Род	Вид	EF1a-	EF1a-центр	EF1а-конец	GAPDH	IDH	MDH	RpS5
			начало						
KAE001	Illiberis	pruni	Х	Х	Х	Х	-	Х	Х
KAE005	Hedina	consimilis	-	Х	Х	Х	-	Х	Х
KAE006	Theresimima	ampellophaga	Х	Х	Х	Х	-	Х	Х
KAE007	Theresimima	ampellophaga	Х	Х	Х	Х	-	Х	Х
KAE008	Rhagades	brandti	-	-	-	Х	-	-	-
KAE010	Rhagades	pruni	Х	Х	Х	-	-	Х	-
KAE011	Rhagades	pruni	Х	Х	Х	-	-	Х	-
KAE012	Zygaenoprocris	rjabovi	Х	Х	Х	-	-	Х	X
KAE013	Zygaenoprocris	duskei	Х	-	-	-	-	-	-
KAE014	Zygaenoprocris	duskei	Х	-	-	Х	-	-	Х
KAE015	Adscita	subtristis	-	-	_	_	-	-	-
KAE019	Adscita	statices	Х	Х	Х	Х	-	Х	Х
KAE020	Adscita	statices	Х	Х	Х	Х	-	Х	Х
KAE021	Adscita	geryon	Х	Х	Х	Х	-	Х	Х
KAE022	Adscita	geryon	-	Х	Х	Х	-	Х	Х
KAE023	Adscita	albanica	Х	Х	Х	Х	-	-	Х
KAE024	Adscita	albanica	Х	Х	Х	Х	-	Х	Х
KAE025	Jordanita	budensis	Х	Х	Х	-	-	Х	Х
KAE026	Jordanita	volgensis	Х	Х	Х	Х	-	Х	Х
KAE027	Jordanita	notata	Х	Х	Х	Х	Х	Х	Х
KAE028	Jordanita	notata	Х	Х	Х	Х	Х	Х	X
KAE029	Jordanita	splendens	Х	Х	Х	Х	-	Х	Х
KAE030	Jordanita	splendens	Х	-	-	Х	-	Х	-
KAE031	Jordanita	graeca	Х	Х	Х	Х	Х	Х	Х
KAE032	Jordanita	graeca	X	X	Х	X	X	Х	-
KAE033	Jordanita	chloros	X	X	X	X	-	X	X
KAE034	Jordanita	chloros	X	X	X	X	-	X	X

RpS5 и wingless

KAE035	Jordanita	globulariae	X	Х	X	X	Х	X	Х
KAE036	Jordanita	globulariae	X	Х	Х	X	Х	X	Х
KAE037	Jordanita	subsolana	X	Х	Х	X	-	X	Х
KAE038	Jordanita	subsolana	X	Х	X	X	Х	X	Х
KAE039	Zygaena	brizae	Х	Х	X	-	Х	X	Х
KAE040	Zygaena	brizae	Х	Х	Х	-	-	X	Х
KAE041	Zygaena	minos	Х	-	-	-	Х	-	Х
KAE042	Zygaena	minos	Х	Х	X	-	Х	X	Х
KAE043	Zygaena	purpuralis	-	-	-	-	-	-	-
KAE044	Zygaena	purpuralis	Х	-	-	-	-	-	-
KAE045	Zygaena	punctum	Х	Х	X	-	Х	X	Х
KAE046	Zygaena	punctum	Х	Х	X	-	Х	X	Х
KAE047	Zygaena	carniolica	Х	-	-	-	-	X	-
KAE048	Zygaena	carniolica	Х	Х	X	-	-	X	-
KAE049	Zygaena	viciae	Х	Х	X	-	Х	X	-
KAE050	Zygaena	viciae	Х	-	-	-	-	X	-
KAE051	Zygaena	loti	Х	-	-	-	Х	X	Х
KAE052	Zygaena	loti	Х	Х	Х	-	Х	X	Х
KAE053	Zygaena	dorycnii	Х	-	-	X	-	-	-
KAE054	Zygaena	dorycnii	Х	Х	X	X	-	X	-
KAE055	Zygaena	ephialtes	Х	Х	Х	X	Х	X	Х
KAE056	Zygaena	ephialtes	X	X	X	X	X	X	X
KAE057	Zygaena	filipendulae	X	X	X	X	X	-	Х
KAE058	Zygaena	filipendulae	X	_	-	-	-	X	-

Знак «Х» означает, что секвенирование этого гена или его участка оказалось успешным, знак «-» означает, что получить сиквенсы высокого качества для данного гена или его участка не удалось.

2.3. МЕТОДЫ

2.3.1. Выделение ДНК

Тотальная ЛНК геномная высушенных вылелена ИЗ или фиксированных в 96 % этаноле конечностей (или в единичных случаях других частей тела) Использовались (1) стандартная методика, применяемая в Центре ДНК-штрихкодирования (Гуэлф, Канада) (Ivanova et al., 2006; De Waard et al., 2008), либо (2) сорбентный метод в лаборатории биотехнологии кафедры биохимии Медицинской академии имени С. И. Георгиевского ФГАОУ ВО «Крымский федеральный университет имени В. И. Вернадского» (Симферополь, Россия), либо (3) на базе Лаборатории почвенной зоологии и общей энтомологии И Центра коллективного пользования (ЦКП) «Инструментальные методы в экологии» Института проблем экологии и эволюции им. А. Н. Северцова РАН (Москва, Россия) набором NucleoSpin® DNA Insect фирмы Macherey-Nagel (Германия), либо (4) в отделе биологии Лундского университета (Швеция) по стандартной методике.

(1) ДНК выделяли стандартизованным методом в блоках на 96 микропробирок (Eppendorf®), используя стекловолоконные мембраны. Для выделения была использована одна конечность насекомого. Образец гомогенизировали с лизирующим (ILB), связывающим (BB) буферами и протеиназой К. Затем промывали образец с использованием буфера для отмывки белков (PWB) и буфера WG. После промывки высокоочищенную ДНК отбирали с помощью вакуума. Полученный экстракт ДНК хранился при температуре –20°С.

(2) Выделение ДНК проводилось сорбентным методом набором фирмы Литех (Россия) по стандартной методике, доступной по ссылке (http://www.lytech.ru/articles_parts_6.htm) с использованием лизирующего буфера и сорбента. Для выделения были использованы одна или несколько конечностей имаго насекомого. Материал гомогенизировали с помощью прокаленных для соблюдения стерильности металлических инструментов, инкубировали в течение 12 часов в лизирующем буфере при температуре 37 °C в термостате Thermo Block TДВ-120. Затем с помощью суспензии сорбента из гомогената осаждали ДНК, смывали ее с сорбента и переносили в виде водного раствора в другую пробирку. Полученный экстракт ДНК хранился при температуре –20°C.

(3) Выделение ДНК проводилось набором NucleoSpin[®] DNA Insect фирмы Macherey-Nagel (Германия) согласно инструкции производителя, доступной по нижеуказанной ссылке (http://www.mnnet.com/Portals/8/attachments/Redakteure_

Віо/Protocols/Genomic%20DNA/UM_gDNAInsect.pdf). Для выделения были использованы одна или несколько конечностей насекомого. Образцы гомогенизировали в специальных пробирках со стальными шариками NucleoSpin[®] Bead Tube Type D с элюирующими буферами BE и MG и протеиназой К. Для измельчения использовали вибрационную мельницу Retsch MM400. Затем осаждали ДНК на кремниевой мембране в колонках NucleoSpin[®]. После промывки буфером WG и высушивания колонок высокоочищенную ДНК элюировали специализированным буфером BE. Полученный экстракт ДНК хранился при температуре –20°C.

(4) Выделение ДНК в отделе биологии Лундского университета (Швеция) проводилось согласно методике, описанной в публикации Rota и соавторы (2016).

Качество и количество ДНК было определено с помощью электрофореза в 1,5 % агарозном геле с использованием ТАЕ буфера с последующей детекцией комплекса ДНК бромистым с этидием В ультрафиолетовом свете.

2.3.2. Полимеразная цепная реакция 5'-участка гена, кодирующего первую субъединицу цитохромоксидазы

В таблице 2 приведены последовательности и названия олигонуклеотидных праймеров, использованных для постановки ПЦР и дальнейшего секвенирования участка гена СОІ митохондриальной ДНК у представителей семейства Zygaenidae. Для получения ДНК-штрихкодов использованы универсальные праймеры Lepidoptera из работы Folmer и соавторов (1994), в проблемных случаях использовались дополнительные пары праймеров (Hebert et. al., 2004; Hajibabaei et al., 2006).

Таблица 2 – Список праймеров, использованных для ПЦР 5'-участка

Название плаймела	Последовательность праймера (5'-3')	Источник	
musbunne npunnepu	noenegobarenbnoerb npansiepa (e e)	литературы	
C_LepFolF	GGTCAACAAATCATAAAGATATTGG	Folmer et al 1004	
C_LepFolR	TAAACTTCAGGGTGACCAAAAAATCA	Folinel et al., 1994	
LepF1	ATTCAACCAATCATAAAGATATTGG	Habert at $a1 - 2004$	
LepR1	TAAACTTCTGGATGTCCAAAAAATCA	11e0e1t et. al., 2004	
MLepF1	GCTTTCCCACGAATAAATAATA	Hailbahaai at al. 2006	
MLepR1	CCTGTTCCAGCTCCATTTTC	najibabaei et al., 2000	

В центре ДНК-штрихкодирования (Гуэлф, Канада) амплификацию проводили с помощью амплификатора Applied Biosystems (США) по следующей программе. Начальная денатурация при 94°С – 1 минута; 5 циклов: 94°С – 30 секунд, отжиг при 45–50°С – 40 секунд, элонгация при 72°С – 1 минута, затем 30–35 циклов: 94°С – 30 секунд, 51–54°С – 40 секунд и 72°С – 1 минута, с финальной элонгацией при 72°С – 10 минут.

В Институте проблем экологии и эволюции им. А. Н. Северцова РАН (Москва, Россия) амплификацию проводили с помощью амплификатора Applied Biosystems (США) по следующей программе. Начальная денатурация при 95°С – 30 секунд; 5 циклов: отжиг при 45°С – 40 секунд, элонгация при 72°С – 1 минута, затем 32 цикла: 95°С – 30 секунд, 52,5°С – 1 минута и 72°С

– 30 секунд, с финальной элонгацией при 72°С – 7 минут. По такой же схеме проводили амплификацию в лаборатории биотехнологии кафедры биохимии Медицинской академии имени С. И. Георгиевского ФГАОУ ВО «Крымский федеральный университет имени В. И. Вернадского» (Симферополь, Россия).

Составы реакционных смесей для ПЦР общим объёмом 15 мкл на один амплифицируемый образец ДНК приведен в таблицах 3, 4, 5.

Таблица 3 – Состав реакционной смеси для ПЦР, проведенной в центре ДНК-штрихкодирования (Гуэлф, Канада)

Компонент	Объём
10 % трегалоза (Sigma)	6,25 мкл
10× <i>Taq</i> -буфер (Invitrogen ^{тм})	1,25 мкл
$MgCl_2$ (50 мM) (Invitrogen TM)	0,625 мкл
dNTPs (10 мМ) (New England Biolabs®)	0,0625 мкл
Праймер прямой (Invitrogen ^{тм})	0,125 мкл
Праймер обратный (Invitrogen ^{тм})	0,125 мкл
ДНК-матрица	2 мкл
<i>Taq</i> -полимераза (5 единиц активности/1 мкл) (Invitrogen ^{тм})	0,06 мкл
Стерильная бидистилированная вода	2 мкл

Таблица 4 – Состав реакционной смеси для ПЦР, проведенной с помощью набора МастерМИКС^{CFE} фирмы DIALAT Ltd (Россия) в Институте проблем экологии и эволюции им. А. Н. Северцова РАН (Москва, Россия)

Компонент	Объём
LepF1 – праймер прямой (20 мМ) (Синтол)	0,9 мкл
LepR1 – праймер обратный (20 мМ) (Синтол)	0,9 мкл
ДНК-матрица	4 мкл
Смесь МастерМИКС (Россия): SmarTaq полимераза, dA,dT,dC,dG-200µM каждого, реакционный буфер с (NH ₄) ₂ SO ₄ , MgCl ₂ –2.0mM, стабилизатор/энхансер, стерильная вода для ПЦР	4,25 мкл
Стерильная бидистилированная вода	9,95 мкл

Таблица 5 – Состав реакционной смеси для ПЦР, проведенной с помощью набора фирмы Синтол (Москва, Россия), в лаборатории биотехнологии кафедры биохимии Медицинской академии им. С. И. Георгиевского

(Симферополь, Россия)

Компонент	Объём
10× <i>Taq</i> -буфер (Синтол)	2,5 мкл
MgCl ₂ (50 мМ) (Синтол)	3 мкл
dNTPs (10 мМ) (Синтол)	2,5 мкл
LepF1 – праймер прямой (20 мМ) (Синтол)	0,5 мкл
LepR1 – праймер обратный (20 мМ) (Синтол)	0,5 мкл
ДНК-матрица	15 мкл
Таq-полимераза (Синтол)	0,3 мкл
Стерильная бидистилированная вода	11,2 мкл

Визуализация результатов выделения ДНК и ПЦР проводилась при помощи электрофореза в 1,5% агарозном геле в 1хТАЕ буфере в камере для электрофореза SE-2 фирмы Helicon (Россия) горизонтального co стабилизацией тока по напряжению (80 В). Для визуализации процесса использовали краситель бромфеноловый синий (Рисунок 1). Окраску ДНК проводили бромистым этидием, для визуализации использовали трансиллюминаторы серии ETX, производитель Viber Lourmat (Франция).

Рисунок 1 – Электрофорезы ампликонов ДНК-штрихкода.

2.3.3. Полимеразная цепная реакция ядерных генов EF-1α, GAPDH, IDH, MDH, RpS5, wingless

Для ПЦР генов EF-1а, GAPDH, IDH, MDH,RpS5, а также wingless ядерной ДНК использованы праймеры из работы Rota с соавторами (2016). Амплификацию проводили по стандартным программам (Rota et al., 2016; De Moya et al., 2017). Исследованные экземпляры перечислены в таблице 1. Список праймеров представлен в таблице 6.

Название праймера	Последовательность
EF-1F	CACATYAACATTGTCGTSATYGG
EF-1R	TRSCGGTYTCGAACTTCCA
GAPDH-1F	AARGCTGGRGCTGAATATGT
GAPDH-1R	AAGTTGTCATGGATRACCTT
GAPDH-2F	GTCATCTCYAATGCYTCYTG
GAPDH-2R	TAACTTTGCCRACAGCYTT
GAPDH-3F	GTGCCCARCARAACATCAT
GAPDH-3R	TCAGCGGCTTCCTTRACCT
IDH-1F	GGWGAYGARATGACNAGRATHATHTGG
IDH-1R	GGACTCTTCCACATTTTYTT
MDH-1F	GAYATNGCNCCNATGATGGGNGT
MDH-1R	TCYTTRCGRGCAACYTTRTC
RpS5-1F	ATGGCNGARGARAAYTGGAAYGA
RpS5-1R	TTGTGWGCRTACCTRCCRGC

Таблица 6 – Список праймеров, использованных для секвенирования

ядерных генов

2.3.4. Очистка продуктов ПЦР и секвенирование нуклеотидных последовательностей ДНК

В Лаборатории почвенной зоологии и общей энтомологии и ЦКП «Инструментальные методы в экологии» Института проблем экологии и эволюции A. H. РАН (Москва) ИМ. Северцова для подготовки К секвенированию пробы очищали методом переосаждения этанолом. Определение нуклеотидной последовательности ПЦР-продуктов проводили методу Сэнгера с использованием праймеров LepR1, по LepF1 (последовательность указана в таблице 2) и набора для циклического секвенирования ДНК Big Dye Terminator v. 3.1 Cycle Sequencing Kit (Applied Biosystems, США), в соответствии с рекомендациями фирмы-производителя. Продукты реакции анализировали на автоматическом секвенаторе АВ 3500 Genetic Analyzer (Applied Biosystems, США). Для каждой пробирки была приготовлена смесь сиквенсовой реакции, включающей BigDye, произведено NimaGen (США), праймеры, производитель – «Синтол» (Россия), буфер (Sequencing Buffer). Смешивали по 10 мкл этой смеси и 4 мкл продукта амплификации, затем проводили Сиквенс-ПЦР по следующей схеме: начальный прогрев $95^{\circ}C - 1$ минута; затем 30 циклов при $95^{\circ}C - 10$ секунд, $50^{\circ}C - 10$ секунд, $60^{\circ}C - 2$ минуты; финальное охлаждение $15^{\circ}C - 10$ минут.

Продукты сиквенсовой реакции очищали методом переосаждения этанолом. Очищенный продукт растворяли в 12 мкл формамида и анализировали с использованием генетического анализатора ABI Prism 3500 sequencer, Applied Biosystems (США). Для каждого экземпляра получены консенсусных антипараллельные последовательности, формирование последовательностей проведено программах BioEdit Chromas. В И Гетерозиготные сайты в последовательностях отслеживались в программе (больше BioEdit: неоднозначных сигналов одного лля пика на хроматограмме) использована номенклатура нуклеотидов, принятая IUPAC В (www.chem.qmul.ac.uk/iupac/misc/naabb.html). «Синтол» (Россия) секвенирование 5'-участка гена СОІ проводили по такой же схеме.

В центре ДНК-штрихкодирования (Гуэлф, Канада) подготовку проб и секвенирование проводили по стандартным протоколам, указанным на сайте http://www.dnabarcoding.ca. Секвенирование ДНК проводили с помощью 3730x1 ДНК-анализатора, Applied Biosystems (США) полуавтоматическим методом AutoDTR[™] (EdgeBio®) (Hajibabaei et al., 2005).

В отделе биологии Лундского университета (Швеция) подготовка проб и секвенирование ядерных генов проводились согласно методике, описанной в публикации (Rota et al., 2016).

2.3.5. Статистические алгоритмы и компьютерные программы, использованные для анализа полученных последовательностей

Различия в последовательностях гена СОІ оценивали с помощью программного инструментария BOLD 3.0–4.0 с применением NJ-алгоритма (Saitou, Nei, 1987) и двухпараметрической модели Кимуры – Kimura 2-Parameter distance model (Kimura, 1980). Данная модель различает два типа нуклеотидных замен в последовательностях – транзиции (замена нуклеотида с пуриновым основанием на пурин-содержащий, или нуклеотида с пиримидиновым основанием на пиримидин-содержащий) и трансверсии (замена нуклеотида с пуриновым основанием на пиримидин-содержащий или наоборот). При этом предполагается, что частота встречаемости всех оснований одинакова (т. е. равна 0,25). Эволюционные дистанции между последовательностями (D_{K2P}) рассчитывали по формуле: D_{K2P} = -(1/2) ln {(1-2P-Q)}, где P – доля транзиций, Q – доля трансверсий (Kimura, 1980).

Для анализа ядерных генов и для сравнения полученных результатов использовали следующие программы: для построения филогенетических деревьев использовали NJ метод для построения деревьев по принципу MP и ML в программе MEGA 6 (Tamura et al., 2013). Для анализа последовательностей нуклеотидов и аминокислот использовали программы BioEdit (Hall, 1999), DNAsp v.5 (Librado, Rozas, 2009) и MEGA 6 (Tamura et al., 2013).

Для качественного и количественного анализа, а также построения дендрограмм использовали последовательности, выравненные с помощью алгоритма ClustalW (Thompson et al., 1994), либо с помощью алгоритма MUSCLE (Edgar, 2004). Данная опция предоставлена сайтом проекта BOLD. Длина выбранных последовательностей составляет более 550 п.н., либо более 650 п.н. Оценку достоверности топологии реконструированных NJ деревьев определяли методом бутстреп анализа (bootstrap analysis) (Felsenstein, 1985). Индексы бутстрепа подсчитывали для 1000 псевдореплик.

Пол генетическими межвидовыми дистанциями подразумевали минимальные дистанции при попарных межвидовых сравнениях последовательностей (minimum pairwise distances). Для характеристики внутривидовой изменчивости использовали максимальные дистанции между последовательностями внутри видов (maximum pairwise distances) (http://www.boldsystems.org).

Для определения направления действия отбора на гены мтДНК и яДНК для некоторых таксонов проведен селективный Z-тест (MEGA 6), который

заключается в сравнении и вычислении разницы значений несинонимичной и синонимичной дистанций (дифференциации дистанций, Dd). Dd = dN - dS, где dN – число несинонимичных замен на несинонимичный сайт, dS – число синонимичных замен на синонимичный сайт.

При анализе нуклеотидных последовательностей с использованием Maximum Composite Likelihood model (Tamura et al., 2004) в программе MEGA 6 находили оценочное соотношение транзиции/трансверсии (R), где R + $T^{*}C^{*}k^{2}/[(A+G)^{*}(T+C)],$ k1 [A*G*k1 a соотношение k2 транзиции/трансверсии для пуринов И соответственно для _ пиримидинов.

В некоторых случаях был проведен анализ с использованием модели Тамура-Ней (Tamura, Nei, 1993), которая корректирует множественные попадания, принимая во внимание различия в скорости замещения между нуклеотидами и неравенство частот нуклеотидов. Данная модель различает скорости замещения между пуринами и между пиримидинами. Это также предполагает равенство коэффициентов замещения между сайтами. Для построения матрицы модели Тамура-Ней используются следующие величины:

<u>Значение</u>

d: Транзиции и Трансверсии *s*: только транзиции *v*: только трансверсии R = s/v*L*: отсутствие

действительных общих сайтов

Описание

Число нуклеотидных замен на один сайт

Число транзиций на один сайт Число трансверсий на один сайт Транзиции/Трансверсии соотношение Количество сравниваемых сайтов

Для анализа аминокислотного разнообразия участков молекулы COI, соответствующих ДНК-штрихкодам, использовалось понятие Энтропии, и подсчеты проводились в программе BioEdit. Согласно данным литературы (Pentinsaari, 2016) мера эволюционной консервативности отдельно взятой позиции в белке выражается энтропией (*S*). Полностью консервативный аминокислотный сайт имеет значение энтропии 0 и значение *S* увеличивается с увеличением вариации содержания аминокислот. Все аминокислоты обозначались с использованием однобуквенных символов (Nomenclature and symbolism for amino acids and peptides, 1984).

ГЛАВА З. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Общая характеристика полученных нуклеотидных последовательностей 5'-участка гена, кодирующего первую субъединицу цитохромоксидазы у Zygaenidae

Для сравнительного молекулярно-генетического анализа последовательностей COI использованы 1254 экземпляров представителей семейства Zygaenidae (из них некоторые относились к видам, ещё не известным науке на момент исследования, позже они были описаны в том числе И на основе молекулярных данных), принадлежащих к 4 подсемействам: Chalcosiinae, Procridinae. Callizygaeninae, Zygaeninae. Материал был собран в 60 странах. Вся информация о Zygaenidae, у которых был секвенирован 5'-участок гена COI, доступна на сайте проекта ZYGMO (http://www.boldsystems.org/index.php/MAS_Management_DataConsole?codes= ZYGMO). После выделения ДНК, ПЦР-амплификации фрагментов генов первой субъединицы цитохромоксидазы и детекции качества ампликонов путем электрофореза в 1,5 % агарозном геле с бромистым этидием проводили секвенирование полученных ДНК-копий с последующим выравниванием и обработкой расшифрованных последовательностей в программах Chromas, BioEdit, MEGA 6, DNAsp v.5. Для изучения вариабельности гена COI у представителей семейства Zygaenidae были получены электрофореграммы последовательностей данного региона мтДНК, которые были хорошо читаемыми по всей длине без двойных пиков.

В обшей 1094 сложности исследования получено ЛЛЯ последовательности СОІ региона. После удаления неполных И не соответствующих критериям ДНК-штрихкодов последовательностей ИХ число сократилось до 1023 (с длиной 550 и более нуклеотидов). Большая часть материала отправлялась (с 2009 г.) на выделение и секвенирование ДНК гена COI в Канадский центр ДНК-штрихкодирования Института

биоразнообразия Университета штата Онтарио в городе Гуэлфе (Canadian Centre for DNA Barcording Biodiversity Institute of Ontario University of Guelph) в рамках научной программы «Barcode of Life», проект: «DNA barcoding of Zygaenidae moths» [ZYGMO], руководитель проекта ZYGMO – профессор К. А. Ефетов (Ефетов и соавт., 2010; Efetov et al., 2010, 2011, 2012b, 2013, 2016a; 2016b; Ефетов, Лазарева, 2018).

Три последовательности, полученные для экземпляров Rhagades 1994 (Herrich-Schäffer, 1851), *Adscita* krymensis amasina Efetov, И duskei (Grum-Grshimailo, 1902), были исключены Zygaenoprocris ИЗ исследования контаминации образцов. Список из-за экземпляров, использованных в анализе, приведен в приложении А.

Несмотря на то, что во многих публикациях, в которых обсуждаются результаты ДНК-штрихкодирования, показано, что секвенирование образцов возрастом более 10 лет, часто сопряжено с определёнными трудностями или является неуспешным (Абрамсон, 2013; Најіваваеі et al., 2005; Pohjoismäki et al., 2016) вследствие деградации ДНК. Но в нашем исследовании для 432 образцов возрастом 16 и более лет были получены качественные ДНК последовательности (самый старый экземпляр, давший хорошие результаты, датируется 1982 годом).

В исследованных последовательностях при анализе в программе DNAsp v.5 инделов не обнаружено. По результатам исследования все полученные образцы распределились между 251 ВIN кластером. Система BIN является онлайн-конструкцией, которая алгоритмически кластеризует последовательности штрихкодов, создавая веб-страницу для каждого кластера. Поскольку кластеры демонстрируют высокое соответствие с видами, эта система может использоваться для проверки идентификации экземпляров, когда отсутствует таксономическая информация (Ratnasingham, Hebert, 2013). В результате распределения образцов между BIN выяснилось, что 69,3 % этих кластеров являются уникальными для проекта ZYGMO, в то время как 30,7 % уже присутствовало в электронной базе портала BOLD. 41.4 % последовательностей проекта ZYGMO распределились среди При этом в 92,2 % включал уникальных BIN. ОДИН BIN в себя последовательности для экземпляров одного вида, но в 7,8 % кластеров в одном BIN оказалось 2 и более видов. На рисунке 2 показано, что все iBOL ZYGMO) полученные инициативы (проект В рамках последовательности распределились следующим образом: из 238 BIN противоречивыми оказалось 18, а одиночными (включающими только одну последовательность) – 99 BIN.

Рисунок 2 – Количество и характеристики BIN, полученных для исследованных ДНК-штрихкодов представителей семейства Zygaenidae.

В результате анализа состава азотистых оснований показано, что в среднем в исследованных последовательностях гена СОІ больше тимина и аденина, а меньше – цитозина и гуанина (см. таб. 7). Второе положение в триплете характеризуется наиболее высоким содержанием ГЦ пар (42,74 %), а самое низкое содержание ГЦ пар (8,14 %) в третьем положении, следовательно можно говорить о снижении мутационного давления на этот участок СОІ (Бутвиловский, 2009; Бутвиловский и соавт., 2012). Определение стандартной ошибки показывает выраженность межвидовой изменчивости нуклеотидного состава последовательностей гена СОІ. Нуклеотидный состав второй позиции триплетов характеризуется самой низкой вариабельностью (SE – 0.018), третьей позиции – максимальным межвидовым полиморфизмом (SE – 0.093).

Таблица 7 – Суммарная статистика частоты встречаемости нуклеотидов (с указанием % GC в каждой позиции триплета) для исследованных ДНКштрихкодов представителей семейства Zygaenidae

	Минимальная	Средняя	Максимальная	SE
G %	12.92	14.90	16.57	0.0172
C %	13.68	15.98	20.12	0.0345
A %	26.98	30.15	32.67	0.0313
Т %	35.28	38.96	42.71	0.0331
GC %	27.51	30.89	35.74	0.0373
GC % (1позиция в триплете)	36.99	41.88	46.12	0.0409
GC % (2 позиция в триплете)	41.10	42.74	44.62	0.0176
GC % (3 позиция в триплете)	2.73	8.14	20.18	0.0934

Анализируемые последовательности ДНК подтвердили АТ-смещение (среднее содержание AT > 60% в среднем во всех последовательностях), характерное для митохондриальной ДНК животных, что согласуется с литературными данными (Pentinsaari et al., 2016; Pentinsaari, 2016). Этими авторами также показано, что смещение в сторону увеличения количества AT немного выше у Lepidoptera, чем у других таксонов.

Таблица 8 – Диагностические позиции, детектированные при исследовании ДНК-штрихкодов представителей семейства Zygaenidae на родовом уровне

Род	Позиция нуклеотида					
	302	304	311	473	497	655
Saliunca	Т	А				Т
Onceropyga			Т			
Neoprocris			G			
Zygaena				Т		
Hysteroscene					Т	

В таблице 8 представлены позиции нуклеотидов, детектированные как диагностические при исследовании всего семейства на уровне родов.

Также нами был проведен анализ синонимичности триплетов с помощью программы MEGA 6 (Таблица 9).

Анализ полученных ДНК-штрихкодов В традиционной свете таксономии показал высокое значение специфичности последовательностей данного фрагмента ДНК на видовом уровне. Средняя внутривидовая К2Р дистанция составила 1,36 %, межвидовая (в рамках одного рода) – 7,44 %, межродовая (в рамках семейства) - 13,91 % (Efetov et al., 2013, 2019b). Полученные последовательности анализировались с помощью методов ближайшего связывания NJ (с использованием К2Р модели), максимальной парсимонии (MP) и максимального правдоподобия (ML) с подсчетом бутстреп-поддержек для 1000 реплик. Топологии деревьев, построенных по методам NJ (с использованием К2Р), MP, ML, в целом были сходны, но с различиями в значении бутстреп-поддержек в некоторых кладах. Однако все эти деревья продемонстрировали неэффективность использования ДНКштрихкодов для делимитации некоторых групп видов. Полученная К2Р дендрограмма представлена в приложении В.

К2Р дендрограмма проиллюстрировала монофилию подродов *Molletia* Efetov, 2001 (род *Zygaenoprocris* Hampson, 1900), *Procriterna* Efetov and Tarmann, 2004 (род *Adscita* Retzius, 1783), *Tarmannita* Efetov, 2000 (род *Adscita*), *Tremewania* Efetov and Tarmann, 1999 (род *Jordanita*), *Roccia* Alberti, 1954 (после исключения трёх видов из последнего подрода и включения их в отдельный подрод *Tremewania* рода *Jordanita*) (Ефетов и соавт., 2010).

Эти результаты согласуются с гипотезой, выдвинутой ранее и базирующейся на данных морфологии, биологии, свойствах белков гемолимфы и хемоаттрактантов и т. д. (Subchev et al., 1998, 2010, 2012, 2013, 2016; Efetov 2001a, 2004, 2005; Efetov et al., 2011, 2014b, 2015b; Razov et al., 2017).

			-			-					
триплет	количество	ОИСТ	триплет	количество	ОИСТ	триплет	количество	ОИСТ	триплет	количество	ОИСТ
UUU(F)	19,5	1,56	UCU(S)	3,3	0,72	UAU(Y)	17,6	1,47	UGU(C)	5,4	1,11
UUC(F)	5,5	0,44	UCC(S)	4,2	0,91	UAC(Y)	6,4	0,53	UGC(C)	4,4	0,89
UUA(L)	3,3	1,66	UCA(S)	4,3	0,92	UAA(*)	5,2	1,42	UGA(*)	5,3	1,44
UUG(L)	3,9	1,93	UCG(S)	2	0,43	UAG(*)	0,5	0,14	UGG(W)	10	1
CUU(L)	2,4	1,18	CCU(P)	1,1	0,67	CAU(H)	0,7	1,06	CGU(R)	0,3	0,11
CUC(L)	2,2	1,08	CCC(P)	4,6	2,78	CAC(H)	0,6	0,94	CGC(R)	0,4	0,14
CUA(L)	0,1	0,07	CCA(P)	0,6	0,38	CAA(Q)	0,2	1,35	CGA(R)	0,4	0,14
CUG(L)	0,2	0,09	CCG(P)	0,3	0,17	CAG(Q)	0,1	0,65	CGG(R)	0,7	0,26
AUU(I)	16,4	2,13	ACU(T)	4,5	1,37	AAU(N)	17,2	1,4	AGU(S)	4,9	1,06
AUC(I)	5,9	0,77	ACC(T)	4,9	1,5	AAC(N)	7,3	0,6	AGC(S)	9,1	1,95
AUA(I)	0,8	0,1	ACA(T)	2,1	0,64	AAA(K)	4,8	0,97	AGA(R)	4,2	1,48
AUG(M)	1	1	ACG(T)	1,6	0,5	AAG(K)	5,1	1,03	AGG(R)	10,9	3,87
GUU(V)	0,1	2,03	GCU(A)	0,1	0,87	GAU(D)	0,3	1,5	GGU(G)	0,3	0,64
GUC(V)	0	0,8	GCC(A)	0,2	1,83	GAC(D)	0,1	0,5	GGC(G)	0,5	1,09
GUA(V)	0	0,42	GCA(A)	0	0,42	GAA(E)	0,1	0,92	GGA(G)	0,1	0,27
GUG(V)	0	0,74	GCG(A)	0,1	0,88	GAG(E)	0,1	1,08	GGG(G)	0,9	2,01

Таблица 9 – Относительное использование синонимичных триплетов (ОИСТ) для исследованных ДНК-штрихкодов

представителей семейства Zygaenidae. Все частоты являются средними по всем таксонам

Согласно данным ДНК-штрихкодирования все исследованные виды подрода *Mesembrynus* Hübner, 1819 (род *Zygaena* Fabricius, 1775, Zygaeninae) формируют монофилетический кластер на дендрограмме, что является подтверждением предыдущих таксономических решений, основанных на данных морфологии (Hofmann and Tremewan 1996, 2009; Efetov et al., 2014a).

Полученные данные согласуются в целом с подродовой концепцией Alberti, и в некоторых случаях позволяют её улучшить в подсемействе Procridinae (Alberti, 1954) и поддерживают идею К. А. Ефетова (Efetov, 2005) о филогенетической близости родов Illiberis Walker, 1854 (sensu stricto) и Rhagades Wallengren, 1863 (Efetov, 2005; Efetov, Tarmann, 2012). На уровне родов наши результаты подтверждают ранее существующую точку зрения, о том, что род Illiberis (sensu lato) представляет собой полифилетическую группу (Efetov, 1995, 1996с, 1997b, 1998a, 2010; Efetov, Mollet, 2006). Таксономический статус некоторых групп видов был изменен (Efetov, Tarmann, 2012). Например, был описан род Pseudoilliberis Efetov & Tarmann, 2012, а подродам Hedina Alberti, 1954, и Zama Herrich-Schäffer, 1855, придан Tarmann, 2012). Результаты родовой статус (Efetov, молекулярных исследований подтверждают монофилию рода Rhagades, что было показано ранее (Efetov, 2001a, 2004, 2005) на основе морфологических данных, в том числе – хетотаксии гусениц первого возраста.

В некоторых родах на уровне подвидов и видов наблюдалась внутривидовая дивергенция, приближающаяся к/или превышающая стандартный межвидовой порог в 2 %.

Оказалось, что около 15 % видов семейства Zygaenidae продемонстрировали внутривидовую дивергенцию более 3 %, в то время как по литературным данным дивергенция более 2 % служит критерием межвидового деления изучаемых организмов (Воронова и соавт., 2012; Kekkonen et al., 2015; Hebert et al., 2016). Более 25 % исследованных видов имеют дистанцию до ближайшего соседа 2 % и менее (около 20 % видов – менее 1,0 %). Одним из возможных объяснений может быть тот факт, что эти группы видов являются эволюционно молодыми, и исследуемый участок гена COI к настоящему времени не имеет значительных различий. Например, австралийский род *Pollanisus* Walker, 1854 характеризуется низким уровнем межвидовых дистанций, несмотря на то, что виды этого рода на дендрограмме сформировали несколько изолированных внутриродовых кластеров (см. приложение В). Согласно работе Tarmann (2004) у видов этого рода небольшие различия в строении гениталий, но, тем не менее, виды характеризуются значительными отличиями в биологии. Таким образом, род *Pollanisus* нуждается в дальнейшей ревизии с использованием комплекса признаков (молекулярных, морфологических и биологических).

Данные ДНК-штрихкодирования были использованы, в том числе и для описания новых видов Zygaenidae (Efetov et al. 2012b, 2016b, Ефетов и соавт., 2016).

К моменту отправки образцов в Канадский центр штрихкодирования часть из них еще не была определена на видовом уровне (Ефетов и соавт., 2016). Например, 4 экземпляра (три самца и одна самка) Adscita (*Procriterna*) sp. были собраны в разные дни (27.06.2009 и 8.07.2009) в разных локалитетах Афганистана. Самцы имели отличия в числе корнутусов (от трех до пяти в эдеагусе у разных особей). Во время исследования возник вопрос: принадлежат ли все эти экземпляры к одному новому для науки виду или к нескольким? Результаты ДНК штрихкодирования, обработанные NJ методом 100 % с применением К2Р-модели, показали идентичность последовательностей COI, полученных для всех исследованных экземпляров. При этом были детектированы существенные отличия OT других последовательностей, дистанция до ближайшего соседа Adscita (Procriterna) subdolosa (Staudinger, 1887) составила 4,91 %. После получения этих результатов все экземпляры были включены в типовую серию нового вида Adscita (Procriterna) pligori Efetov, 2012 (Efetov, 2012). Информация о видах, описанных с применением данных ДНК-штрихкодирования, полученных в рамках проекта ZYGMO, приведена ниже в таблице 10.

штрихкодирования, полу	Termbix b punkux npoektu 21 Givio
Вид	Публикация
Adscita (Adscita) dujardini	Efetov, Tarmann, 2014b, Ефетов и соавт., 2016
Adscita (Procriterna) pligori	Efetov, 2012, Ефетов и соавт., 2016
Illiberis (Alterasvenia) banmauka	Efetov, Tarmann, 2014а, Ефетов и соавт., 2016
Illiberis (Alterasvenia) cernyi	Efetov, Tarmann, 2013а, Ефетов и соавт., 2016
Illiberis (Alterasvenia) kislovskyi	Efetov, Tarmann, 2016а, Ефетов и соавт., 2016
Pseudophacusa multidentata	Efetov, Tarmann, 2016b

Таблица 10 – Виды Zygaenidae, описанные с применением данных ДНКштрихкодирования, полученных в рамках проекта ZYGMO

Для видов, показывающих перекрывание баркодов, представители которых обитают в одном георафическом регионе (например, *J. chloros* и *J. graeca*) был проведен сравнительный анализ последовательностей СОІ в программе BioEdit с таковыми, найденными в базе проекта BOLD (10 последовательностей) *Wolbachia*. Совпадений обнаружено не было, следовательно, гипотеза о заражении этих популяций *Wolbachia* не подтвердилась.

3.2. Вариабельность 5'-участка гена, кодирующего первую субъединицу цитохромоксидазы у представителей рода *Illiberis*

Для Illiberis были 17 представителей рода получены последовательностей у представителей 8 видов (см. приложение А), длиной более 650 п.н., все последовательности были выравнены на сайте BOLD с использованием алгоритма MUSCLE (Edgar, 2004). В результате анализа показано, что все последовательности распределились между тремя BIN кластерами, при этом два экземпляра вида Illiberis (Alterasvenia) ochracea Leech, 1898 распределились между двумя BIN: BOLD:AAN2131 И BOLD:ACH0341, по одному экземпляру соответственно. Последовательности этих двух экземпляров на дендрограмме, построенной с помощью К2Р,

разделились с внутривидовой К2Р дистанцией 6,92 %, средняя внутривидовая К2Р дистанция для представителей рода *Illiberis* составила 0,28 % (SE=0,05), при этом минимальная К2Р дистанция внутри рода *Illiberis* составила 5,71 %, а средняя К2Р дистанция составила 8,26 % (SE=0,02). Следовательно, дистанция между этими двум экземплярами *I.* (*A.*) ochracea превысила родовой уровень. С помощью инструментов сайта проекта BOLD был выполнен статистический анализ распределения частоты встречаемости нуклеотидов в последовательностях экземпляров рода *Illiberis*, данные приведены в таблице 11.

Таблица 11 – Суммарная статистика распределения частоты встречаемости

	Минимальная	Средняя	Максимальная	SE
G %	13,83	14,08	14,89	0,0799
C %	15,20	15,98	16,87	0,1730
A %	28,27	29,46	30,55	0,1188
Т %	38,15	40,48	41,34	0,2138
GC %	29,03	30,06	31,61	0,2259
GC % (1 позиция в триплете)	39,73	41,12	43,84	0,2725
GC % (2 позиция в триплете)	42,01	42,22	42,92	0,0771
GC % (Зпозиция в триплете)	5,00	6,95	10,00	0,4257

нуклеотидов в последовательностях экземпляров рода Illiberis

Анализируемые последовательности ДНК показали АТ-смещение (среднее содержание АТ > 60 % в среднем во всех последовательностях), как было показано для всего исследуемого семейства.

С помощью инструментов сайта BOLD были выявлены нуклеотидные позиции, имеющие диагностический характер. В исследовании принимали участие только виды, для которых было получено больше, чем три последовательности (Таблица 12).

Вид	Количество последовательностей	Количество диагностических замен	Количество замен, имеющих частично- диагностический характер			
Illiberis pruni	3	41	8			
Illiberis ochracea	3	2	0			
Illiberis cernyi	3	22	6			
Illiberis banmauka	7	13	7			

Таблица 12 – Характеристика диагностических позиций в последовательностях, полученных для экземпляров рода *Illiberis*

С помощью программы DNAsp v.5 в 17 последовательностях определено 149 полиморфных (сегрегирующих) сайта с общим количеством мутаций 173, число парсимонийно-информативных сайтов составило 93, _ 9. Были определены число гаплотипов следующие величины: Гаплотипическое разнообразие (Haplotype diversity, Hd): 0,831; Дисперсия гаплотипического разнообразия (Variance of Haplotype diversity): 0,00716; Стандартное отклонение гаплотипического разнообразия (Standard Deviation of Haplotype diversity): 0,085; Нуклеотидное разнообразие (Nucleotide diversity, Pi): 0,06332. Среднее число нуклеотидных различий (Average number of nucleotide differences, k): 41,662. Эти последовательности были проанализированы со следующими параметрами: минимальная длина окна (Minimum window length) – 60, порог консервативности (Conservation threshold) – 0,87. При исследовании обнаружено 2 консервативных региона – регион 1: нуклеотиды 93–171, регион 2: нуклеотиды 206–281.

При анализе в программе MEGA6 была рассчитана оценка схемы нуклеотидного замещения методом максимального правдоподобия, результаты представлены в таблице 13.

F						
	Α	Т	С	G		
Α	-	8.29	3.28	4.25		
Т	6.04	-	12.99	2.89		
С	6.04	32.9	-	2.89		
G	8.89	8.29	3.28	-		

Таблица 13 – Оценка нуклеотидного замещения методом максимального правдоподобия для экземпляров рода *Illiberis*

Каждая запись показывает вероятность замещения (r) из одной базы (строки) в другую базу (столбец). Для простоты сумма значений r признана равной 100. Коэффициенты различных транзиционных замен показаны жирным шрифтом, а трансверсий – курсивом.

Частоты встречаемости нуклеотидов суммированы в таблице 11. Соотношение транзиции/трансверсии составило k1 = 1.472 (пурины) и k2 = 3.966 (пиримидины). Общее значение транзиции/трансверсии R = 1.292.

На рисунке 3 показана вероятность отклонения нулевой гипотезы строгой нейтральности (dN = dS) (выше диагонали). Значения Р менее 0,05 считаются значимыми на уровне 5% и выделены. Тестовая статистика (dN – dS) показана ниже диагонали. dS и dN – количество синонимических и несинонимичных замен на сайт соответственно. Дисперсия разницы была рассчитана с использованием аналитического метода. Анализ проводился методом Неи-Годжобори (Nei, Gojobori, 1986). Анализируемая выборка включала в себя 17 нуклеотидных последовательностей. Всего в итоговом наборе данных было 209 позиций.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1. ZYGMO534-12 Illiberis cernyi		0.32	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2. ZYGMO1218-15 Illiberis cernyi	1.00		1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3. ZYGMO1219-15 Illiberis cernyi	1.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4. ZYGMO006-09 Illiberis ellenae	7.13	7,13	7.13		1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5. ZYGMO008-09 Illiberis ellenae	7.13	7.13	7.13	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6. ZYGMO287-10 Illiberis ochracea	6.04	6.04	6.04	4.85	4.85		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7. ZYGMO 196-10 Illiberis ochracea	7.95	7.95	7.95	6.95	6.95	5.09		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8. ZYGMO563-12 Illiberis pruni	7.28	7.28	7.28	6.10	6.10	7.56	6.56		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9. ZYGMO004-09 Illiberis rotundata	6.54	6.54	6.54	6.07	6.07	6.39	6.28	7.87		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10. ZYGMO572-13 Illiberis sp. 4	5.56	5.65	5.65	4.62	4.62	3.51	5.36	5.58	5.00		1.00	1.00	1.00	1.00	1.00	1.00	0.00
11. ZYGMO573-13 Illiberis sp. 4	5.56	5.65	5.65	4.62	4.62	3.51	5.36	5.58	5.00	0.00		1.00	1.00	1.00	1.00	1.00	0.00
12. ZYGMO574-13 Illiberis sp. 4	5.56	5.65	5.65	4.62	4.62	3.51	5.36	5.58	5.00	0.00	0.00		1.00	1.00	1.00	1.00	0.00
13. ZYGMO575-13 Illiberis sp. 4	5.56	5.65	5.65	4.62	4.62	3.51	5.36	5.58	5.00	0.00	0.00	0.00		1.00	1.00	1.00	0.00
14. ZYGMO576-13 Illiberis sp. 4	5.56	5.65	5.65	4.62	4.62	3.51	5.36	5.58	5.00	0.00	0.00	0.00	0.00		1.00	1.00	0.00
15. ZYGMO577-13 Illiberis sp. 4	5.56	5.65	5.65	4.62	4.62	3.51	5.36	5.58	5.00	0.00	0.00	0.00	0.00	0.00		1.00	0.00
16. ZYGMO578-13 Illiberis sp. 4	5.56	5.65	5.65	4.62	4.62	3.51	5.36	5.58	5.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
17. ZYGMO579-13 Illiberis sp. 5	7.12	7.12	7.12	6.42	6.42	4.20	6.42	6.16	5.62	4.50	4.50	4.50	4.50	4.50	4.50	4.50	

Рисунок 3 – Основанный на кодонах тест нейтральности для анализа между последовательностями представителей рода *Illiberis*.

В результате анализа с помощью BioEdit в последовательностях COI экземпляров рода *Illiberis* выявлено 149 позиций вариабельности с различной долей энтропии (Рисунок 4). В семи позициях значение энтропии превысило 1.

Рисунок 4 – Вариабельные позиции, детектированные в 17 последовательностях СОІ для экземпляров семи видов рода *Illiberis*.

3.3. Вариабельность 5'-участка гена, кодирующего первую субъединицу цитохромоксидазы у представителей рода *Rhagades*

В результате анализа полученных для рода *Rhagades* 14 последовательностей на сайте проекта BOLD выявлено распределение всех сиквенсов между тремя BIN, каждый соответствует одному виду. Данные о диагностических позициях, показанных для рода *Rhagades*, суммированы в таблице 14. Для анализа были использованы виды, для представителей которых получено более трех последовательностей.

Таблица 14 – Характеристика диагностических позиций в последовательностях, полученных для экземпляров рода *Rhagades*

Вид	Количество последовательностей	Число диагностических замен	Число замен, имеющих частично диагностический характер
Rhagades brandti	4	15	1
Rhagades pruni	10	22	239

Статистика частоты встречаемости нуклеотидов в последовательностях ДНК-штрихкодов рода *Rhagades* приведена в таблице 15.

Таблица 15 – Суммарная статистика распределения частоты встречаемости

нуклеотидов в последовательностях экземпляров рода Rhagades

	Минимальная	Средняя	Максимальная	SE
G %	13.68	13.93	14.44	0.0762
C %	15.65	16.13	16.87	0.0906
A %	29.33	30.34	31.46	0.1833
Т %	38.75	39.60	40.12	0.1608
GC %	29.64	30.06	31.00	0.0936
GC % (1 позиция в кодоне)	40.18	40.83	41.55	0.1362
GC % (2 позиция в кодоне)	42.01	42.01	42.01	0.0000
GC % (3 позиция в кодоне)	6.36	7.44	9.55	0.2540

При этом количественный состав анализируемых последовательностей существенно не отличался от результатов, полученных для всего исследуемого семейства в целом.

программы 78 С помощью DNAsp v.5 было детектировано полиморфных (сегрегирующих) сайтов, с общим количеством мутаций 86, число парсимонийно-информативных сайтов составило 75, число гаплотипов – 7. Были определены следующие величины: Гаплотипическое разнообразие (Haplotype diversity), Hd: 0,813; Дисперсия гаплотипического разнообразия (Variance of Haplotype diversity): 0,00890; Стандартное отклонение гаплотипического разнообразия (Standard Deviation of Haplotype diversity): 0,094; Нуклеотидное разнообразие (Nucleotide diversity), Pi: 0,04459. Среднее число нуклеотидных различий (Average number of nucleotide differences), k: 29,341.

Степень консервативности последовательностей экземпляров рода *Rhagades* (Sequence conservation) составила 0,881, при этом поиск консервативных регионов с помощью программы BioEdit с минимальной длиной окна 15 п.н., позволил детектировать 12 консервативных регионов.

При анализе этих последовательностей в программе BioEdit была определена степень энтропии для каждого вариабельного сайта, данные представлены на рисунке 5. Ни одной точки вариабельности с энтропией больше единицы не было детектировано (Ефетов, Лазарева, 2019).

Рисунок 5 – Вариабельные позиции, детектированные в 14 последовательностях СОІ для экземпляров трех видов рода *Rhagades*.

	Α	Т	С	G
Α	-	10.3	4.2	0.61
Т	7.89	-	13.32	3.62
С	7.89	32.7	-	3.62
G	1.34	10.3	4.2	-

Таблица 16 – Оценка нуклеотидного замещения методом максимального правдоподобия для последовательностей экземпляров рода *Rhagades*

Каждая запись – это вероятность замещения (r) из одной базы (строки) в другую базу (столбец) (Татига et al., 2004). Характер и показатели замещения оценивались по модели Тамура-Ней (Татига, Nei, 1993). Коэффициенты различных транзиций выделены жирным шрифтом, а трансверсий – курсивом. При оценке их следует учитывать относительные значения мгновенных r. Для простоты сумма значений r сделана равной 100. Частота встречаемости каждого нуклеотида показана в таблице 15. Для оценки значений ML автоматически вычислялась топология дерева. Максимальное логарифмическое правдоподобие для этого вычисления было – 3656.695. Соотношение транзиции/трансверсии составило $k_1 = 0.169$ и $k_2 =$ 3.173, общее R = 0.851. Трансверсии преобладают (51,93%).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1. ZYGMO016-09 Rhagades amasina		0.00	6.01	6.10	6.10	5.11	5.11	5.11	5.11	5.11	5.21	5.12	5.11	5.11
2. ZYGMO018-09 Rhagades amasina	1.00		6.01	6.10	6.10	5.11	5.11	5.11	5.11	5.11	5.21	5.12	5.11	5.11
3. ZYGMO013-09 Rhagades brandti	0.00	0.00		1.00	1.00	5.76	5.76	5.76	5.76	5.76	5.68	5.95	5.76	5.76
4. ZYGMO229-10 Rhagades brandti	0.00	0.00	0.32		0.00	5.76	5.76	5.76	5.76	5.76	5.68	5.95	5.76	5.76
5. ZYGMO230-10 Rhagades brandti	0.00	0.00	0.32	1.00		5.76	5.76	5.76	5.76	5.76	5.68	5.95	5.76	5.76
6. ZYGMO022-09 Rhagades pruni	0.00	0.00	0.00	0.00	0.00		1.00	1.00	1.00	1.00	2.66	2.25	1.00	1.00
7. ZYGMO023-09 Rhagades pruni	0.00	0.00	0.00	0.00	0.00	0.32		0.00	0.00	0.00	2.46	2.01	0.00	0.00
8. ZYGMO024-09 Rhagades pruni	0.00	0.00	0.00	0.00	0.00	0.32	1.00		0.00	0.00	2.46	2.01	0.00	0.00
9. ZYGMO025-09 Rhagades pruni	0.00	0.00	0.00	0.00	0.00	0.32	1.00	1.00		0.00	2.46	2.01	0.00	0.00
10. ZYGMO026-09 Rhagades pruni	0.00	0.00	0.00	0.00	0.00	0.32	1.00	1.00	1.00		2.46	2.01	0.00	0.00
11. ZYGMO292-10 Rhagades pruni	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.02	0.02	0.02		2.46	2.46	2.46
12. ZYGMO293-10 Rhagades pruni	0.00	0.00	0.00	0.00	0.00	0.03	0.05	0.05	0.05	0.05	0.02		2.01	2.01
13. ZYGMO232-10 Rhagades pruni	0.00	0.00	0.00	0.00	0.00	0.32	1.00	1.00	1.00	1.00	0.02	0.05		0.00
14. ZYGMO233-10 Rhagades pruni	0.00	0.00	0.00	0,00	0.00	0.32	1.00	1.00	1.00	1.00	0.02	0.05	1.00	

Рисунок 6 – Основанный на кодонах Z-тест нейтральности для анализа между последовательностями, полученными для представителей рода

Rhagades.

На рисунке показана вероятность отклонения нулевой гипотезы строгой нейтральности (dN = dS) (выше диагонали). Значения Р менее 0,05 считаются значимыми на уровне 5% и выделены. Тестовая статистика (dN – dS) показана ниже диагонали. dS и dN – количество синонимических и несинонимичных замен на сайт, соответственно. Дисперсия разницы была рассчитана с использованием аналитического метода. Анализы проводились методом Ней-Годжобори (Nei, Gojobori, 1986). Анализ включал 14 нуклеотидных последовательностей. Всего в итоговом наборе данных было 220 позиций.

3.4. Вариабельность 5'-участка гена, кодирующего первую субъединицу цитохромоксидазы, у представителей рода *Zygaenoprocris*

Для представителей рода Zygaenoprocris были получены 55 последовательностей длиной более 650 п.н., которые распределились между 27 BIN. В каждом BIN находились последовательности только одного вида, но для экземпляров вида Zygaenoprocris (Molletia) duskei последовательности COI распределились между двумя BIN, также как и для экземпляров видов *Zygaenoprocris* (*Zygaenoprocris*) *chalcochlora* Hampson, 1900, и *Zygaenoprocris* (Molletia) persepolis (Alberti, 1938) последовательности СОІ распределились между тремя BIN. Максимальная внутривидовая К2Р дистанция для Z. (M.) duskei составила 3,93 %, Z. (M.) persepolis – 5,58 %, между последовательностями вида Z. (Z.) chalcochlora – 6,23 %. Средняя дистанция внутри рода Zygaenoprocris составила 7,3 %. При этом для экземпляров Z. (Z.) chalcochlora внутривидовая дистанция между отдельными экземплярами превысила дистанцию до ближайшего соседа Zygaenoprocris (Efetovia) fredi (Alberti, 1939), которая равна 2,47 %. То есть для некоторых видов рода Zygaenoprocris дивергенция между последовательностями ДНКштрихкодов превышает стандартный порог 2–3%, указанный в большинстве публикаций. Возможные причины этого будут обсуждаться в разделе 3.2.

С программы DNAsp v.5 было детектировано 193 помощью полиморфных (сегрегирующих) сайта, с общим количеством мутаций 237, число парсимонийно-информативных сайтов составило 75, число гаплотипов – 45. Были определены следующие величины: Гаплотипическое разнообразие (Haplotype diversity), Hd: 0,989; Дисперсия гаплотипического разнообразия diversity): 0,00005; (Variance of Haplotype Стандартное отклонение гаплотипического разнообразия (Standard Deviation of Haplotype diversity): 0,007; Нуклеотидное разнообразие (Nucleotide diversity), Pi: 0,06315. Среднее число нуклеотидных различий (Average number of nucleotide differences), k: 41.556.

В таблице 17 приведены диагностические признаки ДЛЯ COI. полученных представителей последовательностей ДЛЯ рода Zygaenoprocris, результаты обработаны на сайте BOLD.

последовательностях, полученных для экземпляров рода <i>Zygaenoprocris</i>													
Вид					Π	[озици	ія нукл	пеотид	ıa				
	49	100	115	127	202	307	337	355	407	541	568	581	652
Zygaenoprocris taftana	С								С	G		С	
Zygaenoprocris persepolis						С					Т		
Zygaenoprocris khorassana		Α	С	С	Α		А	А					
Zygaenoprocris chalcochlora													
Zygaenoprocris duskei													C

Таблица 17 – Характеристика диагностических позиций в

Наибольшее число диагностических признаков (6) показано для *Zygaenoprocris khorassana*, наименьшее (0) – для *Zygaenoprocris chalcochlora*.

При дальнейшем исследовании нуклеотидных последовательностей с использованием Maximum Composite Likelihood model (Tamura et al., 2004) в программе MEGA 6 для представителей рода Zygaenoprocris оценочное соотношение транзиции/трансверсии (*R*) составило R = 2.235. Результаты суммированы в таблице 18.

Таблица 18 – Оценка нуклеотидного замещения методом максимального правдоподобия в последовательностях, полученных для экземпляров рода *Тисае* последовательностих, полученных для экземпляров рода

	Α	Т	С	G
Α	-	5.75	2.46	7.3
Т	4.17	-	14.81	2.13
С	4.17	34.59	-	2.13
G	14.27	5.75	2.46	-

Zygaenoprocris

Каждая запись – это вероятность замещения (r) из одной базы (строки) в другую базу (столбец) (Татига et al., 2004). Характер и показатели замещения оценивались по модели Тамура-Ней (Tamura, Nei, 1993). Показатели различных транзиций выделены жирным шрифтом, a коэффициенты трансверсий – курсивом. При оценке их следует учитывать относительные значения мгновенных r. Для простоты сумма значений r сделана равной 100. Частота встречаемости каждого нуклеотида показана в таблице 17. Максимальное логарифмическое правдоподобие для этого -3656.695. Соотношение было транзиции/трансверсии вычисления составило $k_1 = 3.425$ и $k_2 = 6.012$. В последовательностях СОІ представителей рода Zygaenoprocris преобладают транзиции (70,96%).

С помощью BioEdit была вычислена величина энтропии для каждой точки вариабельности (Рисунок 7) При этом в пяти позициях величина энтропии превысила 1. Также В программе **BioEdit** для 55 были найдены 3 последовательностей консервативных региона (c максимальной средней энтропией не превышающей 0,2 и минимальной длиной 15 нуклеотидов): позиции с 1 по 18, с 239 по 264, с 320 по 336.

Статистика частоты встречаемости нуклеотидов в последовательностях ДНК-штрихкодов рода *Zygaenoprocris* приведена ниже в таблице 19.

нуклеотидов в последовательностях экземпляров рода <i>Zygaenoprocris</i>							
	Минимальная	Средняя	Максимальная	SE			
G %	13.98	14.68	15.65	0.0489			
C %	15.65	16.97	18.54	0.1131			
A %	27.51	28.70	29.94	0.0740			
Т %	38.15	39.65	41.19	0.1022			
GC %	30.24	31.66	33.43	0.1301			
GC % (1 позиция в триплете)	39.73	42.03	43.38	0.1013			
GC % (2 позиция в триплете)	42.01	43.26	43.84	0.0487			
GC % (3 позиция в триплете)	5.45	9.77	15.00	0.3814			

Таблица 19 – Суммарная статистика распределения частоты встречаемости нуклеотидов в последовательностях экземпляров рода *Zygaenoprocris*

При ДНК изучении дендрограмм, построенных ДЛЯ последовательностей COI, полученных для экземпляров, принадлежащих к роду Zygaenoprocris было обнаружено, что кластеры, сформированные последовательностями вида *Zygaenoprocris* (Molletia) duskei (Grum-Grshimailo, 1902) формируют одну терминальную группу с дистанцией до ближайшего соседа Z. (M.) taftana (Alberti, 1939) – 4,74%, и до Z. (M.) persepolis (Alberti, 1938) – 5,72%. Дистанция между экземплярами подвида Z. (M.) duskei kliri Keil, 2002, составляет 0,17%, между экземплярами подвида Z. (M.) duskei kermana (Alberti, 1967) – 1,08%, в то время как этот показатель между экземплярами подрода Z. (M.) duskei duskei (Grum-Grshimailo, 1902) составил 3,93%. Таким образом, полученные данные иллюстрируют положение о том, что на основе только молекулярных данных, особенно используя только один митохондриальный маркер не всегда возможно точно установить, представлена ли популяция видами или подвидами одного вида. Так, при изучении вида Zygaenoprocris (M.) duskei внутриподвидовая дистанция превысила среднюю внутривидовую – 1,36% в три раза.

Рисунок 7 – Степень энтропии для последовательностей 5'-концевого фрагмента митохондриального гена I субъединицы цитохромоксидазы для представителей рода *Zygaenoprocris* (использованы 55 последовательностей длиной 650 п.н. и более, с выравниванием MUSCLE).

При анализе дендрограммы, построенной для последовательностей СОІ экземпляров подрода Zygaenoprocris Hampson, 1900 рода Zygaenoprocris оказалось, что последовательности некоторых экземпляров Z. chalcochlora образовали терминальную группу, изолированную от других экземпляров Особи этого вида. северного Ирана, чьи последовательности ИЗ сформировали отдельные кластеры на дендрограмме, отличались морфологически по строению гениталий самок от экземпляров из Пакистана (в том числе из типовой для этого вида местности) и Афганистана. Полученные молекулярные данные позволили согласиться с мнением Alberti (1939) о том, что «Procris khorassana» и Zygaenoprocris chalcochlora являются видами. Таксон «Procris khorassana» был восстановлен различными К. А. Ефетовым и Г. М. Тарманном в качестве валидного – Zygaenoprocris khorassana (Alberti, 1939) (Efetov et al., 2019b).

3.5. Вариабельность 5'-участка гена, кодирующего первую субъединицу цитохромоксидазы, у представителей рода Adscita

представителей Adscita была 171 Для рода получена последовательность, длиной более 650 п.н., все последовательности были выравнены на сайте BOLD с использованием алгоритма MUSCLE (Edgar, 2004). При дальнейшем было анализе выявлено три группы последовательностей экземпляров разных видов, отнесенных к одному BIN:

1. BIN номер BOLD:AAD5110 содержит последовательности вида Adscita (Adscita) statices (Linnaeus, 1758): 4 экземпляра, Adscita (Adscita) schmidti (Naufock, 1933): 5 экземпляров, Adscita (Adscita) italica (Alberti, 1937): 6 экземпляров, Adscita (Adscita) alpina (Alberti, 1937): 3 экземпляра.

2. BIN номер BOLD:ABY8877 содержит последовательности вида Adscita (Tarmannita) mannii (Lederer, 1853): 41 экземпляр, Adscita dujardini Efetov, & Tarmann, 2014: 9 экземпляров, Adscita (Tarmannita) bolivari Agenjo, 1937: 5 экземпляров, Adscita (Adscita) geryon (Hübner, 1813): 1 экземпляр.

3. BIN номер BOLD:ABY4365 содержит последовательности вида Adscita (Adscita) albanica (Naufock, 1926): 2 экземпляра, A. (A.) geryon: 26 экземпляров.

При дальнейшем исследовании нуклеотидных последовательностей с использованием Maximum Composite Likelihood model (Tamura et al., 2004) в программе MEGA 6 для представителей рода Adscita найдены 259 В BioEdit были найдены 7 вариабельных позиций. программе максимальной средней консервативных регионов (с энтропией не превышающей 0,2 и минимальной длиной 15 нуклеотидов): позиции с 164 по 180; с 185 по 199; с 239 по 258; с 287 по 301; с 320 по 339; с 344 по 361; с 476 по 498. Все последовательности, содержащие «интервалы» (gaps) были Для Adscita элиминированы ИЗ анализа. оценочное соотношение транзиции/трансверсии (R) составило 3.416. Значение R было подсчитано в MEGA 6. Maximum Log для этих подсчетов составил – 2820.445. В финальном наборе данных использовалось 558 позиций.

Таблица 20 – Оценка нуклеотидного замещения методом максимального правдоподобия в последовательностях ДНК-штрихкода для экземпляров из

	Α	Т	С	G
Α	-	4.24	1.82	0.7
Т	3.22	_	22.84	1.57
С	3.22	53.32	-	1.57
G	1.44	4.24	1.82	-

рода Adscita

Каждая запись – это вероятность замещения (r) из одной базы (строки) в другую базу (столбец). Характер и показатели замещения оценивались по модели Тамура-Ней (1993). Показатели различных транзиций выделены жирным шрифтом, а коэффициенты трансверсий – курсивом. При оценке их следует учитывать относительные значения мгновенных г. Для простоты сумма значений г сделана равной 100. Частоты нуклеотидов показаны в таблице 21. Для оценки значений ML автоматически вычислялась топология дерева. Максимальное логарифмическое правдоподобие для этого вычисления было -2783,300, $k_1 = 0.448$, $k_2 = 12.578$.

Таблица 21 – Суммарная статистика частоты встречаемости нуклеотидов в последовательностях ДНК-штрихкода для экземпляров из рода *Adscita*

	Минимальная	Средняя	Максимальная	SE
G %	13.98	14.60	15.96	0.0280
C %	15.50	16.19	17.63	0.0371
A %	28.88	29.95	31.16	0.0296
Т %	37.99	39.27	40.06	0.0348
GC %	29.94	30.79	32.67	0.0476
GC % (1 позиция в кодоне)	39.73	41.55	42.48	0.0439
GC % (2 позиция в кодоне)	42.67	43.29	44.62	0.0165
GC % (3 позиция в кодоне)	4.55	7.62	12.73	0.1239

Анализируемые последовательности ДНК показали АТ-смещение (среднее содержание АТ > 60% в среднем во всех последовательностях), как было показано для всего исследуемого семейства.

С помощью инструментов сайта BOLD были выявлены нуклеотидные признаки, имеющие диагностический характер, результаты суммированы в таблице 22.

Для североафриканского вида Adscita (Adscita) mauretanica (Naufock, 1932) обнаружено больше (17).всего диагностических замен Последовательности СОІ экземпляров вида А. (А.) mauretanica на К2Р дендрограмме оказались расположенными отдельно от всех остальных экземпляров рода Adscita, представленных видами, обитающими в Европе и Азии. Хотя морфологические и биологические признаки у вида А. (А.) mauretanica совпадают с таковыми у всех остальных представителей данного рода. При проведении анализа методом ближайшего соседа было выяснено, что дистанция между A. (A.) mauretanica и A. (Tarmannita) mannii (Lederer, 1853) составила 7,58%. Этот факт отражает длительную географическую изоляцию А. (А.) mauretanica.

Таблица 22 – Количество диагностических/частично-диагностических признаков в последовательностях СОІ, полученных для экземпляров из рода

Вид	Количество последовательностей	число диагностических признаков	число признаков, имеющих частично- диагностический характер
Adscita subtristis	4	6	1
Adscita amaura	4	5	2
Adscita pligori	3	6	3
Adscita jordani	5	2	1
Adscita schmidti	5	0	1
Adscita alpina	3	0	1
Adscita italica	8	0	0
Adscita statices	10	0	0
Adscita mauretanica	9	17	5
Adscita obscura	15	6	1
Adscita capitalis	5	0	2
Adscita geryon	40	0	0
Adscita mannii	41	0	0
Adscita bolivari	5	0	0
Adscita dujardini	9	1	2

Adscita

В роде Adscita выявлена ещё одна проблемная ситуация. Дистанция между экземплярами A. (A.) geryon (Hübner, 1813) из Балкан и южной Италии и представителями остальных европейских популяций этого вида (включая Крым) оказалась больше, чем между крымскими экземплярами A. (A.) geryon и A. (A.) albanica (Naufock, 1926). Последний вид очень хорошо отличается морфологически и биологически от A. (A.) geryon. Возможно, значительное сходство последовательностей разных видов в пределах одного географического региона свидетельствует о горизонтальном переносе генов.

Для экземпляров вида Adscita (Procriterna) subdolosa (Staudinger, 1887) также была показана высокая степень дивергенции – максимальная внутривидовая дистанция составила 4,24 %. Возможно, это связано с географической изоляцией популяций данного вида на различных горных системах центральной Азии. С помощью BioEdit вычислена величина энтропии для каждой точки вариабельности (Рисунок 8).

Рисунок 8 – Степень энтропии для последовательностей 5'-концевого фрагмента митохондриального гена I субъединицы цитохромоксидазы для представителей рода *Adscita* (использована 171 последовательность длиной 650 п.н. и более).

84

3.6. Вариабельность 5'-участка гена, кодирующего первую субъединицу цитохромоксидазы, у представителей рода *Jordanita*

Для представителей рода *Jordanita* было получено 158 последовательностей длиной более 550 п.н. При дальнейшем анализе было выявлено четыре группы последовательностей у экземпляров разных видов, отнесенных к одному BIN, при этом все виды, чьи последовательности попали в один BIN, оказались из одного подрода:

1. BIN номер BOLD:AAE2179 содержит последовательности Jordanita (Roccia) hector (Jordan, 1907) – 2 экземпляра, Jordanita (Roccia) volgensis (Möschler, 1862) – 14 экземпляров; Jordanita (Roccia) paupera (Christoph, 1887) – 2 экземпляра.

2. BIN номер BOLD:AAE2183 содержит последовательности Jordanita (Jordanita) syriaca (Alberti, 1937) – 1 экземпляр; Jordanita (Jordanita) graeca Jordan, 1907 – 5 экземпляров; Jordanita (Jordanita) chloros (Hübner, 1813) – 6 экземпляров; Jordanita (Jordanita) tenuicornis (Zeller, 1847) – 10 экземпляров; Jordanita (Jordanita) globulariae (Hübner, 1793) – 14 экземпляров; Jordanita (Jordanita) vartianae (Malicky, 1961) – 1 экземпляр.

3. BIN номер BOLD:AAE5663 содержит последовательности J. (J.) graeca – 6 экземпляров; J. (J.) chloros – 1.

4. BIN номер BOLD:AAN3929 содержит последовательности Jordanita (Gregorita) maroccana (Naufock, 1937) – 1 экземпляр; Jordanita (Gregorita) algirica (Rothschild, 1917) – 3 экземпляра.

Соответственно, на дендрограммах последовательности экземпляров подрода *Jordanita* Verity, 1946 не образовали изолированных кластеров. Максимальная внутривидовая дистанция между экземплярами вида *J. (J.) graeca* составила 5,72%, а вида *J. (J.) chloros* – 6,08%, в то время как дивергенция между последовательностями СОІ в других видах данного подрода оказалась гораздо меньше. Для вида *J. (J.) globulariae* эта величина составила 1,86%, а для *J. (J.) tenuicornis* – 1,58%. Однако межвидовые

дистанции для изучаемого подрода оказались очень низкими – в пределах 0,3–0,61%. Для *J.* (*J.*) vartianae и *J.* (*J.*) syriaca были получены ДНКштрихкоды только для одного экземпляра каждого вида, поэтому мы не можем рассчитать для этих видов внутривидовые дистанции.

Все виды подрода *Jordanita* рода *Jordanita* имеют хорошие морфологические отличия в строении гениталий (Efetov, 2004, 2005). Можно сделать вывод о том, что ДНК-штрихкодирование в этой группе «не работает» (Efetov et al., 2018b; Ефетов и соавт., 2019a, 2019б, 2021). Подобные результаты были получены ранее и для некоторых других таксонов Insecta (Hickerson et al., 2006; Meier et al., 2006; Hausmann et al., 2011).

При дальнейшем исследовании нуклеотидных последовательностей с использованием Maximum Composite Likelihood model (Tamura et al., 2004) в программе MEGA 6 (Tamura et al., 2013) для представителей рода *Jordanita* найдены 222 позиции вариабельности, в программе BioEdit подсчитано значение энтропии для каждого вариабельного сайта (Рисунок 10). Все последовательности, содержащие «интервалы» (gaps) были элиминированы из анализа. Оценочное соотношение транзиции/трансверсии составило (*R*) 4.59.

С помощью программы DNAsp v.5 было детектировано 202 полиморфных (сегрегирующих) сайта с общим количеством мутаций 252, парсимонийно-информативных число сайтов составило 188, число гаплотипов – 88. Были определены следующие величины: Гаплотипическое разнообразие (Haplotype diversity), Hd: 0,991; Дисперсия гаплотипического разнообразия (Variance of Haplotype diversity): 0,00001; Стандартное отклонение гаплотипического разнообразия (Standard Deviation of Haplotype diversity): 0,002; Нуклеотидное разнообразие (Nucleotide diversity), Pi: 0,05717. Среднее число нуклеотидных различий (Average number of nucleotide differences), k: 36,243.

Также в программе BioEdit для 158 последовательностей были найдены 4 консервативных региона (с максимальной средней энтропией не превышающей 0,2 и минимальной длиной 15 нуклеотидов): позиции с 182 по 199; с 233 по 262; с 303 по 317; с 320 по 339. Последний константный регион совпадает с таковым в последовательностях COI, полученных для представителей рода *Zygaenoprocris*.

Таблица 23 – Суммарная статистика частоты встречаемости нуклеотидов в последовательностях, полученных для рода *Jordanita*

	Минимальная	Средняя	Максимальная	SE
G %	13.98	14.95	16.12	0.0378
C %	14.96	16.28	17.93	0.0544
A %	28.42	29.86	31.31	0.0441
Т %	36.90	38.90	40.73	0.0625
GC %	29.76	31.23	32.98	0.0583
GC % (1 позиция в триплете)	39.27	42.66	45.62	0.1258
GC % (2 позиция в триплете)	41.78	42.78	43.72	0.0340
GC % (3 позиция в триплете)	4.55	8.34	15.00	0.1793

В результате анализа состава азотистых оснований показано, что в среднем в исследованных последовательностях гена СОІ больше всего тимина и аденина, а меньше – цитозина и гуанина (см. таб. 22). Второе положение триплетов характеризуется наиболее высоким содержанием ГЦ пар (41,78%), а самое низкое содержание ГЦ пар (4,55%) в третьем положении, следовательно можно говорить о снижении мутационного давления на этот участок СОІ (Бутвиловский, 2009; Бутвиловский и соавт., 2012). Определение стандартной ошибки показывает выраженность межвидовой изменчивости нуклеотидного состава последовательностей гена СОІ. Нуклеотидный состав второй позиции триплетов характеризуется самой низкой вариабельностью (SE – 0.0340), третьей позиции – максимальным межвидовым полиморфизмом (SE – 0.1793).

Для последовательностей, полученных для представителей рода *Jordanita*, была проведена в программе MEGA 6 оценка максимального комбинированного правдоподобия схемы нуклеотидного замещения (табл. 24).

	Α	Т	С	G
Α	-	4.47	1.94	4.16
Т	3.41	-	19.51	1.72
С	3.41	44.97	-	1.72
G	8.28	4.47	1.94	-

Таблица 24 – Оценка нуклеотидного замещения методом максимального правдоподобия в последовательностях, полученных для рода *Jordanita*

Каждая запись показывает вероятность замены (r) из одной базы (строки) в другую базу (столбец). Для простоты сумма значений r сделана равной 100. Коэффициенты различных транзиционных замен показаны жирным шрифтом, а коэффициенты трансверсальных замен – курсивом. Частоты нуклеотидов показаны в таблице 19. Коэффициенты k1 = 2,424 и k2 = 10,065. Общее смещение транзиции/трансверсии составляет R = 3,084. В анализе использовались 158 нуклеотидных последовательностей. Всего в итоговом наборе данных было 506 позиций. Максимальное логарифмическое правдоподобие для этого вычисления составило -3517,522. Диагностические характеристики в последовательностях COI, полученных для представителей рода Jordanita, определенные с помощью инструментов сайта BOLD представлены на таблице 25. J. (J.) graeca, J. (J.) chloros и J. (J.) globulariae (виды подрода *Jordanita*) не имеют В последовательностях COI диагностических характеристик и не формируют изолированных кластеров на дендрограммах (Ефетов и соавт., 2019а, 2019б).

При изучении результатов ДНК-штрихкодирования для экземпляров вида J. (S.) subsolana из различных локалитетов, а именно: южной Италии, Македонии, Турции, Армении, Крыма и Украины, было обнаружено, что последовательности экземпляров крымской, турецкой, южноитальянской и македонской популяций сформировали группу, дистанцированную от армянской и украинской популяций (Рисунок 9). Эти данные могут отражать проникновение особей *J.* (*S.*) *subsolana* в различные географические регионы в разное время.

Таблица 25 – Характеристика диагностических позиций в последовательностях, полученных для экземпляров рода *Jordanita*

Вил	Количество	Число	Число частично-
	последователь-	диагностических	диагностических
	ностей	характеристик	характеристик
Jordanita budensis	18	4	5
Jordanita paupera	9	0	0
Jordanita volgensis	14	0	4
Jordanita notata	5	1	2
Jordanita ambigua	6	2	2
Jordanita algirica	3	7	5
Jordanita graeca	10	0	0
Jordanita chloros	7	0	0
Jordanita tenuicornis	3	0	2
Jordanita globulariae	9	0	1
Jordanita anatolica	10	2	4
Jordanita subsolana	16	8	7
Jordanita horni	5	8	7

Рисунок 9 – Географическое распространение Jordanita (Solaniterna) subsolana (Staudinger, 1862). Две группы популяций по результатам ДНКштрихкодирования.

С помощью BioEdit вычислена величина энтропии для каждой точки вариабельности. Результаты представлены на рисунке 10.

Рисунок 10 – Вариабельные позиции, детектированные в 158 последовательностях СОІ для экземпляров видов рода *Jordanita*.

3.7. Вариабельность 5'-участка гена, кодирующего первую субъединицу цитохромоксидазы, у представителей рода *Zygaena*

Для представителей рода Zygaena были получены 207 последовательностей длиной более 650 п.н., все последовательности были выравнены на сайте BOLD с использованием алгоритма MUSCLE (Edgar, 2004). При дальнейшем было анализе выявлено две группы последовательностей экземпляров разных видов, отнесенных к одному BIN:

1. BIN номер BOLD:AAF6231 содержит последовательности вида Zygaena (Agrumenia) olivieri Boisduval, [1828] – 2 экземпляра, Zygaena (Agrumenia) sedi Fabricius, 1787 – 3 экземпляра.

2. BIN номер BOLD:AAE6704 содержит последовательности вида Zygaena (Mesembrynus) minos ([Denis & Schiffermüller], 1775) – 17 экземпляров, Zygaena (Mesembrynus) erythrus (Hübner, 1806) – 3 экземпляра, Zygaena (Mesembrynus) purpuralis (Brünnich, 1763) – 6 экземпляров.

Таблица 26 – Суммарная статистика частоты встречаемости нуклеотидов в

	Минимальная	Средняя	Максимальная	SE
G %	14.44	15.24	16.57	0.0270
C %	13.68	15.05	18.69	0.0504
A %	28.27	30.95	32.22	0.0390
Т %	36.32	38.76	41.03	0.0548
GC %	28.57	30.29	34.95	0.0491
GC % (1 позиция в триплете)	39.27	41.77	43.84	0.0845
GC % (2 позиция в триплете)	41.55	42.27	43.38	0.0172
GC % (3 позиция в триплете)	3.18	6.93	19.09	0.1271

последовательностях, полученных для рода Zygaena

Диагностические позиции в исследуемых последовательностях были определены с помощью инструментов сайта BOLD и обобщенно представлены в таблице 27.

Вид	Количество последователь- ностей	Количество диагностических характеристик	Количество частично– диагностических характеристик
Zygaena punctum	8	3	2
Zygaena cambysea	4	6	4
Zygaena rubicundus	3	4	3
Zygaena erythrus	3	2	3
Zygaena minos	19	0	0
Zygaena purpuralis	61	0	1
Zygaena sedi	3	5	2
Zygaena carniolica	11	2	2
Zygaena loti	16	1	2
Zygaena nevadensis	4	7	2
Zygaena romeo	3	8	5
Zygaena viciae	5	2	1
Zygaena ephialtes	3	3	6
Zygaena transalpina	14	0	4
Zygaena angelicae	5	3	2
Zygaena filipendulae	40	1	0
Zygaena lonicerae	5	4	4

Таблица 27 – Характеристика диагностических позиций в последовательностях, полученных для экземпляров рода *Zygaena*

Последовательности, полученные для видов комплекса *minos-purpuralis* рода *Zygaena* подрода *Mesembrynus*, не имеют диагностических позиций. В нашем исследовании было получено более 80 ДНК-штрихкодов для представителей видов этого комплекса из различных локалитетов. Также при анализе дендрограммы, полученной для экземпляров видов *Z*. (*M*.) *minos*, *Z*. (*M*.) *purpuralis*, *Z*. (*M*.) *erythrus*, *Z*. (*M*.) *cambysea*, *Z*. (*M*.) *rubicundus* ML методом выявлено, что *Z*. (*M*.) *erythrus*, *Z*. (*M*.) *cambysea*, *Z*. (*M*.) *rubicundus* oбразуют изолированные кластеры с высокой бутстреп-поддержкой. Для *Z*. *erythrus* – 96, *для Z*. *cambysea* и *Z*. *rubicundus* – 100. В то время как экземпляры видов комплекса *minos-purpuralis* не образуют изолированных кластеров (см. приложение В). В результате статистической обработки последовательностей COI на сайте проекта BOLD выяснилось, что дистанции между особями *Zygaena* (*Mesembrynus*) *minos persica* Burgeff, 1926 из Ирана и всеми другими экземплярами комплекса *minos-purpuralis* существенно выше

средней общепринятой величины 2 %. Эта дистанция составила 4,92 % до ближайшего соседа – вида Z. (M.) minos ([Denis and Schiffermüller], 1775) и 4,75 % – Z. (M.) purpuralis (Brünnich, 1763). Данные значения превышают таковые между экземплярами комплекса minos-purpuralis и особями другого близкого вида Zygaena (Mesembrynus) erythrus (Hübner, 1806). Так, дистанция до ближайшего соседа между последовательностями Z. (M.) erythrus (Hübner, 1806) и Z. (M.) minos составила 1,86 %, между последовательностями COI Z. (M.) erythrus и Z. (M.) purpuralis – 1,86 %. Выявленная глубокая дивергенция среди экземпляров Z. (M.) minos persica вместе с комплексом морфологических отличий поддерживает идею о том, что статус этого таксона должен быть пересмотрен (Nahirnić, Tarmann, 2014).

При сравнении ДНК-штрихкодов для 15 экземпляров Zygaena (Zygaena) transalpina transalpina (Esper, 1780), иΖ. (Z.) transalpina 1836, xanthographa Germar, ИЗ Италии была продемонстрирована генетическая изоляция на подвидовом уровне. Так, внутри подвида Z. (Z.) transalpina transalpina максимальная дистанция между последовательностями составила 0,77 %; такая же дистанция для образцов Z. (Z.) transalpina xanthographa составила 0,76 %. Однако, дистанция между экземплярами этих двух подвидов составила 1,07–1,85 %, что сопоставимо с межвидовым порогом.

С помощью программы DNAsp v.5 было детектировано 240 полиморфных (сегрегирующих) сайта, с общим количеством мутаций 348, число парсимонийно-информативных сайтов составило 217, число гаплотипов – 152. Были определены следующие величины: Гаплотипическое разнообразие (Haplotype diversity), Hd: 0,9861; Дисперсия гаплотипического разнообразия (Variance of Haplotype diversity): 0,0000176; Стандартное отклонение гаплотипического разнообразия (Standard Deviation of Haplotype diversity): 0,0042; Нуклеотидное разнообразие (Nucleotide diversity), Pi: 0,07930. Среднее число нуклеотидных различий (Average number of nucleotide differences), k = 52,179. В программе BioEdit были детектированы консервативные регионы с энтропией не более 0,2 и длиной не менее 15 п.н. Регион 1: позиции с 134 по 153; регион 2: позиции с 182 по 201; регион 3: позиции с 239 по 255; регион 4: позиции с 452 по 471.

Второй и третий регионы частично совпадают с таковыми, последовательностях СОІ у представителей рода детектированными в Jordanita. Также программе BioEdit были определены В позиции вариабельности и рассчитана величина энтропии для каждой из них, данные представлены на рисунке 11. Пять позиций характеризуются энтропией, равной или превышающей 1.

Таблица 28 – Оценка нуклеотидного замещения методом максимального правдоподобия в последовательностях, полученных для экземпляров рода

	Α	Т	С	G
Α	-	3,98	1,55	14,38
Т	3,18	-	10,02	1,57
С	3,18	25,8	-	1,57
G	29,23	3,98	1,55	-

Zygaena

Каждая запись – это вероятность замещения (r) из одной базы (строки) в другую базу (столбец) (Татига et al., 2004). Характер и показатели замещения оценивались по модели Тамура-Ней (Татига, Nei, 1993). Показатели различных транзиций выделены жирным шрифтом, а трансверсий – курсивом. При оценке их следует учитывать относительные значения мгновенных г. Для простоты сумма значений г сделана равной 100. Частота встречаемости каждого нуклеотида показана в таблице 27. Соотношение транзиции/трансверсии составило $k_1 = 9,182$ и $k_2 = 6,478$, R = 3,263.

Рисунок 11. Вариабельные позиции, детектированные в 207 последовательностях СОІ для экземпляров видов рода

Zygaena.

3.8. Сравнительный анализ секвенирования митохондриальных и ядерных генов

Использование В качестве молекулярно-генетических маркеров последовательностей фрагмента гена COI для изучения Lepidoptera широко применяется в исследованиях для оценки биоразнообразия различных таксонов или географических регионов, делимитации видов, выявления криптических видов и т. д. (Dasmahapatra, Mallet, 2006; Misof et al., 2014; Mally et al., 2018). До настоящего времени изучение биоразнообразия Zygaenidae с применением молекулярно-генетических методов сводилось в основном к изучению таких митохондриальных генов, как ген 1 субъединицы НАДН-дегидрогеназы, гены лейциновой и валиновой тРНК, фрагмент гена рРНК малой субъединицы (12S РНК), а также рРНК большой субъединицы (16S РНК). В дополнение были изучены участки ядерной ДНК, включающие почти полный фрагмент гена рРНК малой субъединицы (18S PHK) и 5' конца кодирующего рРНК большой субъединицы (28S)PHK), гена, И проанализированы различия во вторичной структуре pPHK (Niehuis et al., 2006а, 2006b, 2006c, 2007). Все эти данные были получены в основном для подсемейства Zygaeninae. Также некоторые единичные ДНК- и РНКпоследовательности Zygaenidae получены в рамках научных проектов, сфокусированных на изучении других групп насекомых, и чаще всего использованы в качестве дополнительного аспекта исследований (Huemer et al., 2014; Ashfaq et al., 2017); эти работы в основном затронули виды рода Zygaena (Zagrobelny et al., 2009; Huemer et al., 2014), в то время как представители других родов представлены в них единично (Mutanen et al., 2010; Huemer et al., 2014; Ashfaq et al., 2017, Litman et al., 2018). Тем не менее, результаты этих молекулярно-генетических исследований не позволили решить все существующие проблемы систематики и таксономии семейства Zygaeninae.

Как уже указывалось ранее, ДНК-штрихкодирование Zygaenidae в

некоторых случаях оказалось неприменимым для изучения систематики этой группы и делимитации видов, например в подроде *Jordanita* рода *Jordanita*. Поэтому нами было проведено секвенирование дополнительных ядерных генов: EF-1α, GAPDH, IDH, MDH, RpS5 и wingless. Список использованных образцов, для которых были получены сиквенсы высокого качества, представлен в таблице 1. Дендрограмма, включающая в себя последовательности ядерных генов, представлена в приложении С.

Результаты проведенного исследования показали, что в некоторых случаях использование только митохондриальной ДНК приводило К невозможности корректной делимитации видов с хорошо выраженными морфологическими различиями. Так при анализе ДНК-штрихкодов подрода Jordanita рода Jordanita последовательности экземпляров видов J. (J.) graeca J. (J.) chloros не образовали на дендрограмме, построенной с И использованием двухпараметрической модели Кимуры изолированных кластеров. Несмотря на то, что эти биологические виды хорошо различаются морфологически, молекулярные COI отличия В гене оказались недостоверными. При дальнейшем анализе ДНК-штрихкодов этих двух видов было выявлено 44 вариабельных сайта и 614 консервативных, различия в анализируемых последовательностях составили 7 %. Также были выявлены области с повышенной вариабельностью – это позиции с 40 по 59 и с 268 по 286. При этом более подробный анализ показал, что в точках вариабельности преобладают транзиции – 73 % от общего числа замен, в частности, пиримидиновые транзиции Т-С – 78 % от общего числа, среди трансверсий (17 %) преобладают точки вариабельности T-A - 83 %. Практически все эти замены оказались синонимичными, так как при анализе субъединицы последовательностей участка первой аминокислотных цитохромоксидазы (длиной 219 аминокислот), соответствующих ДНКштрихкодам, межвидовых различий не было выявлено. У одного экземпляра J. (J.) chloros из Севастополя (Мекензиевы Горы) определена точка вариабельности аминокислоты: в позиции 123 обнаружен глицин, в то время

как у всех других экземпляров изученных видов в этом положении находится аланин. Тем не менее, при использовании дополнительных ядерных генов на C) построенной дендрограмме (см. приложение последовательности экземпляров этих видов образовали изолированные кластеры, с высоким применение значением бутстреп поддержки. Следовательно, дополнительных генов В исследовании позволило скорректировать результаты, полученные при использовании только участка гена фрагмента COI, и провести корректную делимитацию этих видов с помощью молекулярно-генетических методов (Лазарева, Коновалова, 2018; Efetov et al., 2018b, 2019b).

3.9. Исследование аминокислотных последовательностей, соответствующих ДНК-штрихкодам у Zygaenidae

Представляет интерес анализ аминокислотных последовательностей, соответствующих участку ДНК-штрихкода. После исключения праймерных последовательностей этот полипептидный фрагмент содержит 219 Пространственная структура изучаемого аминокислот. участка цитохромоксидазы – это шесть α-спиральных участков, соединенных пятью петлями. По данным литературы большая часть аминокислотных замен в данном фрагменте приходится на петли, так как подобные замены вносят меньший вклад в нарушение пространственной структуры молекулы. Согласно Pentinsaari (2016)Lepidoptera 14 данным y определено вариабельных позиций в данном участке белковой молекулы, в то время как у Coleoptera их 39. У Lepidoptera 13 таких позиций совпадают с Coleoptera, за исключением одного сайта, являющегося вариабельным у Lepidoptera (позиция 93), который остается константным у Coleoptera (S<0.5).

Исследуемый участок цитохромоксидазы имеет область связывания с гемом, включающую аминокислотные остатки в положении 20, 24, 27, 28, 69 и 73 (Pentinsaari, 2016; Pentinsaari et al., 2016). Подавляющее большинство

переменных аминокислот литературным располагается ПО данным относительно далеко от лигандов COI. Это неудивительно, учитывая решающую роль COI и его простетических групп в функционировании дыхательной цепи. Согласно нуклеотидным последовательностям ДНКштрихкодов, полученным в рамках сотрудничества с Канадским центром ДНК-штрихкодирования Института биоразнообразия, нами были получены аминокислотные последовательности, которые сравнивались в программе BioEdit (Hall, 1999). Полученные результаты позволили выявить мутации, приводящие к появлению в белке новых аминокислот. Нами был проведен анализ этих последовательностей в программе BioEdit для некоторых родов семейства Zygaenidae: Illiberis, Zygaenoprocris, Rhagades, Adscita, Jordanita, Zygaena. Наши данные указывают на различную степень гетерогенности участка белка СОІ, соответствующего ДНК-штрихкоду. Согласно работе Pentinsaari и соавторов (2016) наиболее важные консервативные позиции в данном участке молекулы COI – это 22, 45, 110, 111, 113. Во всех проанализированных нами аминокислотных последовательностях ЭТИ позиции также оказались консервативными.

Для рода Illiberis получено 19 последовательностей для 7 известных и 2 неизвестных (на момент отправки материала) науке видов, укороченные для двух видов: Illiberis (Alterasvenia) yuennanensis Alberti, 1951 и Illiberis (Alterasvenia) ulmivora (Graeser, 1888) (по 207 аминокислот каждая). Вариабельность в позиция 12 специфична для подрода *Illiberis* Walker, 1854, видом Illiberis представленного (Illiberis) ellenae Alberti, 1954. Вариабельность в позициях 67, 104, 146 и 199 специфична для подрода *Primilliberis* Alberti, 1954. В 123 позиции варьируют глицин и серин. Так как эти аминокислоты имеют радикал малого размера, то данные изменения не вносят существенный вклад в изменение активности изучаемого фермента (Betts, Russell, 2003). Данные о вариабельных аминокислотных позициях, детектированных для представителей рода Illiberis, суммированы в таблице 29.

Таблица 29 – Вариабельные аминокислотные позиции, детектированные для представителей рода Illiberis в

Вид									Ами	ноки	слотн	ые сай	і́ты						
	10	12	13	19	27	28	30	67	94	104	106	123	127	146	159	161	162	169	199
Illiberis (Primilliberis) rotundata	S	Μ	V	L	Т	Р	S	V	S	Т	А	S	V	Ι	G	L	L	V	Ι
Illiberis (Primilliberis) pruni	S	Μ	Μ	L	Ι	Р	С	V	Т	Т	А	S	V	Ι	G	L	L	V	Ι
Illiberis (Illiberis) ellenae	S	L	Ι	L	Ι	Р	S	Ι	Т	N	А	S	V	V	G	S	F	V	L
Illiberis (Alterasvenia) ulmivora	S	Μ	V	L	Ι	Р	S	Ι	Т	N	А	S	Ι	V	G	S	F	V	L
Illiberis (Alterasvenia) yuennanensis	А	Μ	V	L	Ι	Р	S	Ι	Т	N	А	G	V	V	G	S	F	V	L
Illiberis (Alterasvenia) ochracea	S	Μ	V	L	Ι	Р	S	Ι	Т	Ν	А	G	Ι	V	G	L	L	V	L
Illiberis (Alterasvenia) cernyi	S	Μ	V	L	Ι	S	S	Ι	Т	N	А	S	Ι	V	М	S	F	V	L
Illiberis(Alterasvenia) banmauka	S	Μ	L	Μ	Ι	Р	S	Ι	Т	Ν	V	S	Ι	V	G	S	F	Ι	L
Illiberis (Alterasvenia) kislovskyi	S	Μ	V	L	Ι	Р	S	Ι	Т	N	А	S	Ι	V	G	S	F	V	L

последовательностях участка молекулы СОІ длиной 219 аминокислот

Для рода *Hedina* нами были получены 5 последовательностей для трех Выявлено две позиции вариабельности. В вилов. 94 положении у представителей вида Hedina louisi (Efetov, 2010) определён аланин, а у представителей двух других видов – треонин. Несмотря на изменение гидрофильности относят к гидрофобным, (аланин а треонин _ К гидрофильным аминокислотам), обе эти молекулы имеют маленький радикал, поэтому такие замены не оказывают существенного влияния на функционирование белковой молекулы (Betts, Russell, 2003). В 123 позиции варьируют глицин и серин, данные изменения также не вносят существенный вклад в изменение активности изучаемого фермента (Betts, Russell, 2003). Для представителей рода Rhagades в участке СОІ длиной 219 аминокислот нами были определены 12 точек вариабельности. Данные суммированы в таблице 30.

Таблица 30 – Позиции вариабельности аминокислот, детектированные для представителей рода *Rhagades*

Dumr	Аминокислотные сайты														
Биды	13	30	33	34	67	94	104	130	159	161	162	171			
Rhagades (Naufockia) brandti	L	Y	S	D	Ι	Т	Κ	А	G	Μ	F	S			
Rhagades (Wiegelia) amasina	М	S	G	D	Ι	L	Μ	Т	G	L	F	Α			
Rhagades (Wiegelia) predotae	-	S	G	D	V	Ι	Ν	V	G	F	F	Α			
Rhagades (Rhagades) pruni	V	S	G	Ν	Ι	Т	Ν	А	Е	L	F/L	S			
pruni															
Rhagades (Rhagades) pruni	V	S	G	D	Ι	Т	Ν	А	Е	L	F	S			
esmeralda															

Для рода *Ragades* полные аминокислотные последовательности были получены для 14 экземпляров, принадлежащих к 3 подродам. Для единственного экземпляра *Rhagades* (*Wiegelia*) *predotae* (Naufock, 1930) – вида, являющегося эндемичным для Испании (Naumann, et al., 1999), полученная последовательность включала в себя 202 аминокислоты, так как секвенировать удалось фрагмент гена длиной 608 п.н. Вид *Rhagades* (*Rh.*) *pruni* в нашем исследовании представлен двумя подвидами (Таблица 30).

Ранее позиция 123 была детектирована как вариабельная для родов Illiberis, Hedina. При этом во всех исследованных последовательностях рода *Rhagades* в этой позиции обнаружена полярная аминокислота серин. Позиция 34 и 162 оказались вариабельными для вида Rhagades (Rh.) pruni. Позиции 30 и 33 оказались вариабельными только для Rhagades (Naufockia) brandti (Alberti, 1938). В шести позициях 13, 94, 104, 130, 159, 171 вариабельность наблюдается у Rhagades (Wiegelia) amasina, при этом позиция 171 является по нашим данным подродоспецифичной, так как вариабельность в этом положении присутствует также и в последовательностях, полученных для экземпляров *Rhagades* (*Wiegelia*) predotae. Также для этого вида наблюдается вариабельность в позициях 67, 94, 104, 130, 161. В положении 159 у представителей подрода *Rhagades* Wallengren, 1863 определена отрицательно заряженная глутаминовая кислота, у представителей двух других подродов – гидрофобный глицин. Род *Rhagades* отличается большой гетерогенностью последовательностей, аминокислотных согласно ранее полученным результатам (Efetov, 2004; Efetov, et al., 2015) это род характеризуется также большой гетерогенностью кариотипов. Так Rh. (N.) brandti (Иран) имеет в гаплоидном наборе 31 хромосому, что соответствует модальному числу у Lepidoptera (Efetov, et al., 2003), Rh. (W.) amasina (Турция) – 12 хромосом (Efetov, 2001a), Rh. (Rh.) pruni (Крым) – 47 (Efetov, 1998). В таблице 31 суммированы данные об аминокислотных заменах, определенных для экземпляров рода Zygaenoprocris. Всего определено 27 вариабельных позиций, что составляет 12,3%. Можно выделить вариабельные участки: 26-29, 156–159. В публикации Хусаинов, Фролова (2015) показаны такие же уникальные вариабельные участки для некоторых видов, но с другой последовательностью аминокислот. Ранее позиция 123 была детектирована как вариабельная для родов *Illiberis* и *Hedina*. В этой позиции у представителей Zygaenoprocris, также варьируют глицин и серин.

Вид					Ам	иноки	слотни	ые сайті	Ы				
	8	13	23	26	27	28	29	33	42	67	100	102	106
Zygaenoprocris (Molletia) taftana	Ι	Ι	A/T	G	T/M	Р	G	G	V/I	V	S	V	А
Zygaenoprocris (Molletia) persepolis	I/V	I/V	Т	G	A/T/M	P/S	G	G	V	Ι	S	V	A/V
Zygaenoprocris (Molletia) duskei kliri	Ι	Ι	Т	G	Т	Р	G	G	V	V	S	V	Α
Zygaenoprocris (Molletia) duskei kermana	Ι	Ι	Т	G	Т	Р	G	G	V	V	S	V	А
Zygaenoprocris (Molletia) duskei duskei	I/V	Ι	Т	G	Т	A/P	G	G	V	V	S	V	A
Zygaenoprocris (Keilia) minna	Ι	Ι	Т	S	Т	Р	G	G	V	Ι	S	V	A
Zygaenoprocris (Zygaenoprocris) chalcochlora	Ι	I/V	А	G	Т	Р	G	G/D	V	V/I	S	V/I	A
Zygaenoprocris (Zygaenoprocris) khorassana	Ι	Ι	A	G	Ι	Р	G	G	V	V	S	V	A
Zygaenoprocris (Zygaenoprocris) hofmanni	Ι	Ι	S	G	Ι	Р	G	G	V	V	S	V	A
Zygaenoprocris (Zygaenoprocris) efetovi	Ι	Ι	A	G	Т	Р	G	G	V	V	S	V	А
Zygaenoprocris(Zygaenoprocris) rjabovi	Ι	Ι	A	G	Т	Р	G	G	V	V	S	V	A
Zygaenoprocris (Zygaenoprocris) eberti	Ι	Ι	A	G	Т	Р	S	G	V	Ι	М	V	A/V

Таблица 31 – Позиции вариабельности аминокислот, детектированные для представителей рода Zygaenoprocris

Продолжение таблицы 31

Вид						Ами	нокисло	отные с	айты					
	121	123	130	146	150	152	156	157	158	159	161	164	169	173
Zygaenoprocris (Molletia) taftana	А	G	T/A	V/I	Т	Ι	R	S/P	N/D	G	S	Q/R	V	G/S
Zygaenoprocris (Molletia) persepolis	А	S/G	А	V/I	T/S	V/I	R	Р	N/S	G	S	Q	V	G
Zygaenoprocris (Molletia) duskei kliri	А	G	А	V	Т	Ι	R	S	N	G	S	Q	V	G
Zygaenoprocris (Molletia) duskei kermana	А	G	А	V	Т	Ι	R	Р	N	G	S	Q	V	G
Zygaenoprocris(Molletia) duskei duskei	А	G	А	V	Т	Ι	R	S	N	G	S	Q	V	G
Zygaenoprocris (Keilia) minna	Т	S	А	Ι	Т	Ι	R	Р	Ν	G	S	Q	Ι	G
Zygaenoprocris (Zygaenoprocris) chalcochlora	А	G	А	V	Т	Ι	R	Р	Ν	G	F/S	Q	V	G
Zygaenoprocris (Zygaenoprocris) khorassana	А	S/G	А	V	Т	Ι	R	Р	Ν	G	S	Q	V	G
Zygaenoprocris (Zygaenoprocris) hofmanni	А	S	Т	V	Т	Ι	Н	Р	N	G	S	Q	V	G
Zygaenoprocris (Zygaenoprocris) efetovi	А	G	А	V	Т	Ι	R	Р	N	G	S	Q	V	G
Zygaenoprocris(Zygaenoprocris) rjabovi	А	G	А	V	Т	Ι	R	Р	Ν	G	S	Q	V	G
Zygaenoprocris (Zygaenoprocris) eberti	А	G	А	V	Т	Ι	R	Р	Ν	N	S	Q	V	G

В роде Adscita исследовано 100 образцов, принадлежащих к 15 видам (см. таблицу 32). При исследовании последовательностей аминокислот, соответствующих ДНК-штрихкодовому участку гена СОІ, у представителей этого рода выявлено 18 точек вариабельности, что составляет 8,2 %. Из них половина характерна и для рода *Zygaenoprocris*. Наиболее близкие к гемовому лиганду вариабельные позиции, по данным литературы, – 8 и 57 у представителей рода Adscita оказались постоянными. Также выявлено, что из 6 вариабельных аминокислотных позиций, располагающихся достаточно близко к гему (расстояние менее 5 Å), у Adscita является вариабельной позиция 27. Но по данным литературы (Pentinsaari, 2016; Pentinsaari et al., 2016) в этой позиции у Metazoa находится глутамин (с энтропией более 1), а у экземпляров исследуемого рода обнаружены треонин или аланин.

Позиции 13 и 67 могут рассматриваться как подродоспецифичные – у представителей подрода *Procriterna* Efetov & Tarmann, 2004 детектирован изолейцин, у представителей остальных подродов – валин, и у А. (А.) schmidti варьируют изолейцин/валин в 13 положении, у А. (А.) geryon эти аминокислоты варьируют в 67 положении.

Для представителей рода *Jordanita* было получено 132 последовательности длиной 219 аминокислот, принадлежащие 25 видам из всех известных подродов рода *Jordanita* (Таблица 33). В общем, для всех последовательностей определена 31 точка вариабельности, что составляет 14,2%. В таблице 33 суммированы данные о точках вариабельности аминокислот, определенных для рода *Jordanita*.

Вид								Амин	окисл	отные	сайты							
	10	13	16	19	27	29	67	101	104	106	121	123	130	133	146	163	169	181
Adscita (Procriterna) subtristis	S	Ι	S	L	Т	G	Ι	Ι	Т	A	Α	S	A	S	V/I	D	V	L
Adscita (Procriterna) subdolosa	Α	Ι	S	L	Т	G	Ι	Ι	Т	A	Α	S	A	S	V	D	V/I	L
Adscita (Procriterna) amaura	S	Ι	S	L	Т	G	Ι	Ι	M	A	Α	S/G	A	S	V	D	V	L
Adscita (Procriterna) pligori	S	Ι	S	L	Т	G	Ι	Ι	Т	V	Α	G	A	S	V	D	V	L
Adscita (Adscita) jordani	S	V	S	L	А	G	V	Ι	Т	A	Α	S	Т	S	V	D	V	L
Adscita (Adscita) schmidti	S	V/I	S	L	А	G	V	Ι	Т	A	Α	G	Т	S	V	D	V	L
Adscita (Adscita) alpina	S	V	S	L	Α	G	V	Ι	Т	Α	Α	G	Т	S	V	D	V	L
Adscita (Adscita) italica	S	V	S	L	A/T	G	V	Ι	Т	A	Α	S/G	Т	S	V	D	V	L
Adscita (Adscita) statices	S	V	S	L	Α	G	V	Ι	Т	Α	Α	G	Т	Α	V	D	Ι	L
Adscita (Adscita) mauretanica	S	V	L	V	Т	G	V	L	Т	Α	S	G	Α	S	V	D	V	L
Adscita (Adscita) obscura	S	V	S	L	Т	G	V	Ι	Т	A	Α	G	Т	S	V	D	V	L
Adscita (Adscita) capitalis	S	V	S	L	Т	G	V	Ι	Т	A	Α	G	A	S	V	D	V	L
Adscita (Adscita) geryon	S	V/I	S	L	Т	G	V/I	Ι	T/K	A/V	Α	S/G	A/T	S	V	D	V	L
Adscita (Adscita) albanica	S	V	S	L	Т	G	V	Ι	Т	A	Α	G	Т	S	V	D	V	L
Adscita (Tarmannita) mannii	S	V	S	L	Т	G/S	V	Ι	T/K	A	Α	S	Т	S	V	D/N	V	I/L
Adscita (Tarmannita) bolivari	S	V	S	L	A	G	V	Ι	Т	A	A	S	Т	S	V	D	V	L

Таблица 32 – Позиции вариабельности аминокислот, детектированные для представителей рода Adscita

Наибольшей гетерогенностью аминокислот характеризуются последовательности, полученные для представителей подрода Roccia (Alberti, 1954) – в 14 позициях проявляется вариабельность аминокислот, причем в четырех из них варьируют более чем две аминокислоты. Позиция 123 детектирована как вариабельная, так же как и у всех ранее перечисленных родов Zygaenidae за исключением рода *Rhagades*. Из двух наиболее близких к гемовому лиганду вариабельных позиций, по данным литературы, – 8 и 57 у представителей рода Jordanita последняя оказалась константной, а позиция восемь характеризуется вариабельностью с S = 0,76729. На расстоянии атомарного взаимодействия от группы гема имеются два вариабельных участка: в последовательности Agrypnus murinus (Linnaeus, 1758) (Coleoptera) аминокислоты в 8 и 57 положении встречаются на расстояниях 3,6 Å и 4,4 Å от гема соответственно (Pentinsaari, 2016; Pentinsaari et al., 2016). У некоторых Coleoptera в одной из двух позиций (8 или 57) детектировано изменение аминокислоты на фенилаланин с объёмным гидрофобным радикалом. Когда восьмая позиция изменена, группа гема (расположенная на расстоянии всего 1,8 Å) удаляется от фенилаланина. Когда в 57 позиции появляется фенилаланин, его боковая цепь, вероятно, ограничивает соседнюю спираль, расположенную на расстоянии всего 2,2 Å (Pentinsaari, 2016; Pentinsaari et al., 2016). В нашем исследовании мы выяснили, что для представителей исследуемого рода (подроды Roccia, Tremewania, Gregorita) характерна мутация в позиции 8, в этом положении обнаружен либо изолейцин, либо валин – гидрофобные аминокислоты с разветвлённым, но не циклическим (ароматическим, как у фенилаланина) радикалом.
Подрод рода	Аминокислотные сайты															
Jordanita	8	13	19	23	26	27	29	30	33	34	41	42	67	81	94	97
Roccia	I/V	I/V	M/V	A/T	G	T/N/ V/A	G	S	G/N	D	Ι	V	V/I	М	F/T	M/I
Lucasiterna	V	Ι	V	Т	G	М	G	F	G	D	Ι	V	V	М	Т	Ι
Tremewania	I/V	V	V	Т	G/S	T/N/ A	G/S	S	G	D	Ι	V/I	V/I	M/L	Т	Ι
Gregorita	I/V	I/V	V	Т	G	M/A	G	S	G	D	Ι	V	V/I	М	Т	Ι
Jordanita	V	V	V	Т	G	A	G	S	G/N	N/D	Ι	V	Ι	М	Т	Ι
Praviela	Ι	Ι	V	Т	G	Т	G	S	G	D	Ι	V	V/I	М	Т	Ι
Solaniterna	Ι	Ι	V	Т	G	E	G	S	G	D	Ι	V	Ι	М	Т	Ι
Rjabovia	Ι	Ι	V	Т	G	Т	G	S	G	D	Ι	V	Ι	М	Т	Ι

Таблица 33 – Позиции вариабельности аминокислот, детектированные для представителей рода Jordanita

Продолжение таблицы 33

Подрод рода Jordanita		Аминокислотные сайты													
	101	104	106	118	121	123	125	127	130	146	158	159	164	169	199
Roccia	Ι	Т	T/I/V/A	S	A	S	S	V	I/T/A	V	D	S/G/D/N	Q	V/I	I/L
Lucasiterna	Ι	Т	А	S	А	S	S	Ι	А	V	D	G	Q	V	L
Tremewania	Ι	Т	А	A/S	Α	G/S	G/S	V	А	M/V	D	G	Q	V	L
Gregorita	Ι	Т	А	S	A/T	G/S	G/S	V	А	V	N/D	G	Q	V	L
Jordanita	Ι	Т	А	S	Α	G/S	G/S	V	А	V	D	G	Q	V	L
Praviela	Ι	Т	А	S	А	S	S	V	А	V	D	Ν	Q	V	L
Solaniterna	V	Т	V	S	Α	S	S	V	А	V	D	G	R	V	L
Rjabovia	Ι	М	A	S	A	S	S	V	А	V	D	G	Q	V	L

При анализе аминокислотных последовательностей изучаемого участка цитохромоксидазы нами были выявлены единичные вариабельные позиции в роде Zygaena, доля вариабельных аминокислотных сайтов составила 5,9% (Efetov et al. 2016а; Ефетов и соавт., 2017). Род Zygaena включает в себя четыре подрода Mesembrynus, Agrumenia Hübner, 1819, Lictoria Burgeff, 1926 и Zygaena (Efetov, 2005; Ефетов, 2019). Подрод Lictoria рода Zygaena был описан в 1926 году. Однако Альберти в 1959 году (Alberti, 1958–1959) ревизовал род Zygaena и синонимизировал Lictoria с подродом Zygaena. Позже А. Хофманн и Дж. Тремеван (2010) перевели виды, относящиеся к подроду *Lictoria* в подрод *Agrumenia*. В настоящее время в эту группу включены пять видов: Zygaena christa Reiss & Schulte, 1967, Zygaena loti ([Denis & Schiffermüller], 1775), Zygaena armena, Eversmann, 1851, Zygaena ecki Christoph, 1882 и Zygaena ignifera Korb, 1897 (Efetov, 2004). Всех их объединяют ярко выраженные морфологические признаки, например, особенности строения гениталий; молекулярные признаки – спектры белков гемолимфы и антигенные свойства липофорина и т. д. Так как все вышеперечисленные пять видов образуют монофилетическую группу, К. А. Ефетов в 2005 году (Efetov, 2005) восстановил Lictoria как валидный подрод рода Zygaena. Эта точка зрения подтверждена в каталоге чешуекрылых России (Ефетов, 2019). Наши данные изучения гена СОІ и аминокислотных последовательностей также свидетельствуют в пользу валидности подрода *Lictoria*.

В исследуемых последовательностях найдены отличия в позициях 10, 117, 123 в трех подродах рода *Zygaena*, кроме *Lictoria*. В первых двух положениях обнаруживаются такие аминокислоты как аланин и серин, в 123 положении происходит замена серина на глицин. Все эти аминокислоты характеризуются малым размером радикалов, и некоторые авторы не относят такие замены к значимым, влияющим на функциональную активность данного белка (Betts, Russell, 2003). Однако в части работ таким заменам придается больший вес, так как серин является гидрофильной (полярной), а аланин – гидрофобной (неполярной) аминокислотой (Pappalardo et al., 2015).

В подродах *Mesembrynus* и *Lictoria* у всех исследованных видов в пятом положении обнаружена аминокислота лейцин, а в подроде *Agrumenia* в этом же положении – метионин. В подроде *Zygaena* в данной позиции найдены либо изолейцин, либо метионин. В позициях 104 в подроде *Mesembrynus* и 161 в подроде *Agrumenia* отмечаются серин или аспарагин, в подроде *Zygaena* в обеих позициях – только серин, а в подроде *Lictoria* позиция 104 является вариабельной – обнаружены серин или лизин. Полученные данные подтверждают монофилию подрода *Mesembrynus* (Ефетов и соавт., 2017).

Кроме уже обсуждавшихся позиций в подроде Zygaena найдены следующие точки вариабельности: в 8 положении изолейцин/валин, в 13 и 97 – лейцин/валин, в 95 – лейцин/метионин. Эти замены аминокислот не характеризуются сменой полярности данного участка полипептидной цепи, поэтому не должны существенно менять функциональную активность участка цитохромоксидазы. Также для подрода Zygaena изучаемого характерны следующие дополнительные аминокислотные замены: в 106 аланин/аспарагин, в 125 – серин/глицин, и положении 187 – В аланин/треонин. Таким образом, в положениях 106, 125, 187 происходит замена аминокислот с изменением полярности радикалов, что потенциально может влиять на пространственную структуру изучаемого белка (Ефетов и соавт., 2017; Лазарева, Белоус, 2017). Позиция 185 является вариабельной только для представителей *Lictoria* – изолейцин/валин.

Данные об обнаруженных для представителей рода *Zygaena* аминокислотных заменах суммированы в таблице 34.

В нашем исследовании мы выяснили, что для представителей исследуемого рода характерна мутация в позиции 8, в этом положении обнаружен либо изолейцин, либо валин – гидрофобные аминокислоты с разветвлённым, но не циклическим (ароматическим, как у фенилаланина)

радикалом. Такие же изменения для позиции 8 обнаружены и у последовательностей экземпляров рода *Jordanita*. Согласно данным Betts и Russell (2003), такие замены не приводят к существенным изменениям в структуре белковой молекулы, так как и изолейцин, и валин являются мало реакционноспособными, локализуются в гидрофобной сердцевине белка, при этом обе эти молекулы, имея метильный радикал при ß углеродном атоме характеризуются одинаковой объёмностью боковой цепи. Следовательно, такие изменения не оказывают существенного влияния на функционирование белка.

Таблица 34 – Позиции вариабельности аминокислот, детектированные для представителей рода *Zygaena* с помощью программы BioEdit

Подрод	Аминокислотные сайты													
рода	5	8	10	13	95	97	104	106	117	123	125	161	185	187
Zygaena														
Agrumenia	Μ	Ι	A/S	V	L	Ι	S	Α	A/S	G/S	S	S/N	V	А
Mesembry-	L	Ι	A/S	V	L	Ι	S/N	Α	A/S	G/S	S	S	V	Α
nus														
Lictoria	М	Ι	Α	V	L	Ι	S/K	A/V	S	S	S	S	I/V	A
Zygaena	I/M	I/V	A/S	V/L	L/M	V/I	S	A/V	A/S	G/S	S/A	S	V	A/T

ЗАКЛЮЧЕНИЕ

Впервые расшифрованы и депонированы в международную базу данных Генбанка 1023 нуклеотидные последовательности для 242 включенных в исследование видов семейства Zygaenidae. Для 33 родов расшифрованы последовательности шести ядерных генов EF-1α, GAPDH, IDH, MDH, RpS5, wingless.

Проанализирован качественный и количественный состав полученных последовательностей, в случае СОІ – соответствующих аминокислотных последовательностей. В работе также рассмотрены возможные последствия аминокислотных замен, детектированных в участке белка СОІ, на функционирование митохондриальной цепи переноса электронов, и соответственно обеспечение организма энергией.

Проведён интегративный анализ литературных данных, результатов собственных исследований, а также информации из открытых международных баз данных. Для групп видов подсемейства Procridinae подтверждена существующая на сегодняшний момент филогенетическая гипотеза о тесных взаимоотношениях между родами *Zygaenoprocris*, *Adscita* и *Jordanita* и их филогенетической удаленности от родов *Theresimima* и *Rhagades*.

Выявлены факторы, влияющие на эффективность использования ДНКштрихкодов делимитации видов семейства Zygaenidae. для Проиллюстрирован вклад молекулярно-генетических данных в описание новых видов изучаемого семейства. Выявлены группы видов Zygaenidae, которые глубокую внутривидовую показали дивергенцию последовательностей COI, а также перекрывание ДНК-штрихкодов внутри морфологически чётко разделяемых видов Zygaenidae. Для таких групп были использованы данные секвенирования ядерных генов, которые позволили разграничить виды.

выводы

1. Впервые установлены средние значения К2Р дистанции для участка гена СОІ у 242 исследуемых видов 61 рода семейства Zygaenidae: внутривидовая – 1,36 %, межвидовая (в рамках одного рода) – 7,44 %, межродовая (в рамках семейства) – 13,91 %. Выявлено, что для 170 видов Zygaenidae (70 % случаев) ДНК-штрихкоды однозначно позволяют провести дифференцировку видов. В подсемействе Procridinae для 28 видов (15 %) показана глубокая внутривидовая дивергенция последовательностей. В 20 % случаев, 47 видов, отмечено перекрывание ДНК-штрихкодов, несмотря на значительные морфологические и биологические различия.

2. Показана эффективность ДНК-штрихода для установления родового статуса таксонов *Hedina* и *Zama*, видового статуса *Zygaenoprocris khorassana*; описания новых видов Zygaenidae: *Adscita* (*Adscita*) *dujardini*, *Adscita* (*Procriterna*) pligori, Illiberis (Alterasvenia) banmauka, Illiberis (Alterasvenia) cernyi, Illiberis (Alterasvenia) kislovskyi.

3. Установлено, что последовательности ядерных генов (EF-1α, GAPDH, IDH, MDH, RpS5, wingless) позволяют проводить видовую делимитацию в семействе Zygaenidae в случаях, когда ДНК-штрихкод неинформативен (группы видов подрода *Jordanita* рода *Jordanita*).

4. Выявлены отличия в аминокислотных последовательностях участка COI, соответствующих ДНК-штрихкоду, на уровне подвидов, видов, подродов и родов изучаемого семейства: *Illiberis, Hedina, Rhagades, Zygaenoprocris, Adscita, Jordanita* и *Zygaena*. Показана различная степень гетерогенности участка белка COI, превышающая значения, известные для Lepidoptera. В важной для функционирования молекулы цитохромоксидазы аминокислотной позиции № 8 в родах *Zygaenoprocris, Jordanita* и *Zygaena* выявлена замена валин/изолейцин, которая не оказывает существенного влияния на функционирование белка в силу схожести аминокислотных радикалов.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

- BIN (ИШ) Индекс штрихкода
- BOLD виртуальный портал «The Barcode of Life Data Systems»
- COI І субъединица митохондриального белка цитохромоксидазы
- СОІІ ІІ субъединица митохондриального белка цитохромоксидазы
- ЕF-1α Фактор элонгации 1-альфа
- ЕF-2α Фактор элонгации 2-альфа
- GAPDH глицеральдегид -3-фосфатдегидрогеназа
- GC % содержание G (гуанина) и C (цитозина) в изучаемых
- последовательностях в процентах
- IDH изоцитратдегидрогеназа
- MDH малатдегидрогеназа
- NJ метод ближайшего связывания
- RpS5 рибосомный белок S5
- *S* энтропия
- ZYGMO проект «DNA barcoding of Zygaenidae moths»
- ДНК дезоксирибонуклеиновая кислота
- К2Р двухпараметрическая модель Кимуры
- мкл микролитр
- ПЦР полимеразная цепная реакция
- РНК рибонуклеиновая кислота
- рРНК рибосомная РНК
- ТАЕ трис-ацетатный ЭДТА буфер
- ЦКП Центр коллективного пользования
- ЦПЭ цепь переноса электронов

СПИСОК ЛИТЕРАТУРЫ

 Абрамсон, Н. И. Молекулярная и традиционная филогенетика. На пути к взаимопониманию / Н. И. Абрамсон // Труды Зоологического института РАН. Приложение. – 2013. – № 2. – С. 219–229.

 Абрамсон, Н. И. Молекулярные маркеры, филогения и поиск критерия разграничения видов / Н. И. Абрамсон // Труды Зоологического института РАН. Приложение. – 2009. – № 1. – С. 185–198.

Алешин, В. В. Нужно ли много генов для филогенетического дерева? / В. В. Алешин, А. В. Константинова, К. В. Михайлов, М. А. Никитин, Н. В. Петров // Биохимия. – 2007. – 72. – № 12. – С. 1610–1623.

4. Аникин, В. В. Использование реконструкции эволюционных связей молей–чехлоносок (Lepidoptera, Coleophoridae) с растениями–хозяевами на основе анализа нуклеотидной последовательности гена СОІ в молекулярной систематике семейства / В. В. Аникин, А. Г. Демин, М. А. Кнушевицкая // Энтомологические и паразитологические исследования в Поволжье. – 2015а. – № 12. – С. 9–16.

5. Аникин, В. В. Молекулярно–генетический анализ надродовой системы молей–чехлоносок с описанием нового рода из трибы Carpochenini Căpuşe, 1973 (Lepidoptera, Coleophoridae) / В. В. Аникин, А. Г. Демин, М. А. Кнушевицкая // Энтомологическое Обозрение. – 2015б. – Т. 94. – № 1. – С. 184–196.

6. Аникин, В. В. Филогения и систематика молей-чехлоносок (Lepidoptera, Coleophoridae) на основе молекулярно-генетических данных. 1. Реконструкция филогении семейства на основе анализа изменчивости митохондриального COI B. Β. Аникин, Γ. гена / A. Демин, М. А. Кнушевицкая // Зоологический Журнал. – 2016а. – Т. 95. – № 1. – С. 54– 66.

7. Аникин, В. В. Филогения и систематика молей-чехлоносок (Lepidoptera, Coleophoridae) на основе молекулярно-генетических данных.

 Реконструкция времени дивергенции основных таксонов семейства Coleophoridae (Lepidoptera) на основе анализа изменчивости гена СОІ мтДНК / В. В. Аникин, А. Г. Демин, М. А. Кнушевицкая // Зоологический журнал. – 2016б. – Т. 95. – № 2. – С. 181–188.

Банникова, А. А. Молекулярные маркеры и современная систематика млекопитающих / А. А. Банникова // Журнал общей биологии. – 2004. – Т. 65. – № 4. – С. 278–305.

 Бутвиловский, А. В. Основные методы молекулярной эволюции: монография / А. В. Бутвиловский, Е. В. Барковский, В. Э. Бутвиловский, [и соавт.] – Минск: Белпринт, 2009. – 215 с.

 Бутвиловский, В. Э. Молекулярная эволюция: материалы к факультативному курсу: курс лекций / В. Э. Бутвиловский, А. В. Бутвиловский, E.A. Черноус. – Минск: БГМУ, 2012. – 96 с.

11. Вишневская, М. С. Систематика и видовая диагностика мономорфных бабочек-голубянок подрода *Agrodiaetus* (Lepidoptera, Lycaenidae) на основе анализа молекулярных маркеров: дис. ... кандидата биол. наук: 03.02.05 / Вишневская Мария Сергеевна. – СПб., 2018. – 144 с.

12. Водолажский, Д. И. Исследование филогенеза подрода *Polyommatus* (s. str) Latreille, 1804 (Lepidoptera: Lycaenidae) с использованием маркеров мтДНК. Часть І / Д. И. Водолажский, Б. В. Страдомский // Кавказский энтомологический бюллетень. – 2008а. – Т. 4. – № 1. – С. 123–130.

13. Водолажский, Д. И. Исследование филогенеза подрода *Polyommatus* (s. str) Latreille, 1804 (Lepidoptera: Lycaenidae) с использованием маркеров мтДНК. Часть II / Д. И. Водолажский, Б. В. Страдомский // Кавказский энтомологический бюллетень. – 2008б. – Т. 4. – № 1. – С. 237–242.

14. Водолажский, Д. И. Сравнительный анализ последовательностей митохондриальной и ядерной ДНК голубянок подрода *Polyommatus* (s. str.) Latreille, 1804 (Lepidoptera: Lycaenidae: *Polyommatus*) / Д. И. Водолажский, М. Вимерс, Б. В. Страдомский // Кавказский энтомологический Бюллетень. – 2009. – Т. 5. – № 1. – С. 115 – 120.

15. Воронова, Н. В. Выявление криптических подвидов в эволюционно молодых группах тлей (Rhynchota: Homoptera: Aphididae) с использованием гена субъединицы I цитохромоксидазы с (COI) в качестве филогенетического маркера / Н. В. Воронова, С. В. Буга, В. П. Курченко // Доклады НАН Беларуси. – 2011. – Т. 55. – № 3. – С. 97–102.

16. Воронова, Н. В. Последовательность гена субъединицы І цитохромоксидазы С в молекулярной таксономии животных: принципы, результаты и проблемы использования / Н. В. Воронова, С. В. Буга, В. П.Курченко // Труды БГУ. – 2012. – Т. 7. – № 1. – С. 22–42.

17. Вредители сельскохозяйственных культур и лесных насаждений:
В 3-х т. Том 2 . Вредные членистоногие, позвоночные / под ред.
В. П Васильева. – К.: Урожай, 1988. – 576 с.

18. Демин, А. Г. Анализ эволюционной изменчивости гена СОІ и его использование для филогении и систематики таксонов с высоким видовым разнообразием на примере комаров-звонцов подсемейства Chironominae (Chironomidae, Diptera): автореф. дис. ... кандидата биол. наук: 03.02.07 / Демин Александр Геннадьевич. – Москва, 2011. – 26 с.

19. Демин, А. Г. Молекулярно–генетические маркеры эволюционных линий Chironominae и Orthocladiinae (Chironomidae: Diptera) в несинонимичных сайтах гена мтДНК СОІ / А. Г. Демин, Н. В. Полуконова // Труды Русского энтомологического общества. – 2014. – Т. 85. – № 2. – С. 8–18.

20. Дурнова, Н. А. Оценка времени возникновения способности к обрастанию и минированию погруженных субстратов у хирономид подсемейств Chironominae Macquart, 1838 и Orthocladiinae Lenz, 1921 (Diptera, Chironomidae) на основании анализа митохондриальных генов COI и COII / Н. А. Дурнова, А. Г. Демин, Н. В. Полуконова, [и др.] // Энтомологическое Обозрение. – 2014. – Т. 93. – № 2. – С. 367–380.

Ефетов, К. А. Определитель насекомых Дальнего Востока России.
 Т. 5. Ручейники и чешуекрылые. Ч.5., Владивосток. Дальнаука, 2005 г. – 575 с.
 Семейство Zygaenidae – Пестрянки. Стр. 146–162.

22. Ефетов, К. А. Пестрянка веселая (Пестрянка лета). Zygaena laeta (Hübner, 1790) / К. А. Ефетов, В. И. Щуров // Красная книга Краснодарского края (животные). Издание второе; под ред. А. С. Замотайлова. – Краснодар: Центр развития ПТР Краснодарского края, 2007. – С. 244–245.

23. Ефетов, К. А. Филогенетический сигнал в гене митохондриальной цитохромоксидазы у представителей семейства Zygaenidae / К. А. Ефетов, А. В. Кирсанова, З. С. Лазарева, Е. В. Паршкова // Український біохімічний журнал (Матеріали X Українського біохімічного з'їзду. Одеса, вересень 2010). – 2010. – Т. 82. – № 4 (додаток 1). – С. 25–26.

24. Ефетов, К.А. Изучение нуклеотидных последовательностей гена первой субъединицы митохондриальной цитохромоксидазы и решение некоторых вопросов биосистематики Zygaenidae (Lepidoptera) / К. А. Ефетов, З. С. Лазарева, А. В. Кирсанова, Е. В. Паршкова, Г. М. Тарман // Таврический медико-биологический вестник. – 2016. – Т. 19. – № 1. – С. 28–33.

25. Ефетов, К. А. Вариабельность аминокислотных последовательностей первой субъединицы митохондриальной цитохромоксидазы, кодируемых 658bp-участком гена СОІ, у видов рода *Zygaena* Fabricius, 1775 / К. А. Ефетов, З. С. Лазарева, Е. В. Паршкова, Г. М. Тарман // Крымский журнал экспериментальной и клинической медицины. – 2017. – Т. 7. – № 4. – С. 29–34.

26. Ефетов К. А. Секвенирование гена митохондриальной цитохромоксидазы у Zygaenidae / К. А. Ефетов, З. С. Лазарева // Сборник тезисов участников IV научно-практической конференции профессорско-преподавательского состава, аспирантов, студентов и молодых ученых «Дни науки КФУ им. В. И. Вернадского» (Симферополь, 10–12 октября 2018). – Симферополь, 2018. – Т. 1. – С. 42–43.

27. Ефетов К. А. Молекулярно-генетический и цитогенетический анализ видов рода *Rhagades* Wallengren, 1863 (Lepidoptera, Zygaenidae) / К. А. Ефетов, З. С. Лазарева // Материалы VIII научно-практической конференции с международным участием «Генетика – фундаментальная основа

инноваций в медицине и селекции» (Ростов-на-Дону, 26–29 сентября 2019) – Ростов-на-Дону – Таганрог, 2019. – С. 219–220.

28. Ефетов, К. А. Изучение ДНК-штрихкодов у видов подрода *Jordanita* рода *Jordanita* Verity, 1946 (Lepidoptera: Zygaenidae, Procridinae) / К. А. Ефетов, З. С. Лазарева, Е. В. Паршкова // Ученые записки Крымского федерального университета имени В. И. Вернадского. Биология. Химия. – 2019а. – Т. 5 (71). – № 4. – С. 69–78.

29. Ефетов К. А. Молекулярно-генетические и цитогенетические исследования рода *Jordanita* Verity, 1946 (Lepidoptera, Zygaenidae) / К. А. Ефетов, З. С. Лазарева, Е. В. Паршкова // II объединенный научный форум. VI съезд физиологов СНГ, VI съезд биохимиков России, IX российский симпозиум «Белки и пептиды». Научные труды. (Сочи – Дагомыс, 01–06 октября 2019). Том 2. – М.: Издательство «Перо», 20196. – С. 21.

30. Ефетов, К. А. Молекулярно-генетические характеристики видов рода *Jordanita* Verity, 1946 (Lepidoptera: Zygaenidae, Procridinae): ДНКштрихкоды и соответствующие им аминокислотные последовательности / К. А. Ефетов, З. С. Лазарева, Е. В. Паршкова, Г. М. Тарманн // Генетика. – 2021. – Т. 57. – № 1. – С. 72–81.

31. Ефимова, К. В. Молекулярная идентификация и особенности генетического разнообразия цианобактерий и одноклеточных водорослей акватории Японского моря: дис. ... кандидата биол. наук: 03.02.07 / Ефимова Ксения Владимировна. – Владивосток. – 2016. – 184 с.

32. Ильясов, Р. А. Молекулярно-генетический анализ пяти сохранившихся резерватов темной лесной пчелы *Apis mellifera mellifera* Урала и Поволжья / Р. А. Ильясов, А. В. Поскряков, А. В. Петухов, А. Г. Николенко // Генетика. – 2016. – Т. 52. – № 8. – С. 931–942.

33. Конусова, О. Л. Характеристика морфометрической изменчивости медоносных пчел *Apis mellifera* L., отличающихся вариантами локуса COI–COII мтДНК / О. Л Конусова, Н. В. Островерхова, А. Н. Кучер, [и др.] // Вестник

Томского государственного университета. Биология – 2016. – Т. 33. – № 1. – С. 62–81.

Вариабельность аминокислотной 34. Лазарева, 3. C. субъединицы последовательности первой митохондриальной цитохромоксидазы у представителей рода Zygaena / З. С. Лазарева, В. В. Белоус // Сборник тезисов участников 89-й Международной научно-практической конференции студентов и молодых ученых «Теоретические и практические современной медицины» (Симферополь, 20 апреля 2017). – аспекты Симферополь, 2017. – С. 59.

35. Лазарева, З. С. Изучение митохондриальных и ядерных генов у видов рода *Jordanita* Verity, 1946 / З. С. Лазарева, П. С. Коновалова // Сборник тезисов участников 90-й Международной научно-практической конференции студентов и молодых ученых «Теоретические и практические аспекты современной медицины» (Симферополь, 19 апреля 2018). – Симферополь, 2018. – С. 62.

36. Лукашов, В. В. Молекулярная эволюция и филогенетический анализ / В. В. Лукашов. – М.:Бином. Лаборатория знаний, 2009. – 256 с.

37. Лухтанов, В. А. Молекулярно–генетические и цитогенетические подходы к проблемам видовой диагностики, систематики и филогенетики / Журнал общей биологии // В. А. Лухтанов, В. Г. Кузнецова. – 2009. – Т. 70. – № 5. – С. 415–437.

38. Назаров, В. В. Участие пестрянок (Lepidoptera, Zygaenidae) Крыма в опылении орхидеи Anacamptis pyramidalis (Orchidaceae) / В. В. Назаров, К. А. Ефетов // Зоологический журнал. – 1993. – Т. 72. – № 10. – С. 54–67.

39. Неретина, Т. В. ДНК–штрихкодирование организмов /
Т. В. Неретина, Н. С. Мюге // Природа. – 2013. – № 2. – С. 73–75.

40. Островерхова, Н. В. Генетическое разнообразие локуса COI–COII мтДНК медоносной пчелы *Apis mellifera* L. в Томской области / Н. В. Островерхова, О. Л. Конусова, А. Н. Кучер, Т. Н. Киреева, [и соавт.] // Генетика. – 2015. – Т. 51. – № 1. – С. 227–240.

41. Павлинов, И. Я. Введение в современную филогенетику (кладогенетический аспект) / И. Я. Павлинов. – М.: Изд-во КМК, 2005. – 192 с.

42. Павлинов, И. Я. О структуре филогенеза и филогенетической гипотезы / И. Я. Павлинов // Теоретические и практические проблемы изучения сообществ беспозвоночных: памяти Я. И. Старобогатова. – М.: Тов. науч. изд. КМК, 2007. – С. 81–129.

43. Рейнхард, А. Н. Список вредных насекомых СССР и сопредельных стран. Ч. 1. Вредители сельского хозяйства / под ред. А. А. Штакельберга. – издво АН СССР; 1932 г. – 500 с.

44. Ступникова, А. Н. Полиморфизм митохондриальной ДНК (СО1) массовых видов копепод в Южной Атлантике / А. Н. Ступникова, Д. Н. Кулагин, Т. В. Неретина, [и др.] // Океанология. – 2013. – Т. 53 – № 4. – С. 1–10.

45. Туранов, С. В. Молекулярно-филогенетическое исследование некоторых представителей бельдюговидных рыб (Perciformes, Zoarcoidei) дальневосточных морей, основанное на нуклеотидной последовательности митохондриального гена цитохромоксидазы 1 (CO–1) / С. В. Туранов, Ю. Ф. Картавцев, В. В. Земнухов // Генетика. – 2012. – Т. 48. – № 2. – С. 235–252.

46. Хусаинов, А. М. Белок СО1 индикаторных зоопланктонных организмов как инструмент для оценки экологического состояния водоемов Казанского региона / А. М. Хусаинов, Л. Л. Фролова // Вестник ТГУ. – 2015. – Т. 20. – № 1. – С.189–193.

47. Шнеер, В. С. ДНК–штрихкодирование видов животных и растений
– способ их молекулярной идентификации и изучения биоразнообразия /
В. С. Шнеер // Журнал общей биологии. – 2009. – Т. 70. – № 4. – С. 296–315.

48. Шнеер, В. С. О видоспецифичности ДНК: 50 лет спустя. Обзор / В. С. Шнеер // Биохимия. – 2007. – Т. 72. – С. 1690–1699.

49. Ahrens, D. DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae) / D. Ahrens,

M. T. Monaghan, A. P. Vogler // Molecular Phylogenetics and Evolution. – 2007. – V. 44. – P. 436–449.

50. Alberti, B. Neue *Procris*-Arten aus Iran / B. Alberti // Entomologische Rundschau. – 1939. – 56. – P. 1–5, 28–32.

51. Alberti, B. Über den stammesgeschichtlichen Aufbau der Gattung *Zygaena* F. und ihrer Vorstufen (Insecta, Lepidoptera) / B. Alberti // Mitteilungen aus dem Zoologischen Museum der Humboldt–Universität Berlin. – 1958–1959. – 34. – P. 245–396 (1958), 203–242 (1959).

52. Alberti, B. Über die stammesgeschichtliche Gliederung der Zygaenidae nebst Revision einiger Gruppen (Insecta, Lepidoptera) / B. Alberti // Mitteilungen aus dem Zoologischen Museum der Humboldt–Universität Berlin. – 1954. – 30. – P. 115–480.

53. Arctander, P. Comparison of a mitochondrial gene and a corresponding nuclear pseudogene / P. Arctander // Proceedings of the Royal Society of London.
Series B: Biological Sciences. - 1995. - V. 262. - P. 13-19.

54. Armstrong, K. F. DNA barcodes for biosecurity: invasive species identification / K. F. Armstrong, S. L. Ball // Philosophical Transaction Royal Society. Series B: Biological Sciences. – 2005. – V. 360. – P. 1813–1823.

55. Ashfaq, M. Mapping global biodiversity connections with DNA barcodes: Lepidoptera of Pakistan / M. Ashfaq, S. Akhtar, M. A. Rafi, S. Mansoor, [et al.] // PLoS ONE. $-2017. - V. 12. - N_{2} 3. - P. 1-13.$

56. Ball, S. L. DNA barcodes for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae) identification / S. L. Ball, K. F. Armstrong // Canadian Journal of Forest Research. – 2006. – V. 36. – P. 337–350.

57. Ballard, J. W. The incomplete natural history of mitochondria / J. W. Ballard, M. C. Whitlock // Molecular Ecology. – 2004. – V. 13. – P. 729–744.

58. Balsa, E. NDUFA4 is a subunit of Complex IV of the mammalian electron transport chain / E. Balsa, R. Marco, E. Perales-Clemente, R. Szklarczyk, [et al.] // Cell Metabolism. $-2012. - V. 16. - N_{\odot} 3. - P. 378-386.$

59. Benson, D. A. GenBank / D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, [et al.] // Nucleic Acids Research. – 2013. – V. 41. – P. 36–42.

60. Bergsten, J. The effect of geographical scale of sampling on DNA barcoding / J. Bergsten, D. T. Bilton, T. Fujisawa, [et al.] // Systematic Biology. – 2012. – № 61. – P. 851–869.

61. Bernt, M. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny / M. Bernt, C. Bleidorn, A. Braband, J. Dambach, [et al.] // Molecular Phylogenetics and Evolution. – 2013. – V. 69. – P. 352–364.

62. Betts, M. J. Amino Acid Properties and Consequences of Subsitutions / M. J. Betts, R. B. Russell // In: Gray, I. C., Ed., Bioinformatics for Geneticists Barnes MR, Wiley. – 2003. [Электронный ресурс]. Режим доступа http://dx.doi.org/10.1002/0470867302.ch14. (дата обращения 01.12.2021).

63. Billoud, B. Cirripede phylogeny using a novel approach: molecular morphometrics / B. Billoud, M.-A. Guerrucci, M. Masselot, J. S. Deutsch // Molecular Biology and Evolution. – 2000. – V. 17. – P. 1435–1445.

64. Blaxter, M. Defining operational taxonomic units using DNA barcode data / M. Blaxter, J. Mann, T. Chapman, [et al.] // Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. – 2005. – V. 360. – P. 1935–1943.

65. Blomberg, M. R. Mechanism of Oxygen Reduction in Cytochrome c Oxidase and the Role of the Active Site Tyrosine / M. R. Blomberg // Biochemistry. $-2016. - V. 55. - N_{2} 3. - P. 489-500.$

66. Brehm, G. Turning up the heat on a hotspot: DNA barcodes reveal 80% more species of Geometrid moths along an Andean elevational gradient / G. Brehm, P. D. N. Hebert, R. K. Colwell, M. O. Adams, [et al.] // PLoS ONE. – 2016. – V. 8. – № 11. – P. 1–15.

67. Briolat, E. S. Sex differences but no evidence of quantitative honesty in the warning signals of six–spot burnet moths (*Zygaena filipendulae* L.) / E. S. Briolat, M. Zagrobelny, C. E. Olsen, J. D. Blount, [et al.] // Evolution; International Journal of Organic Evolution. – 2018. – V. 72. – № 7. – P. 1460–1474.

68. Brown, B. Mitochondrial COI and II provide useful markers for *Weiseana* (Lepidoptera, Hepialidae) species identification / B. Brown,
R. M. Emberson, A. M. Paterson // Bulletin of entomological research. – 1999. – V. 89. – P. 287–294.

69. Buhay, J. E. 'COI-like' sequences are becoming problematic in molecular systematic and DNA barcoding studies / J. E. Buhay // Journal of Crustacean Biology. – 2009. – 29. – P. 96–110.

70. Caesar, R. M. Integrating DNA data and traditional taxonomy to streamline biodiversity assessment: an example from edaphic beetles in the Klamath ecoregion, California, USA / R. M. Caesar, M. Sorensson, A. I. Cognato // Diversity and Distributions. -2006. -V.12. -P. 483–489.

71. Cengiz Can, F. Zygaenidae (Lepidoptera) of Thrace Region of Turkey /
F. Cengiz Can, K. A. Efetov, K. Kaya, E. E. Kucherenko, [et al.] // Nota Lepidopterologica. – 2018. – V. 41. – № 1. – P. 23–36.

72. Cannone, J. J. The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs / J. J. Cannone, S. Subramanian, M. N. Schnare, J. R. Collett, [et al.] // BMC Bioinformatics. $-2002. - V.3. - N_{\rm 2}2. - P. 1-31.$

73. Carbayo, F. The costs of describing the entire animal kingdom /
F. Carbayo, A. C. Marques // Trends in Ecology & Evolution. – 2011. – V. 25. –
P. 154–155.

74. Carstens, B. C. How to fail at species delimitation / B. C. Carstens, T. A.
Pelletier, N. M. Reid, J. D. Satler // Molecular Ecology. – 2013. –№ 22. – P. 4369–4383.

75. Castoe, T. A. Adaptive evolution and functional redesign of core metabolic proteins in snakes / T. A. Castoe, Z. J. Jiang, W. Gu, [et al.] // PLoS One. – $2008. - N_{2} 3. - P. 1-14.$

76. Caterino, M. S. DNA identification and morphological description of the first confirmed larvae of Hetaeriinae (Coleoptera: Histeridae) / M. S. Caterino, A. K.Tishechkin // Systematic Entomology. – 2006. – V. 31. – P. 405–418.

77. Caterino, M. S. The current state of insect molecular systematics: a thriving Tower of Babel / M.S. Caterino, S. Cho, F. A. H. Sperling // Annual Review of Entomology. – 2000. – V. 45. – P. 1–54.

78. Chapple, D. G. A retrospective approach to testing the DNA barcoding method / D. G. Chapple, P. A. Ritchie // PLoS ONE. -2013. - V. 11. - N = 3. - P. 1-12.

79. Cho, S. Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for ditrysian Lepidoptera (Hexapoda)? / S. Cho, A. Zwick, J. C. Regier, C. Mitter, [et al.] // Systematic Biology. – 2011. – 60. – P. 782–796.

80. Collins, R. A. The seven deadly sins of DNA barcoding / R. A. Collins,
R. H. Cruickshank // Molecular Ecology Resources. – 2013. – 13. – P. 969–975.

81. Cristescu, M. E. A. An invasion history for *Cercopagis pengoi* based on mitochondrial gene sequences / M. E. A. Cristescu, P. D. N. Hebert, J. D. S. Witt // Limnology and Oceanography. $-2001. - V. 46. - N \ge 2. - P. 224-229.$

82. Da Fonseca, R. R. The adaptive evolution of the mammalian mitochondrial genome / R. R. Da Fonseca, W. E. Johnson, S. J. O'Brien, [et al.] // BMC Genomics. $-2008. - N_{2}9. - P. 1-22.$

83. Dasmahapatra, K. Taxonomy: DNA barcodes: recent successes and future prospects / K Dasmahapatra, J. Mallet // Heredity. – 2006. – № 97. – P. 254–255. https://doi.org/10.1038/sj.hdy.6800858

84. De Moya, R. S. Interrelationships and diversification of Argynnis
Fabricius and Speyeria Scudder butterflies / R. S. De Moya, W. K. Savage,
C. H. Tenney, [et al.] // Systematic Entomology. – 2017. – № 42. – P. 635–649.

85. De Salle, R. The unholy trinity: taxonomy, species delimitation and DNA barcoding / R. DeSalle, M. G. Egan, M. Siddall // Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. – 2005. – 360. – P. 1905–1916.

86. DeWaard, J. R. Assembling DNA barcodes: analytical protocols / J. R. Waard, N. V. Ivanova, M. Hajibabaei, P. D. N. Hebert // Methods in molecular biology: environmental genetics / C. Martin (ed.). – Totowa, NJ: Humana Press, 2008. – P. 275–293.

87. Dincă, V. Reproductive isolation and patterns of genetic differentiation in a cryptic butterfly species complex / V. Dincă, C. Wiklund, V. A. Lukhtanov, [et al.] // Journal of Evolutionary Biology. – 2013. – V. 26. – № 10. – P. 2095–2106.

88. Dinca, V. Unexpected layers of cryptic diversity in wood white *Leptidea* butterflies / V. Dinca, V. A. Lukhtanov, G. Talavera, R. Vila // Nature Communications. $-2011. - V. 2. - N_{2} 11. - P. 1-8.$

89. Dittrich, G. Genetic diversity of *Sturmiopsis parasitica* Curran (Diptera: Tachinidae) / G. Dittrich, D. E. Conlong, A. Mitchell // Annales de la Societe entomologique de France. – 2006. – 42. – P. 325–329.

90. Ebach, M. C. DNA barcoding is no substitute for taxonomy /
M. C. Ebach, C. Holdrege // Nature. - 2005. - 434. - P. 697.

91. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput / R. C. Edgar // Nucleic Acids Research. $-2004. - V. 32. - N_{\odot} 5. - P.1792-1797.$

92. Efetov, K. A. A checklist of the Palaearctic Procridinae (Lepidoptera: Zygaenidae) / K. A. Efetov, G. M. Tarmann. – Simferopol–Innsbruck: CSMU Press: Nata, 2012. – 108 pp.

93. Efetov, K. A. A new European species, *Adscita dujardini* sp. nov.
(Lepidoptera: Zygaenidae, Procridinae) confirmed by DNA analysis / K. A. Efetov,
G. M. Tarmann // Entomologist's Gazette. – 2014b. – V. 65. – № 3. – P. 179–200.

94. Efetov, K. A. A new *Illiberis* species: *I. (Alterasvenia) kislovskyi*(Lepidoptera: Zygaenidae, Procridinae) from Myanmar / K. A. Efetov,
G. M. Tarmann // Entomologist's Gazette. – 2016a. – № 67. – P. 137–142.

95. Efetov, K. A. A new synthetic sex attractant for males of *Illiberis* (*Primilliberis*) pruni Dyar, 1905 (Lepidoptera: Zygaenidae, Procridinae) /
K. A. Efetov, C. Koshio, E. E. Kucherenko // SHILAP Revista de lepidopterologia. –
2018a. – V. 46. – № 182. – P. 263–270.

96. Efetov, K. A. A Review of the Western Palaearctic Procridinae (Lepidoptera: Zygaenidae) / K. A. Efetov. – Simferopol: CSMU Press, 2001a. – 328 pp.

97. Efetov, K. A. A revision of the genus *Goe* Hampson, [1893] (Lepidoptera: Zygaenidae, Procridinae), with descriptions of two new species / K. A. Efetov // Entomologist's Gazette. – 1998. – V. 49. – N_{2} 1. – P. 49–62.

98. Efetov, K. A. Adscita (Procriterna) pligori sp. nov. (Lepidoptera: Zygaenidae, Procridinae) from Afghanistan / K. A. Efetov // Entomologist's Gazette.
2012. - V. 63. - № 2. - P. 99–105.

99. Efetov, K. A. An annotated check-list of Forester moths (Lepidoptera: Zygaenidae, Procridinae) / K. A. Efetov // Entomologist's Gazette. – 2001b. – V. 52. – N_{2} 3. – P. 153–162.

100. Efetov, K. A. Additional notes on *Zygaenoprocris* Hampson, 1900, a subgenus of *Adscita* Retzius, 1783 (Lepidoptera: Zygaenidae, Procridinae) // Entomologist's Gazette. – 1995a. – V. 46. – N_{2} 1. – P. 59–61.

101. Efetov, K. A. An annotated check–list of the Palaearctic Procridinae (Lepidoptera: Zygaenidae), with descriptions of new taxa / K. A. Efetov, G. M. Tarmann // Entomologist's Gazette. – 1995b. – V. 46. – N_{2} 1. – P. 63–103.

102. Efetov, K. A. A role of the mitochondrial COI gene study in Zygaenidae biosystematics and new species descriptions / K. A. Efetov, A. V. Kirsanova, Z. S. Lazareva, E. V. Parshkova, G. M. Tarmann // XV International Symposium on Zygaenidae (Mals, 11–18 September 2016). – Mals, 2016b. – P. 10–11.

103. Efetov, K. A. Application of two molecular approaches (use of sex attractants and DNA barcoding) allowed to rediscover *Zygaenoprocris eberti* (Alberti, 1968) (Lepidoptera, Zygaenidae, Procridinae), hitherto known only from the female holotype / K. A. Efetov, A. Hofmann, G. M. Tarmann // Nota Lepidopterologica. – 2014b. – V. 37. – No 2. – P. 151–160.

104. Efetov, K. A. *Chrysartona* (*Chrystarmanna*) *mineti* sp. nov. (Lepidoptera: Zygaenidae, Procridinae) from northern Vietnam / K. A. Efetov, G. M. Tarmann // Entomologist's Gazette. – 2013b. – V. 64. – N_{2} 3. – P. 197–206.

105. Efetov, K. A. DNA barcoding of Zygaenidae (Lepidoptera): results and perspectives / K. A. Efetov, A. V. Kirsanova, Z. S. Lazareva, E. V. Parshkova, G. M. Tarmann, R. Rougerie & P. D. N. Hebert // Nota Lepidopterologica. – 2019b. – V. 42. – \mathbb{N} 2. – P. 137–150.

106. Efetov, K. A. DNA barcoding as an efficient tool for the Zygaenidae study / K. A. Efetov, A. V. Kirsanova, Z. S. Lazareva, E. V. Parshkova, G. M. Tarmann, R. Rougerie, P. D. N. Hebert // XVIII European Congress of Lepidopterology (Blagoevgrad, July – August 2013). – Sofia, 2013. – P. 35–36.

107. Efetov, K. A. Early results in DNA barcoding of Zygaenidae (Lepidoptera) / K. A. Efetov, A. V. Kirsanova, Z. S. Lazareva, E. V. Parshkova, G. M. Tarmann, R. Rougerie, P. D. N. Hebert // XII International Symposium on Zygaenidae (Hatay, May 2010). – Hatay, 2010. – P. 7–8.

108. Efetov, K. A. Forester and Burnet Moths (Lepidoptera: Zygaenidae). The genera *Theresimima* Strand, 1917, *Rhagades* Wallengren, 1863, *Zygaenoprocris* Hampson, 1900, *Adscita* Retzius, 1783, *Jordanita* Verity, 1946 (Procridinae), and *Zygaena* Fabricius, 1775 (Zygaeninae) / K. A. Efetov. – Simferopol: CSMU Press, 2004. – 272 pp.

109. Efetov, K. A. *Illiberis (Alterasvenia) banmauka* sp. nov. (Lepidoptera: Zygaenidae, Procridinae) from China and Myanmar / K. A. Efetov, G. M. Tarmann // Entomologist's Gazette. $-2014a. - V. 65. - N_{\rm P} 1. - P. 62-70.$

110. Efetov, K. A. *Illiberis (Alterasvenia) cernyi* sp. nov. (Lepidoptera: Zygaenidae, Procridinae) from northern Thailand / K. A. Efetov, G. M. Tarmann // Entomologist's Gazette. $-2013a. - V. 64. - N_{\odot} 1. - P. 33-39.$

111. Efetov, K. A. *Illiberis (Hedina) louisi* sp. nov. (Lepidoptera: Zygaenidae, Procridinae) from China / K. A. Efetov // Entomologist's Gazette. $-2010. - V. 61. - N_{\text{O}} 4. - P. 235-241.$

112. Efetov, K.A. "Ino Budensis var. Mollis" Grum-Grshimailo, 1893 (Lepidoptera: Zygaenidae) from Eastern Asia recognized as a valid species on the base of morphological and molecular analysis / K. A. Efetov, G. M. Tarmann, E. V. Parshkova // Zootaxa. – 2019c. – V. 4619. – No 3. – P. 518–526.

113. Efetov, K. A. *Inouela* gen. n. from Japan and Taiwan (Lepidoptera: Zygaenidae, Chalcosiinae) / K. A. Efetov // Entomologist's Gazette. – 1999. – V. 50. – № 2. – P. 91–95.

114. Efetov, K. A. Karyotypes of foresters from the genera *Theresimima* Strand, 1917, *Rhagades* Wallengren, 1863, *Jordanita* Verity, 1946, and *Adscita* Retzius, 1783 (Lepidoptera, Zygaenidae: Procridinae) / K. A. Efetov // 11th European Congress of Lepidopterology (Malle, Belgium, March 1998): Abstracts. – Tervuren, 1998. – P. 44.

115. Efetov, K. A. New data on the chaetotaxy of the first instar larva of Forester moths (Lepidoptera: Zygaenidae, Procridinae) / K. A. Efetov, T. Keil, B. Mollet, G. M. Tarmann // Nachrichten des Entomologischen Vereins Apollo, N. F. $-2000. - V. 21. - N_{\odot} 2. - P. 83-90.$

116. Efetov, K. A. New data on the chaetotaxy of the first instar larvae of Procridini and Artonini (Lepidoptera: Zygaenidae, Procridinae) / K. A. Efetov, E. Hayashi, E. V. Parshkova, G. M. Tarmann // Entomologist's Gazette. – 2006. – V. 57. – No 4. – P. 229–233.

117. Efetov, K. A. New results of DNA study of the Zygaenidae / K. A. Efetov, J. Rota, Z. S. Lazareva, E. V. Parshkova, G. M. Tarmann // Abstracts of the XVI. International Symposium on Zygaenidae (İzmir, Turkey, 1–5 May 2018). – İzmir, 2018b. – P. 24.

118. Efetov, K. A. New synthetic sex attractants for the males of two endemic
Iberian Procridinae species (Lepidoptera: Zygaenidae) / K. A. Efetov,
E. E. Kucherenko, G. M. Tarmann // SHILAP Revista de lepidopterologia. – 2019a. –
V. 47. – № 186. – P. 307–315.

119. Efetov, K. A. Nine new species of the genus *Chrysartona* Swinhoe, 1892
(Lepidoptera: Zygaenidae, Procridinae) / K. A. Efetov // Entomologist's Gazette. –
2006. – V. 57. – № 1. – P. 23–50.

120. Efetov, K. A. On the biology and taxonomy of the genus *Adscita* Retzius,
1783 (Zygaenidae) / K. A. Efetov // 8th European Congress of Lepidopterology
(Helsinki, Finland, April 1992): Abstracts. – Helsinki, 1992. – P. 9.

121. Efetov, K. A. On the chaetotaxy of the first instar larva of *Artona martini*Efetov, 1997 (Lepidoptera: Zygaenidae, Procridinae, Artonini) / K. A. Efetov,
E. Hayashi // Entomologist's Gazette. – 2008. – V. 59. – № 2. – P. 101–104.

122. Efetov, K. A. On the systematic position of *Zygaenoprocris* Hampson,
1900 (Lepidoptera: Zygaenidae, Procridinae) and the erection of two new subgenera /
K. A. Efetov // Entomologist's Gazette. – 2001c. – V. 52. – № 1. – P. 41–48.

123. Efetov, K. A. *Procriterna* nomen novum for *Procrita* Efetov & Tarmann, 1999 (Lepidoptera: Zygaenidae, Procridinae) / K. A. Efetov, G. M. Tarmann // Entomologist's Gazette. $-2004. - V.55. - N_{2}3. - P.184.$

124. Efetov, K. A. *Pseudophacusa multidentata* Efetov & Tarmann, a new genus and species of Procridini from Myanmar, China and Laos (Lepidoptera: Zygaenidae, Procridinae) / K. A. Efetov, G. M. Tarmann // SHILAP Revista de lepidopterología. – 2016. – V. 44. – Nº 173. – P. 81–89.

125. Efetov, K. A. Taxonomic comments on the treatment of the Zygaenidae (Lepidoptera) in volume 3 of *Moths of Europe*, *Zygaenids*, *Pyralids 1 and Brachodids* (2012) / K. A. Efetov, A. Hofmann, G. M. Tarmann, W. G. Tremewan // Nota Lepidopterologica. – 2014a. – V. 37. – \mathbb{N} 2. – P. 123–133.

126. Efetov, K. A. The hypothetical ground plan of the Zygaenidae, with a review of the possible autapomorphies of the Procridinae and the description of the Inouelinae subfam. nov. / K. A. Efetov, G. M. Tarmann // Journal of the Lepidopterists' Society. $-2017. - V. 71. - N_{\rm P} 1. - P. 20-49$.

127. Efetov, K. A. The karyotype of *Illiberis (Primilliberis) rotundata* Jordan,
[1907] (Lepidoptera: Zygaenidae, Procridinae) / K. A. Efetov, E. V. Parshkova,
C. Koshio // Entomologist's Gazette. – 2004. – V. 55. – № 3. – P. 167–170.

128. Efetov, K. A. The karyotypes of Procridinae (Lepidoptera: Zygaenidae), with the first record of the karyotype of *Pollanisus commoni* Tarmann, 2004, a representative of the tribe Artonini / K. A. Efetov, L. G. Tarasova, E. V. Parshkova, G. M. Tarmann // Entomologist's Gazette. $-2015. - V. 66. - N_{\odot} 2. - P. 121-125.$

129. Efetov, K. A. The primary structure of the mitochondrial cytochrome oxidase first subunit fragment: amino acids variability in species of the genus

Zygaena Fabricius, 1775 (Zygaenidae, Zygaeninae) / K. A. Efetov, Z. S. Lazareva, E. V. Parshkova, G. M. Tarmann // XV International Symposium on Zygaenidae (Mals, 11–18 September 2016). – Mals, 2016a. – P. 16–17.

130. Efetov, K. A. The Zygaenidae (Lepidoptera) of the Crimea and other regions of Eurasia / K. A. Efetov. – Simferopol: CSMU Press, 2005. – 420 pp.

131. Efetov, K. A. Three new species of the genus *Illiberis* Walker, 1854, from Taiwan and Vietnam (Lepidoptera: Zygaenidae, Procridinae) / K. A. Efetov // Entomologist's Gazette. – 1997b. – V. 48. – \mathbb{N} 4. – P. 231–244.

132. Efetov, K. A. Two new species of the genus Artona Walker, 1854
(Lepidoptera: Zygaenidae, Procridinae) / K. A. Efetov // Entomologist's Gazette. –
1997a. – V. 48. – № 3. – P. 165–177.

133. Efetov, K. A. Variations in sequences of the 658-bp region of the COI mitochondrial gene and their importance for the investigation of the Zygaenidae (Lepidoptera) / K. A. Efetov, A. V. Kirsanova, Z. S. Lazareva, E. V. Parshkova, G. M. Tarmann, R. Rougerie & P. D. N. Hebert // XIII International Symposium on Zygaenidae (Innsbruck, September 2012). – Innsbruck, 2012b. – P. 11–12.

134. Efetov, K. A. Zygaenidae of Mongolia (Lepidoptera) / K. A. Efetov,
O. G. Gorbunov, G. M Tarmann // Nachrichten des Entomologischen Vereins Apollo,
N. F. - 2012a. - V. 32. - № 3/4. - P. 159–164.

135. Efetov, K. A. Zygaenidae taxonomy and a DNA study: status quo / K. A. Efetov, A. V. Kirsanova, Z. S. Lazareva, E. V. Parshkova, G. M. Tarmann, R. Rougerie, P. D. N. Hebert // 17th European Congress of Lepidopterology (Luxembourg, May 2011). – Luxembourg, 2011. – P. 50.

136. Elias, M. Limited performance of DNA barcoding in a diverse community of tropical butterflies / M. Elias, R. I. Hill, K. R. Willmott, [et al.] // Proceedings of the Royal Society B: Biological Sciences. – 2007. – 274. – P. 2881–2889.

137. Felsenstain, J. Confidence limits on phylogenies: an approach using the bootstrap / J. Felsenstain // Evolution. $-1985 - V. 39. - N_{\odot} 4 - P. 783-791.$

138. Folmer, O. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates / O. Folmer, M. Black, W. Hoeh, [et al.] // Molecular Marine Biology and Biotechnology. – 1994. – V. 3. – $N_{\rm P}$ 5. – P. 294–299.

139. Friedlander, T. P. Nuclear gene sequences for higher level phylogenetic analysis: 14 promising candidates / T. P. Friedlander, J. C. Regier, C. Mitter // Systematic Biology. – 1992. – 41. – P. 483–490.

140. Fürstenberg-Hägg, J. Chemical Defense Balanced by Sequestration and De Novo Biosynthesis in a Lepidopteran Specialist / J. Fürstenberg-Hägg, M. Zagrobelny, K. Jørgensen, H. Vogel, [et al.] // PLoS ONE. – 2014. – V. 9. – $N_{\rm D}$ 10. – P.1–9.

141. Fuller, Z. L. Genome-wide analysis of signatures of selection in populations of African honey bees (*Apis mellifera*) using new web-based tools /
Z. L. Fuller, E. L. Niño, H. M. Patch, O. C. Bedoya-Reina, [et al.] // BMC Genomics.
- 2015. - V. 16. - P. 1-18.

142. Funk, D. J. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA / D. J. Funk, K. E. Omland // Annual Review of Ecology, Evolution and Systematics. – 2003. – 34. – P. 397–423.

143. Galtier, N. Mitochondrial DNA as a marker of molecular diversity: A reappraisal / N. Galtier, B. Nabholz, S. Glémin, G. D. Hurst // Molecular Ecology. –
2009. – 18. – P. 4541–4550.

144. Gaston, K. J. Regional patterns of diversity and estimates of global insect species richness / K. J. Gaston, E. Hudson // Biodiversity and Conservation. – 1994. – V. 3. – P. 493–500.

145. Godfray, H. C. J. Studying insect diversity in the tropics / H. C. J. Godfray, O. T. Lewis, J. Memmott // Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. – 1999. – 354. – P. 1811–1824.

146. Gregory, T. R. DNA barcoding does not compete with taxonomy /T. R. Gregory // Nature. - 2005. - 434. - P. 1067.

147. Hajibabaei, M. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics / M. Hajibabaei, G. A. C. Singer, P. D. N. Hebert, D. A. Hickey // Trends in Genetics. – 2007. – 23. – P. 167–172.

148. Hajibabaei, M. DNA barcodes distinguish species of tropical Lepidoptera / M. Hajibabaei, D. H. Janzen, J. M. Burns, W. Hallwachs, P. D. N. Hebert // Proceedings of the National Academy of Sciences of the United States of America. – 2006. – 103. – P. 968–971.

149. Hajibabaei, M. Critical factors for assembling a high volume of DNA barcodes / M. Hajibabaei, J. R. deWaard, N. V. Ivanova, S.Ratnasingham, [et al.] // Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. $-2005. - V.360. - N_{\odot} 1462. - P. 1959-1967.$

150. Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT / T. A. Hall // Nucleic Acids Symposium Series. – 1999. – 41. – P. 95–98.

151. Hausmann, A. DNA Barcoding the Geometrid Fauna of Bavaria (Lepidoptera): Successes, Surprises, and Questions / A. Hausmann, G. Haszprunar, P. D. N. Hebert // PLoS ONE. -2011. - V. 6. - N 2. - P. 1-9.

152. Hausmann, A. Genetic patterns in European Geometrid moths revealed by the Barcode Index Number (BIN) system / A. Hausmann, H. C. J. Godfray, P. Huemer, [et al.] // PLoS ONE. – 2013. – V. 8. – № 12. – P. 1–11.

153. Hausmann, A. Taxonomic decision as a compromise: *Acasis appensata* (Eversmann, 1832) in Central Italy – a case of conflicting evidence between DNA barcode and morphology (Lepidoptera: Geometridae) / A. Hausmann, P. Huemer // Zootaxa. – 2011. – 3070. – P. 61–68.

154. Hebert, P. D. N. 'The promise of DNA barcoding for taxonomy' / P. D. N. Hebert, T. R. Gregory // Systematic Biology. $-2005. - V. 54. - N_{2} 5. - P. 852-859.$

155. Hebert, P. D. N. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species / P. D. N. Hebert, S. Ratnasingham,

J. R. deWaard // Proceedings of the Royal Society of London. Series B: Biological Sciences. – 2003a. – V. 270. – P. 96–99.

156. Hebert, P. D. N. Biological identifications through DNA barcodes / P. D. N. Hebert, A. Cywinska, S. L. Ball, J. R. deWaard // Proceedings of the Royal Society of London. Series B: Biological Sciences. – 2003b. – V. 270. – P. 313–322.

157. Hebert, P. D. N. DNA barcodes for 1/1000 of the animal kingdom / P. D. N. Hebert, J. R. deWaard, J.-F. Landry // Biology Letters. $-2010. - V. 6. - N_{2} 3. - P. 359-362.$

158. Hebert, P. D. N. From writing to reading the encyclopedia of life / P. D. N. Hebert, P. M. Hollingsworth, M. Hajibabaei // Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. – $2016. - N_{\odot} 371. - P. 1-9.$

159. Hebert, P. D. N. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes fulgerator* / P. D. N. Hebert, E. H. Penton, J. M. Burns, [et al.] // Proceedings of the National Academy of Sciences of the United States of America. – 2004. – V. 101. – P. 14812–14817.

160. Hickerson, M. J. DNA barcoding will often fail to discover new animal species over broad parameter space / M. J. Hickerson, C. P. Meyer, C. Moritz // Systematic Biology – 2006. – 55. – P. 729–739.

161. Hilgenboecker, K. How many species are infected with *Wolbachia*? – a statistical analysis of current data / K. Hilgenboecker, P. Hammerstein,
P. Schlattmann, A. Telschow, J. H. Werren // FEMS Microbiology Letters. – 2008. – 281. – P. 215–220.

162. Hill, G. E. Mitonuclear Ecology / G. E. Hill // Molecular Biology and Evolution. $-2015. - V. 32. - N_{\odot} 8. - P. 1917-1927.$

163. Hofmann, A. A revised check–list of the genus *Zygaena* Fabricius, 1775 (Lepidoptera: Zygaenidae, Zygaeninae), based on the biospecies concept / A. Hofmann, W. G. Tremewan // Entomologist's Gazette. – 2010. – V. 61. – P. 119–131.

164. Hofmann, A. A systematic catalogue of the Zygaeninae (Lepidoptera: Zygaenidae) / A. Hofmann, W. G. Tremewan. – Colchester: Harley Books, 1996. – 251 pp.

165. Hofmann, A. F. The Natural History of Burnet Moths (*Zygaena* Fabricius, 1775) (Lepidoptera: Zygaenidae). Part 1 / A. F. Hofmann, W. G. Tremewan. – Munich: Museum Witt, 2017. – 631 pp.

166. Hofmann, A. How many nominal subgenera are necessary in the Zygaenidae (Lepidoptera), with special reference to the genus *Zygaena* Fabricius, 1775? / A. Hofmann, W. G. Tremewan // Entomologist's Gazette. – 2009. – V. 60. – P. 91–106.

167. Hollingsworth, P. M. Choosing and Using a Plant DNA Barcode / P. M. Hollingsworth, S. W. Graham, D. P. Little // PLoS ONE. $-2011. - V. 6. - N_{2} 5. - P. 1-13.$

168. Huemer, P. Taxonomy of spatially disjunct alpine *Teleiopsis* albifemorella s. lat. (Lepidoptera: Gelechiidae) revealed by molecular data and morphology — how many species are there? / P. Huemer, M. Mutanen // Zootaxa. – $2012. - N_{2} 3580. - P. 1-23.$

169. Huemer, P. Testing DNA barcode performance in 1000 species of European Lepidoptera: large geographic distances have small genetic impacts / P. Huemer, M. Mutanen, K. M. Sefc, P. D. N. Hebert, [et al.] // PLoS ONE. – 2014. – V. 9. – N_{2} 12. – P. 1–21.

170. Ilyasov, R. Mitochondrial genomes of Caucasian A. m. caucasica and Carpathian A. m. carpathica honeybees / R. Ilyasov, H. W. Kwon, A. Nikolenko, V. R. Tuktarov, D. Takahashi // Proceedings of the RAS Ufa Scientific Centre. – 2018. – V. $3. - N_{2} 4. - P. 35-43$.

171. Ishiwata, K. Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences / K. Ishiwata, G. Sasaki, J. Ogawa, [et al.] // Molecular Phylogenetics and Evolution. – 2011. – V. 58. – P. 169–180.

172. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature and symbolism for amino acids and peptides. Recommendations // Biochemical Journal. – 1984. – V. 219. – N_{2} 2. – P. 345–373.

173. Ivanova, N. V. An inexpensive, automation-friendly protocol for recovering high-quality DNA / N. V. Ivanova, J. R. deWaard, P. D. N. Hebert // Molecular Ecology Notes. – 2006. – 6. – P. 998–1002.

174. James, J. E. The rate of adaptive evolution in animal mitochondria / J. E. James, G. Piganeau, A. Eyre-Walker // Molecular Ecology. – 2015. – 25. – P. 67–78.

175. Janzen, D. H. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding / D. H. Janzen, M. Hajibabaei, J. M. Burns // Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. – 2005. – 1462. – P. 1835–1846.

176. Kallies, A. A new species of forester moth from Victoria (Lepidoptera: Zygaenidae: Procridinae) / A. Kallies, B. Mollet // Australian Entomologist. – 2011. – V. 38. – № 1. – P. 21–28.

177. Kandul, N. P. Phylogeny of *Agrodiaetus* Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1- α : karyotype diversification and species radiation / N. P. Kandul, V. A. Lukhtanov, A. V. Dantchenko // Systematic Biology. – 2004. – V. 53. – No 2. – P. 278–298.

178. Kang, A. R. Geographic homogeneity and high gene flow of the pear psylla, *Cacopsylla pyricola* (Hemiptera: Psyllidae), detected by mitochondrial COI gene and nuclear ribosomal internal transcribed spacer 2 / A. R. Kang, J. Y. Baek, S. H. Lee, Y. S. Cho, [et al.] // Animal Cells and Systems. – 2012. – V. 16. – N_{2} 2. – P.145–153.

179. Kawahara, A. Y. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths / A. Y. Kawahara, D. Plotkin, M. Espeland, [et al.] // Proceedings of the National Academy of Sciences. $-2019. -116. - N_{\odot} 45. - P. 22657-22663.$

180. Kekkonen, M. Delineating species with DNA barcodes: a case of taxon dependent method performance in moths / M. Kekkonen, M. Mutanen, L. Kaila, M. Nieminen, [et al.] // PLoS ONE. $-2015. - V. 10. - N_{\odot} 4. - P. 1-32.$

181. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences / M. Kimura // Journal of Molecular Evolution. – 1980. – 16. – N_{2} 2. – P. 111–120.

182. Kodandaramaiah, U. Deceptive single-locus taxonomy and phylogeography: *Wolbachia*-associated divergence in mitochondrial DNA is not reflected in morphology and nuclear markers in a butterfly species / U. Kodandaramaiah, T. J. Simonsen, S. Bromilow, N.Wahlberg // Ecology and Evolution. $-2013. - V. 3. - N_{2} 16. - P. 5167-5176.$

183. Kristensen, N. P. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity / N. P. Kristensen, M. Scoble, O. Karsholt // Zootaxa. – 2007. – 1668. – P. 699–747.

184. Kristensen, N. P. (Ed.) Lepidoptera, Moths and Butterflies. Vol. 2: Morphology, Physiology, and Development. In Fischer, M. (Ed.) Handbook of Zoology 4. Arthropoda: Insecta, part 36. Walter de Gruyter, Berlin & New York. 2003. – 564 pp.

185. Kumar, S. Efficiency of the neighbour-joining method in reconstructing deep and shallow evolutionary relationships in large phylogenies // S. Kumar, S. R. Gadagkar // Journal of Molecular Evolution. – 2000. – 51. – P. 544–553.

186. Leraut, P. Moths of Europe, volume 3, Zygaenids, Pyralids 1 and Brachodids / P. Leraut. –Verrièrres-le Buisson: N. A. P. Editions, 2012. – 599 pp.

187. Levy, H. C. Strain Identification of *Spodoptera frugiperda* (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase subunit I gene / H. C. Levy, A. Garcia-Maruniak, J. E. Maruniak // Florida Entomologist. – 2002. – 85. – P. 186–190.

188. Librado, P. Dna SP v5: A software for comprehensive analysis of DNA polymorphism data / P. Librado, J. Rozas // Bioinformatics. – 2009. – 25. – P. 1451–1452.

189. Lin, X. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes / X. Lin, E. Stur, T. Ekrem // PLoS ONE. – 2015. – V. $10. - N_{\odot} 9. - P. 1-24.$

190. Litman, J. A DNA barcode reference library for Swiss butterflies and forester moths as a tool for species identification, systematics and conservation / J. Litman, Y. Chittaro, S. Birrer, C. Praz, [et al.] // PLoS ONE. – 2018. – V. 13. – $N_{\rm P}$ 12. – P. 1–31.

191. Lukhtanov, V. A. DNA barcoding Central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification / V. A. Lukhtanov, A. Sourakov, E. V. Zakharov, P. D. N. Hebert // Molecular Ecology Resources. $-2009. - N_{\odot} 9. - P. 1302-1310.$

192. Lukhtanov, V. A. Agrodiaetus shahkuhensis sp. n. (Lepidoptera, Lycaenidae), a cryptic species from Iran discovered by using molecular and chromosomal markers / V. A. Lukhtanov, N. A. Shapoval, A. V. Dantchenko // Comparative Cytogenetics. $-2008. - N_{\rm P} 2. - P. 99-114$.

193. Lukhtanov, V. A. Taxonomic position of several enigmatic *Polyommatus* (*Agrodiaetus*) species (Lepidoptera, Lycaenidae) from Central and Eastern Iran: insights from molecular and chromosomal data / V. A. Lukhtanov, N. A. Shapoval, A. V. Dantchenko // Comparative Cytogenetics. -2014. -V. 8. -N 4. -P. 313–322.

194. Lunt, D. H. The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies / D. H. Lunt, J. M. Szymura, D. X. Zhang, G. M. Hewitt // Insect Molecular Biology. – 1996. – V. 5. – N_{2} 3. – P. 153–165.

195. Luo, A. Comparison of Methods for Molecular Species Delimitation Across a Range of Speciation Scenarios / A. Luo, C. Ling, S. Y. W. Ho, C. D. Zhu // Systematic Biology. $-2018. - V. 67. - N_{2} 5. - P. 830-846.$

196. Machado, V. N. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon / V. N. Machado, R. A. Collins, R. P. Ota, M. C. Andrade, [et al.] // Scientific Reports. -2018. - 8. - P. 1-12.

197. Mally, R. Deep intraspecific DNA barcode splits and hybridisation in the Udea alpinalis group (Insecta, Lepidoptera, Crambidae) – an integrative revision / R. Mally, P. Huemer, M. Nuss // Zookeys. – 2018. – 746. – P. 51–90.

198. Mardulyn, P. Phylogenetic signal in the COI, 16S, and 28S genes for inferring relationships among genera of Microgastrinae (Hymenoptera: Braconidae): evidence of a high diversification rate in this group of parasitoids / P. Mardulyn, J. B. Whitfield // Molecular Phylogenetics and Evolution. – 1999. – 12. – P. 282–294.

199. Markmann, M. Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences / M. Markmann, D. Tautz // Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. – 2005. – 360. – P. 1917–1924.

200. Meier, R. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success / R. Meier, K. Shiyang, G. Vaidya, P. K. L. Ng // Systematic Biology. – 2006. – 55. – P. 715–728.

201. Meiklejohn, C. D. Positive and negative selection on the mitochondrial genome / C. D. Meiklejohn, K. L. Montooth, D. M. Rand // Trends in Genetics. – 2007. – 23. – P. 259–263.

202. Mikkola, K. Morphological and molecular taxonomy of *Dendrolimus sibiricus* Chetverikov stat. rev. and allied lappet moths (Lepidoptera: Lasiocampidae), with description of a new species / K. Mikkola, G. Stahls // Entomologica Fennica. – 2008. – V. 19. – P. 65–85.

203. Miller, K. B. Association of insect life stages using DNA sequences: the larvae of *Philodytes umbrinus* (Motschulsky) (Coleoptera: Dytiscidae) / K. B. Miller, Y. Alarie, G. W. Wolfe, [et al.] // Systematic Entomology. – 2005. – 30. – P. 499–509.

204. Mir, K. Short barcodes for next generation sequencing. / K. Mir,
K. Neuhaus, M. Bossert, S. Schober // PLoS ONE. – 2013. – V. 8. – № 12. – P. 1–8.

205. Misof, B. Phylogenomics resolves the timing and pattern of insect evolution / B. Misof, S. L. Liu, K. Meusemann, R. S. Peters, [et al.] // Science. – 2014. – 346. – P. 763–767.

206. Mitchell, A. DNA barcoding demystified / A. Mitchell // Australian Journal of Entomology. – 2008. – V. 47. – P. 169–173.

207. Mitchell, A. DNA barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and utility of DNA barcodes for pest identification in *Helicoverpa* and relatives / A. Mitchell, D. Gopurenko // PLoS ONE. – 2016. – V. 11. – N_{2} 8. – P. 1– 18.

208. Moriniére, J. A Barcoding fauna Bavarica: 78% of the Neuropterida fauna barcoded! / J. Moriniére, L. Hendrich, A. Hausmann, [et al.] // PLoS ONE. – 2014. –V. 9. – № 10. – P. 1–8.

209. Moriniére, J. A DNA barcode library for 5,200 German flies and midges
(Insecta: Diptera) and its implications for metabarcoding-based biomonitoring /
J. Moriniére, M. Balke, D. Doczkal, [et al.] // Molecular Ecology Resources. – 2019.
– V. 19(4). – P. 900–928.

210. Moritz, C. DNA barcoding: promise and pitfalls / C. Moritz, C. Cicero // Plos Biology. – 2004. – 2. – P. 1529–1531.

211. Mutanen, M. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies / M. Mutanen, N. Wahlberg, L. Kaila // Proceedings of the Royal Society of London. Series B: Biological Sciences. – 2010. – 277. – P. 2839–2848.

212. Mutanen, M. Species–Level Para– and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera/ M. Mutanen, S. M. Kivelä, R. A. Vos, C. Doorenweerd, [et al.] // Systematic Biology. – 2016. –V. 65. – № 6. – P. 1024–1040.

213. Mutanen, M. Wide-ranging barcoding aids discovery of one-third increase of species richness in presumably well-investigated moths / M. Mutanen,
L. Kaila, J. Tabell // Scientific reports. - 2013. - V. 3. - P. 1-7.

214. Nahirnić, A.The *Zygaena purpuralis* complex. A new approach to solve a complicated problem / A. Nahirnić, G. M. Tarmann // Abstr. of XIV International Symposium on Zygaenidae. – Tobermory Isle of Mull, Scotland. 2014. – pp.13–14.

215. Naumann, C. M. Das Biospecies-Konzept in seiner Anwendung auf die Gattung Zygaena Fabricius, 1775 (Insecta, Lepidoptera, Zygaenidae) /
C. M. Naumann, W. G Tremewan // Spixiana. – 1984. – V. 7. – P. 161–193.

216. Naumann, C. M. Phylogenetische Systematik und klassischtypologische Systematik – mit einigen Anmerkungen zu stammesgeschichtlichen Fragen bei den Zygaenidae (Lepidoptera) / C. M. Naumann // Mitteilungen der Münchner Entomologischen Gesellschaft. – 1985. – V. 74. – P. 1–35.

217. Naumann, C. M. Stammesgeschichte und tiergeographische Beziehungen der Zygaenini (Insecta, Lepidoptera, Zygaenidae) / C. M. Naumann // Mitteilungen der Münchner Entomologischen Gesellschaft. – 1977. – 67. – P. 1–25.

218. Naumann, C. M. The Western Palaearctic Zygaenidae (Lepidoptera) / C. M. Naumann, G. M. Tarmann, W. G Tremewan. – Stenstrup. 1999. – 304 p.

219. Nazari, V. Century–old DNA barcodes reveal phylogenetic placement of the extinct Jamaican Sunset Moth, *Urania sloanus* Cramer (Lepidoptera: Uraniidae) / V. Nazari, B. C. Schmidt, S. Prosser, [et al.] // PLoS ONE. – 2016. – V. 11. – N_{2} 10. – P. 1–13.

220. Nei, M. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions / M. Nei, T. Gojobori // Molecular Biology and Evolution. $-1986. - N_{\odot} 3. - P. 418-426.$

221. Nicolas, V. Assessment of Three Mitochondrial Genes (16S, Cytb, CO1)
for Identifying Species in the Praomyini Tribe (Rodentia: Muridae) / V. Nicolas,
B. Schaeffer, A. D. Missoup, J. Kennis, [et al.] // PLoS ONE. – 2012. – V. 7. – № 5. – P. 1–11.

222. Niehuis, O. Evolutionary history of the burnet moth genus *Zygaena* Fabricius, 1775 (Lepidoptera: Zygaenidae) inferred from nuclear and mitochondrial sequence data: phylogeny, host–plant association, wing pattern evolution and historical biogeography / O. Niehuis, A. Hofmann, C. M. Naumann, B. Misof // Biological Journal of the Linnean Society. – 2007. – V. 92. – P. 501–520.

223. Niehuis, O. Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval

cuticular cavities for chemical defence / O. Niehuis, S. H. Yen, C. M. Naumann, B. Misof // Molecular Phylogenetics and Evolution. – 2006c. – V. 39. – P. 812–829.

224. Niehuis, O. Phylogenetic analysis of Zygaenoidea small–subunit rRNA structural variation implies initial oligophagy on cyanogenic host plants in larvae of the moth genus *Zygaena* (Insecta: Lepidoptera) / O. Niehuis, C. M. Naumann, B. Misof // Zoological Journal of the Linnean Society. – 2006a. – V. 147. – N $_{2}$ 3. – P. 367–381.

225. Niehuis, O. Identification of evolutionary conserved structural elements in the mt SSU rRNA of Zygaenoidea (Lepidoptera): A comparative sequence analysis / O. Niehuis, C. M. Naumann, B. Misof // Organisms Diversity & Evolution. – 2006b. – V. 6. – N_{2} 1. – P. 17–32.

226. Nieukerken, E. J. DNA barcoding the leaf-mining moth subgenus *Ectoedemia* s. str. (Lepidoptera: Nepticulidae) with COI and EF1 – two are better than one in recognising cryptic species / E. J. Nieukerken, C. Doorenweerd, F. R. Stokvis, D. S. J. Groenenberg // Contributions to Zoology. – 2012. – V. 81. – $N_{\rm P}$ 1. – P. 1–24.

227. Pappalardo, A. M. A COI nonsynonymous mutation as diagnostic tool for intraspecific discrimination in the European anchovy *Engraulis encrasicolus* (Linnaeus) / A. M. Pappalardo, C. Federico, G. Sabella, S. Saccone, V. Ferrito // PLoS ONE. $-2015. - V. 10. - N_{2} 11. - P. 1-12.$

228. Pazhenkova, E. A. Nuclear genes (but not mitochondrial DNA barcodes) reveal real species: Evidence from the *Brenthis fritillary* butterflies (Lepidoptera, Nymphalidae) / E. A.Pazhenkova, V. Lukhtanov // Journal of Zoological Systematics and Evolutionary Research. – 2018. – [Электронный ресурс]. режим доступа 10.1111/jzs.12252. (дата обращения 01.12.2021).

229. Pečnikar, Ž. F. 20 years since the introduction of DNA barcoding: from theory to application / Ž. F. Pečnikar, E. V. Buzan // Journal of Applied Genetics. $-2014. - V.55. - N_{\rm P} 1. - P.43-52.$
230. Peng, S. Complete mitochondrial genome of *Histia rhodope* Cramer (Lepidoptera: Zygaenidae) / S. Peng, W. Jia, Z. Huang, Y. Wang, [et al.] // Mitochondrial DNA Part B. $-2017. - V. 2. - N_{2} 2. - P. 636-637.$

231. Pentinsaari, M. Barcoding Beetles: A Regional Survey of 1872 Species
Reveals High Identification Success and Unusually Deep Interspecific Divergences /
M. Pentinsaari, P. D. N. Hebert, M. Mutanen // PLoS ONE. – 2014. – V. 9. – № 9. –
P. 1–8.

232. Pentinsaari, M. Molecular evolution of a widely adopted taxonomic marker (COI) across the animal tree of life / M. Pentinsaari, H. Salmela, M. Mutanen, T. Roslin // Scientific Reports. – 2016. [Электронный ресурс]. 6:35275. doi: 10.1038/srep35275. (дата обращения: 01.12.2021).

233. Pentinsaari, M. Utility of DNA barcodes in identification and delimitation of beetle species, with insights into COI protein structure across the animal kingdom. Academic dissertation. Oulu; 2016.

234. Pentzold, S. How insects overcome two-component plant chemical defence: plant β -glucosidases as the main target for herbivore adaptation / S. Pentzold, M. Zagrobelny, S. Bak // Biological reviews of the Cambridge Philosophical Society. – 2014. – V. 89. – No 3. – P. 531–551.

235. Pesole, G. Nucleotide substitution rate of mammalian mitochondrial genomes / G. Pesole, C. Gissi, A. De Chirico, C. Saccone // Journal of Molecular Evolution. – 1999. – V. 48. – N_{0} 4. – P. 427–434.

236. Phillips, J. D. Incomplete estimates of genetic diversity within species: Implications for DNA barcoding / J. D. Phillips, D. J. Gillis, R. H. Hanner // Ecology and evolution. – 2018. [Электронный ресурс]. Режим доступа https://doi.org/10.1002/ece3.4757 (дата обращения 01.12.2021).

237. Pohjoismäki, J. L. O. DNA Barcodes for the northern European Tachinid flies (Diptera: Tachinidae) / J. L. O. Pohjoismäki, J. Kahanpää, M. Mutanen // PLoS ONE. – 2016. – V. 11. – № 11. – P. 1–23.

238. Pook, C. E. Mitochondrial DNA sequences from dried snake venom: a DNA barcoding approach to the identification of venom samples / C. E. Pook,
R. McEwing // Toxicon. - 2005. - V. 46. - P. 711-715.

239. Praz, C. Hidden diversity in European bees: Andrena amieti sp. n., a new Alpine bee species related to Andrena bicolor (Fabricius, 1775) (Hymenoptera, Apoidea, Andrenidae) / C. Praz, A. Müller, D. Genoud // Alpine Entomology. – 2019. – N_{2} 3. – P. 11–38.

240. Ratnasingham, S. A DNA-based registry for all animal species: The Barcode Index Number (BIN) System / S. Ratnasingham, P. D. N. Hebert // PLoS ONE. -2013. -V. 8. -N 8. -P. 1–16.

241. Ratnasingham, S. BOLD: The Barcode of Life Data System (www.barcodinglife.org) / S. Ratnasingham, P. D. N. Hebert // Ecology Notes. – 2007. – V. 7. – P. 355–364.

242. Raupach, M. J. A DNA barcode library for ground beetles of Germany: the genus *Amara* Bonelli, 1810 (Insecta, Coleoptera, Carabidae) / M. J. Raupach, K. Hannig, J. Morinière, L. Hendrich // ZooKeys. – 2018. – 759. – P. 57–80.

243. Razov, J. The application of sex pheromone traps for recording the Procridinae fauna (Lepidoptera: Zygaenidae) in Croatia / J. Razov, K. A. Efetov, K. Franin, T. B. Toshova, [et al.] // Entomologist's Gazette. – 2017. – V. 68. – P. 48–53.

244. Regier, J. C. A Large–Scale, Higher–Level, Molecular Phylogenetic Study of the Insect Order Lepidoptera (Moths and Butterflies) / J. C. Regier, C. Mitter, A. Zwick, A. Bazinet, [et al.] // PLoS ONE. – 2013. – V. 7. – N_{2} 5. – P. 1–11.

245. Reinhold, K. Energetically costly behaviour and the evolution of resting metabolic rate in insects / K. Reinhold // Functional Ecology. – 1999. – 13. – P. 217–224.

246. Reiss, H. Versuch der Darstellung von Entwicklungsreihen bei der Gattung *Zygaena* F. (Lep.). Zeitschrift der Wiener Entomologischen Gesellschaft. – 1958. – 43. – P. 140–147, 155–163, 181–183.

247. Remigio, E. A. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships / E. A. Remigio, P. D. N. Hebert // Molecular Phylogenetics and Evolution. -2003. -29. - P. 641-647.

248. Rota, J. The importance of long-distance dispersal and establishment events in small insects: historical biogeography of metalmark moths (Lepidoptera, Choreutidae) / J. Rota, C. Peña, S. E. Miller // Journal of Biogeography. – 2016. – V. 43. – N_{2} 6. – P. 1254–1265.

249. Rubinoff, D. Utility of mitochondrial DNA barcodes in species conservation / D. Rubinoff // Conservation Biology. – 2006. – 20. – P. 1026–1033.

250. Saitou, N. The neighbor-joining method: a new method for reconstructing phylogenetic tree / N. Saitou, M. Nei // Molecular Biology and Evolution. -1987. - V. 4. - N 4. - P. 406-425.

251. Savolainen, V. Towards writing the encyclopedia of life: an introduction to DNA barcoding / V. Savolainen, R. S. Cowan, A. P. Vogler, G. K. Roderick, R. Lane // Philosophical Transaction Royal Society. Series B: Biological Sciences. – 2005. – V. 360. – 1805–1811.

252. Schindel, D. E. DNA barcoding a useful tool for taxonomists /
D. E. Schindel, S. E. Miller // Nature. - 2005. - 435. - P. 17.

253. Schlötterer, C. Comparative evolutionary analysis of rDNA ITS regions in *Drosophila* / C. Schlötterer, M. T. Hauser, A. von Haeseler, D. Tautz // Molecular biology and evolution. – 1994. – V. 11. – N_{2} 3. – P. 513–522.

254. Schlötterer, C. Chromosomal homogeneity of *Drosophila* ribosomal
DNA arrays suggests intrachromosomal exchanges drive concerted evolution /
C. Schlötterer, D. Tautz // Current Biology. – 1994. – V. 4. – № 9. – P. 777–783.

255. Schmitt, T. Influence of forest and grassland management on the diversity and conservation of butterflies and burnet moths (Lepidoptera, Papilionoidea, Hesperiidae, Zygaenidae) / T. Schmitt // Animal Biodiversity and Conservation. $-2003. - V. 26. - N_{\odot} 2. - P. 51-67.$

256. Scotland, R. The Big Machine and the much-maligned taxonomist / R. Scotland, C. Hughes, D. Bailey, [et al.] // Systematics and Biodiversity. – 2003. – 1. – P. 139–143.

257. Sharma, V. The role of the K-channel and the active-site tyrosine in the catalytic mechanism of cytochrome c oxidase / V. Sharma, M. Wikstrom // Biochimica et Biophysica Acta – Bioenergetics. – 2016. – V. 1857. – N_{2} 8. – P. 1111–1115.

258. Shashank, P. R. Molecular characterization of brinjal shoot and fruit borer, *Leucinodes orbonalis* (Guenée) (Lepidoptera: Crambidae) based on mitochondrial marker cytochrome oxidase I and their phylogenetic relationship / P. R. Shashank, R. Ojha, T. Venkatesan, [et al.] // Indian journal of experimental biology. $-2015. - V. 53. - N_{2} 1. - P. 51-55.$

259. Simmons, R. B. Utility and evolution of cytochrome b in insects / R. B. Simmons, S. Weller // Molecular Phylogenetics and Evolution. $-2001. - N_{2} 20. - P. 196-210.$

260. Smith, M. A. Extraordinary diversity of parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology and collections / M. A. Smith, J. J. Rodriguez, J. B. Whitfield, A. R. Deans, [et al.] // Proceedings of the National Academy of Sciences, USA. $-2008. - V. 105. - N_{2} 12. - P. 359-364.$

261. Smith, M. A. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar / M. A. Smith, B. L. Fisher, P. D. N. Hebert // Philosophical Transaction Royal Society. Series B: Biological Sciences. - 2005. - 360. - P. 1825–1834.

262. Smith, M. A. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists / M. A. Smith, D. M. Wood, D. H. Janzen, W. Hallwachs, P. D. N. Hebert // Proceedings of the National Academy of Sciences, USA. – 2007. – 104. – P. 4967–4972.

263. Smith, M. A. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae) /

M. A. Smith, N. E. Woodley, D. H. Janzen, [et al.] // Proceedings of the National Academy of Science of the United States of America. – 2006. – 103. – P. 3657–3662.

264. Smith, M. A. *Wolbachia* and DNA barcoding insects: patterns, potential, and problems / M.A. Smith, C. Bertrand, K. Crosby, E. S. Eveleigh, [et al.] // PLoS ONE. $-2012. - V. 7. - N_{2}5. - P. 1-12.$

265. Souza, H. V. Analysis of the mitochondrial COI gene and its informative potential for evolutionary inferences in the families Coreidae and Pentatomidae (Heteroptera) / H. V. Souza, S. R. Marchesin, M. M. Itoyama // Genetics and Molecular Research. – 2016. – V. 15. – № 1. [Электронный ресурс]. Режим доступа doi: 0.4238/gmr.15017428 (дата обращения 01.12.2021).

266. Stein, E. D. Is DNA barcoding actually cheaper and faster than traditional morphological methods: results from a survey of freshwater bioassessment efforts in the United States? / E. D. Stein, M. C. Martinez, S. Stiles, [et al.] // PLoS ONE. $-2014. - V. 9. - N_{\odot} 4. - P. 1-10.$

267. Stoeckle, M. Y. DNA barcoding works in practice but not in (neutral) theory / M. Y. Stoeckle, D. S. Thaler // PLoS ONE. $-2014. - V. 9. - N_{\odot} 7. - P. 1-7.$

268. Strüder-Kypke, M. C. Comparative analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker / M. C. Strüder-Kypke, D. H. Lynn // Systematics and Biodiversity. – 2010. – 8. – P. 131–148.

269. Subchev, M. New sex attractants for species of the zygaenid subfamily
Procridinae (Lepidoptera: Zygaenidae) / M. Subchev, K. A. Efetov, T. Toshova,
E. V. Parshkova // Entomologia Generalis (Stuttgart). – 2010. – 32. – P. 243–250.

270. Subchev, M. Sex pheromone of female vine bud moth, *Theresimima ampellophaga* comprises (2S)-butyl (7Z)-tetradecenoate / M. Subchev, A. Harizanov, W. Francke, [et al.] // Journal of Chemical Ecology. – 1998. – V. 24. – № 7. – P. 1141–1151; Journal of Chemical Ecology. – 1999. – V. 25. – № 5. – P. 1203: erratum, i.e. corrected to (2R)-butyl (7Z)-tetradecenoate.

271. Subchev, M. (2R)-butyl (7Z)-dodecenoate, a main sex pheromone component of *Illiberis (Primilliberis) pruni* Dyar (Lepidoptera: Zygaenidae:

Procridinae)? / M. Subchev, C. Koshio, T. Toshova, [et al.] // Acta Zoologica Bulgarica. $-2013. - V. 65. - N_{2} 3. - P. 391-396.$

272. Subchev, M. A. *Illiberis (Primilliberis) rotundata* Jordan (Lepidoptera: Zygaenidae: Procridinae) male sex attractant: Optimization and use for seasonal monitoring / M. A. Subchev, C. Koshio, T. B. Toshova, K. A. Efetov // Entomological Science. – 2012. –№ 15. – P. 137–139.

273. Summerbell, R. C. Microcoding: the second step in DNA barcoding / R. C. Summerbell, C. A. Levesque , K. A. Seifert, [et al.] // Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. – 2005. – 360. – P. 1897–1903.

274. Tamura, K. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees / K. Tamura, M. Nei // Molecular biology and evolution. – 1993. – V. 10. – N_{2} 3. – P. 512–526.

275. Tamura, K. MEGA 6: Molecular Evolutionary Genetics Analysis version 6.0. / K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar // Molecular biology and evolution. – 2013. – V. 30. – № 12. – P. 2725–2729.

276. Tamura, K. Prospects for inferring very large phylogenies by using the neighbor-joining method / K. Tamura, M. Nei, S. Kumar // Proceedings of the National Academy of Science of the United States of America. -2004. -101. - P. 11030-11035.

277. Tarmann, G. M. A preliminary review of the classification of the zygaenid subfamily Procridinae (Lepidoptera) / G. M. Tarmann // Nota Lepidopterologica. – 1994. – Suppl. 5. – P. 115–123.

278. Tarmann, G. M. Die Vinschger Trockenrasen – ein Zustandsbericht auf Basis der Bioindikatoren Tagfalter und Widderchen (Lepidoptera: Rhopalocera, Zygaenidae) / G. M. Tarmann // Wissenschaftliches Jahrbuch der Tiroler Landesmuseen. – 2009. – 2. – P. 306–350.

279. Tarmann, G. M. Two new species of Chalcosiinae from South East Asia (Lepidoptera: Zygaenidae) / G. M. Tarmann // Nachrichten des Entomologischen Vereins Apollo, N. F. – 2012. – V. 32. – N_{2} 3/4. – P. 125–129.

280. Tarmann, G. M. Zygaenid moths of Australia: A revision of the Australian Zygaenidae (Procridinae: Artonini) / G. M. Tarmann. – Collingwood: Csiro publishing, 2004. – 248 p.

281. Tarmann, G. M. Zygaenidae as pest species / G. M. Tarmann // K. A. Efetov, G. M. Tarmann, W. G. Tremewan (Eds). Proceedings of the 7th International Symposium on Zygaenidae (Lepidoptera) (Innsbruck, Austria, September 2000). – Simferopol: CSMU Press, 2003. – P. 151–229.

282. Tautz, D. DNA points the way ahead in taxonomy—in assessing new approaches, it's time for DNA's unique contribution to take a central role / D. Tautz, P. Arctander, A. Minelli, , [et al.] // Nature. – 2002. – 418. – P. 479.

283. Tenaillon, M. I. Apparent mutational hotspots and long distance linkage disequilibrium resulting from a bottleneck / M. I.Tenaillon, F. Austerlitz, O. Tenaillon // Journal of Evolutionary Biology. – 2008. – 21. – № 2. – P. 541–550.

284. Thompson, J. D. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice / J. D, Thompson, D. G. Higgins, T. J. Gibson // Nucleic Acids Research. -1994. -22. -P.4673-4680.

285. Timmermans, M. J. T. N. Rapid assembly of taxonomically validated mitochondrial genomes from historical insect / M. J. T. N. Timmermans, C. Viberg, G. Martin, K. Hopkins, A. P. Vogler // Biological Journal of the Linnean Society. – 2016. – 117. – P. 83–95.

286. Trewick, S. A. Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora) / S. A. Trewick // Molecular Ecology. – 2000. – 9. – P. 269–282.

287. Tsukihara, T. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å / T. Tsukihara, E. Yamashita, T. Tomizaki, [et al.] // Science. – 1996. – 272. – P. 1136–1144.

288. Van de Peer, Y. Database on the structure of small ribosomal subunit RNA / Y. Van de Peer, J. Jansen, P. De Rijk, R. De Wachter // Nucleic Acids Research. – 1997. – 25. – P. 111–116.

289. Van Velzen, R. DNA barcoding reveals hidden species diversity in Cymothoe (Nymphalidae) / R. van Velzen, F. T. Bakker, J. J. A. van Loon // Proceedings of the Netherlands Entomological Society. – 2007. – 18. – P. 95–103.

290. Vernooy, R. Barcoding life to conserve biological diversity: beyond the taxonomic imperative / R. Vernooy, E. Haribabu, M. R. Muller, [et al.] // PLoS Biology. $-2010. - V.8. - N_{2} 7. - P. 1-5.$

291. Vila, M. Testing biennialism in the butterfly *Erebia palarica* (Nymphalidae: Satyrinae) by mtDNA sequencing / M. Vila, M. Björklund // Insect Molecular Biology. $-2004. - V. 13. - N_{2} 2. - P. 213-217.$

292. Wahlberg, N. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera / N. Wahlberg, C. W. Wheat // Systematic Biology. – 2008. – 57. – P. 231–242.

293. Wang, H. Molecular phylogeny of Lymantriinae (Lepidoptera, Noctuoidea, Erebidae) inferred from eight gene regions / H. Wang, N. Wahlberg, J. D. Holloway, J. Bergsten // Cladistics. – 2015. – V. 31. – № 6. – P. 579–592.

294. Waugh, J. DNA barcoding in animal species: progress, potential and pitfalls / J. Waugh // Bioessays. – 2007. – 29. – P. 188–197.

295. Whitworth, T. L. DNA barcoding cannot reliably identify species of the blowfly genus *Protocalliphora* (Diptera: Calliphoridae) / T. L. Whitworth, R. D. Dawson, H. Magalon, E. Baudry // Proceedings of the Royal Society of London. Series B: Biological Sciences. – 2007. – 274. – P. 1731–1739.

296. Wiemers, M. Does the DNA barcoding gap exist? A case study in blue butterflies (Lepidoptera: Lycaenidae) / M. Wiemers, K. Fiedler // Frontiers in Zoology. – 2007. [Электронный ресурс]. https://www.ncbi.nlm.nih.gov/pmc/articles/

РМС1838910/ (дата обращения 01.12.2021).

297. Williams, S. T. Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp *Alpheus* / S. T. Williams, N. Knowlton // Molecular Biology and Evolution. – 2001. –V. 18. – P. 1484–1493.

298. Witt, J. D. S. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation / J. D. S. Witt, D. L. Threloff, P. D. N. Hebert // Molecular Ecology. $-2006. - V.15. - N \ge 10. - P. 3073-3082.$

299. Woodruff, D. S. Declines of biomes and biotas and the future of evolution / D. S. Woodruff // Proceedings of the National Academy of Science of the United States of America. $-2001. - V. 98. - N_{2} 10. - P. 5471-5476.$

300. Wu, M. Phylogenomics of the Reproductive Parasite *Wolbachia pipientis* wMel: A Streamlined Genome Overrun by Mobile Genetic Elements / M. Wu, L. V. Sun, J. Vamathevan, M. Riegler, [et al.] // PLoS Biology. $-2004. - V. 2. - N_{\odot} 3. - P. 0327-0341.$

301. Wuyts, J. The European ribosomal RNA database / J. Wuyts, G. Parriére,
Y. Van de Peer // Nucleic Acids Research. - 2004. - 32. - P. 101-103.

302. Young, M. R. Patterns of protein evolution in cytochrome c oxidase 1 (COI) from the class Arachnida / M. R. Young, P. D. N. Hebert // PLoS ONE. – 2015. – V. 10. – N_{2} 8. – P. 1–15.

303. Zagrobelny, M. 454 pyrosequencing based transcriptome analysis of *Zygaena filipendulae* with focus on genes involved in biosynthesis of cyanogenic glucosides / M. Zagrobelny, K. Scheibye-Alsing, N. B. Jensen, [et al.] // BMC Genomics. -2009. - V. 10. - P. 1- 15.

304. Zagrobelny, M. Cyanogenesis in plants and arthropods // M. Zagrobelny,
S. Bak, B. L. Moller // Phytochemistry. – 2008. – V. 69. – P. 1457–1468.

305. Zagrobelny, M. Evolution of the Biosynthetic Pathway for Cyanogenic Glucosides in Lepidoptera / M. Zagrobelny, M. K. Jensen, H. Vogel, R. Feyereisen, S. Bak // Journal of Molecular Evolution. – 2018. – V. 86. – № 6. – P. 379–394.

306. Zagrobelny, M. Male-to-female transfer of 5-hydroxytryptophan glucoside during mating in *Zygaena filipendulae* (Lepidoptera) / M. Zagrobelny, M. S. Motawia, C. E. Olsen, [et al.] // Insect Biochemistry and Molecular Biology. – 2013. – 43. – P. 1037 –1044.

307. Zagrobelny, M. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore / M. Zagrobelny, C. E. Olsen, S. Pentzold, J. Fürstenberg-Hägg, [et al.] // Insect Biochemistry and Molecular Biology. – 2014. – 44. – P. 44–53.

308. Zagrobelny, M. Volatiles from the burnet moth *Zygaena filipendulae* (Lepidoptera) and associated flowers, and their involvement in mating communication / M. Zagrobelny, H. T. Simonsen, C. E. Olsen, S. Bak, B. L. Moller // Physiological Entomology. $-2015. - V. 40. - N_{\odot} 4. - P. 284-295.$

309. Zahiri, R. A transcontinental challenge — a test of DNA barcode performance for 1,541 species of Canadian Noctuoidea (Lepidoptera) / R. Zahiri, J. D. Lafontaine, B. C. Schmidt, J. R. deWaard, [et al.] // PLoS ONE. – 2014. – V. 9. – N_{2} 3. – P. 1–12.

310. Zahiri, R. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea) / R. Zahiri, J. D. Holloway, I. J. Kitching, J. D. Lafontaine, [et al.] // Systematic Entomology. $-2011. - V. 37. - N \ge 1. - P. 102-124.$

СПИСОК ИЛЛЮСТРАТИВНОГО МАТЕРИАЛА

Таблицы

Таблица 1. Список экземпляров, использованных для секвенирования ядерных генов EF-1α, GAPDH, IDH, MDH, RpS5 и wingless. Стр. 44.

Таблица 2. Список праймеров, использованных для ПЦР 5'-участка митохондриального гена СОІ. Стр. 48.

Таблица 3. Состав реакционной смеси для ПЦР, проведенной в центре ДНК-штрихкодирования (Гуэлф, Канада). Стр. 49.

Таблица 4. Состав реакционной смеси для ПЦР, проведенной с помощью набора МастерМИКС^{CFE} фирмы DIALAT Ltd (Россия) в Институте проблем экологии и эволюции им. А. Н. Северцова РАН (Москва, Россия). Стр. 50.

Таблица 5. Состав реакционной смеси для ПЦР, проведенной с помощью набора фирмы Синтол (Москва, Россия), в лаборатории биотехнологии кафедры биохимии Медицинской академии им. С. И. Георгиевского (Симферополь, Россия). Стр. 50.

Таблица 6. Список праймеров, использованных для секвенирования ядерных генов. Стр. 52.

Таблица 7. Суммарная статистика частоты встречаемости нуклеотидов (с указанием % GC в каждой позиции триплета) для исследованных ДНКштрихкодов представителей семейства Zygaenidae. Стр. 60.

Таблица 8. Диагностические позиции, детектированные при исследовании ДНК-штрихкодов представителей семейства Zygaenidae на родовом уровне. Стр. 60.

Таблица 9. Относительное использование синонимичных триплетов (ОИСТ) для исследованных ДНК-штрихкодов представителей семейства Zygaenidae. Все частоты являются средними по всем таксонам. Стр. 62.

Таблица 10. Виды Zygaenidae, описанные с применением данных ДНКштрихкодирования, полученных в рамках проекта ZYGMO. Стр. 65. Таблица 11. Суммарная статистика распределения частоты встречаемости нуклеотидов в последовательностях экземпляров рода *Illiberis*. Стр. 66.

Таблица 12. Характеристика диагностических позиций в последовательностях, полученных для экземпляров рода *Illiberis*. Стр. 67.

Таблица 13. Оценка нуклеотидного замещения методом максимального правдоподобия для экземпляров рода *Illiberis*. Стр. 68.

Таблица 14. Характеристика диагностических позиций в последовательностях, полученных для экземпляров рода *Rhagades*. Стр. 71.

Таблица 15. Суммарная статистика распределения частоты встречаемости нуклеотидов в последовательностях экземпляров рода *Rhagades*. Стр. 71.

Таблица 16. Оценка нуклеотидного замещения методом максимального правдоподобия для последовательностей экземпляров рода *Rhagades*. Стр. 74.

Таблица 17. Характеристика диагностических позиций в последовательностях, полученных для экземпляров рода *Zygaenoprocris*. Стр. 76.

Таблица 18. Оценка нуклеотидного замещения методом максимального правдоподобия в последовательностях, полученных для экземпляров рода *Zygaenoprocris*. Стр. 77.

Таблица 19. Суммарная статистика распределения частоты встречаемости нуклеотидов в последовательностях экземпляров рода *Zygaenoprocris*. Стр. 78.

Таблица 20. Оценка нуклеотидного замещения методом максимального правдоподобия в последовательностях ДНК-штрихкода для экземпляров из рода *Adscita*. Стр. 81.

Таблица 21. Суммарная статистика частоты встречаемости нуклеотидов в последовательностях ДНК-штрихкода для экземпляров из рода *Adscita*. Стр. 82.

Таблица 22. Количество диагностических/частично-диагностических признаков в последовательностях СОІ, полученных для экземпляров из рода *Adscita*. Стр. 83.

Таблица 23. Суммарная статистика частоты встречаемости нуклеотидов в последовательностях, полученных для рода *Jordanita*. Стр. 87.

Таблица 24. Оценка нуклеотидного замещения методом максимального правдоподобия в последовательностях, полученных для рода *Jordanita*. Стр. 88.

Таблица 25. Характеристика диагностических позиций в последовательностях, полученных для экземпляров рода *Jordanita*. Стр. 89.

Таблица 26. Суммарная статистика частоты встречаемости нуклеотидов в последовательностях, полученных для рода *Zygaena*. Стр. 92.

Таблица 27. Характеристика диагностических позиций в последовательностях, полученных для экземпляров рода *Zygaena*. Стр. 93.

Таблица 28. Оценка нуклеотидного замещения методом максимального правдоподобия в последовательностях, полученных для экземпляров рода *Zygaena*. Стр. 95.

Таблица 29. Вариабельные аминокислотные позиции, детектированные для представителей рода *Illiberis* в последовательностях участка молекулы СОІ длиной 219 аминокислот. Стр. 101.

Таблица 30. Позиции вариабельности аминокислот, детектированные для представителей рода *Rhagades*. Стр. 102.

Таблица 31. Позиции вариабельности аминокислот, детектированные для представителей рода *Zygaenoprocris*. Стр. 104.

Таблица 32. Позиции вариабельности аминокислот, детектированные для представителей рода *Adscita*. Стр. 107.

Таблица 33. Позиции вариабельности аминокислот, детектированные для представителей рода *Jordanita*. Стр. 109.

Таблица 34. Позиции вариабельности аминокислот, детектированные для представителей рода *Zygaena* с помощью программы BioEdit. Стр. 113.

Рисунки

Рисунок 1. Электрофорезы ампликонов ДНК-штрихкода. Стр. 51.

Рисунок 2. Количество и характеристики BIN, полученных для исследованных ДНК-штрихкодов представителей семейства Zygaenidae.

Стр. 59.

Рисунок 3. Основанный на кодонах тест нейтральности для анализа между последовательностями представителей рода *Illiberis*. Стр. 69.

Рисунок 4. Вариабельные позиции, детектированные в 17 последовательностях СОІ для экземпляров семи видов рода *Illiberis*. Стр. 70.

Рисунок 5. Вариабельные позиции, детектированные в 14 последовательностях СОІ для экземпляров трех видов рода *Rhagades*. Стр. 73.

Рисунок 6. Основанный на кодонах Z-тест нейтральности для анализа между последовательностями, полученными для представителей рода *Rhagades*. Стр. 74.

Рисунок 7. Степень энтропии для последовательностей 5'-концевого фрагмента митохондриального гена I субъединицы цитохромоксидазы для представителей рода *Zygaenoprocris* (использованы 55 последовательностей длиной 650 п.н. и более, с выравниванием MUSCLE). Стр. 79.

Рисунок 8. Степень энтропии для последовательностей 5'-концевого фрагмента митохондриального гена I субъединицы цитохромоксидазы для представителей рода *Adscita* (использована 171 последовательность длиной 650 п.н. и более). Стр. 84.

Рисунок 9. Географическое распространение *Jordanita* (*Solaniterna*) *subsolana* (Staudinger, 1862). Две группы популяций по результатам ДНК-штрихкодирования. Стр. 90.

Рисунок 10. Вариабельные позиции, детектированные в 158 последовательностях СОІ для экземпляров видов рода *Jordanita*. Стр. 91.

Рисунок 11. Вариабельные позиции, детектированные в 207 последовательностях СОІ для экземпляров видов рода *Zygaena*. Стр. 96.

158

приложения

Приложение А.

Таблица А.1 – Список экземпляров, использованных в исследовании

Вид	BOLD process ID номер	пол	Географический регион находок	номер доступа в GenBank
Acoloithus n sp. 1	ZYGM0769-13	Женский	Мексика	MK930536
Acoloithus novaricus	ZYGM0764-13	Мужской	США	MK930535
Acoloithus novaricus	ZYGM0763-13	Мужской	США	MK930534
Acoloithus rectarius	ZYGM0767-13	Женский	США	MK930539
Acoloithus rectarius	ZYGM0766-13	Женский	США	MK930538
Acoloithus rectarius	ZYGM0765-13	Мужской	США	MK930537
Acoloithus totusniger	ZYGM0768-13	Мужской	Коста Рика	MK930540
Adscita albanica	ZYGM0093-09	Женский	Крым	GU705648
Adscita albanica	ZYGM0092-09	Мужской	Крым	GU705651
Adscita alpina	ZYGMO238-10	Мужской	Италия	HQ584931
Adscita alpina	ZYGMO237-10	Мужской	Италия	HQ584930
Adscita alpina	ZYGMO441-10	Мужской	Италия	HQ987581
Adscita alpina x Adscita statices (hybrid)	ZYGMO442-10	Мужской	Италия	HQ987582
Adscita amaura	ZYGMO1005-14	Мужской	Узбекистан	MK930544
Adscita amaura	ZYGMO1003-14	Женский	Узбекистан	MK930543
Adscita amaura	ZYGMO1002-14	Женский	Таджикистан	MK930541
Adscita amaura	ZYGMO1001-14	Мужской	Таджикистан	MK930542
Adscita bolivari	ZYGMO100-09	Женский	Испания	GU705771
Adscita bolivari	ZYGM0096-09	Мужской	Испания	HM386566
Adscita bolivari	ZYGMO097-09	Мужской	Испания	HM386567
Adscita bolivari	ZYGM0098-09	Мужской	Испания	GU705773
Adscita bolivari	ZYGM0099-09	Женский	Испания	GU705774
Adscita capitalis	ZYGM0085-09	Женский	Турция	GU705657
Adscita capitalis	ZYGM0082-09	Мужской	Турция	GU705659

Adscita capitalis	ZYGM0081-09	Мужской Турция	GU705658
Adscita capitalis	ZYGM0084-09	Женский Турция	GU705786
Adscita capitalis	ZYGM0083-09	Мужской Турция	GU705656
Adscita dujardini	ZYGMO1179-15	Мужской Италия	MK930553
Adscita dujardini	ZYGMO1178-15	Мужской Италия	MK930555
Adscita dujardini	ZYGMO1177-15	Мужской Италия	MK930548
Adscita dujardini	ZYGMO665-13	Мужской Италия	MK930547
Adscita dujardini	ZYGMO977-14	Мужской Италия	MK930549
Adscita dujardini	ZYGMO976-14	Мужской Италия	MK930545
Adscita dujardini	ZYGMO975-14	Мужской Италия	MK930546
Adscita dujardini	ZYGMO978-14	Мужской France	MK930550
Adscita dujardini	ZYGMO979-14	Мужской Италия	MK930551
Adscita dujardini	ZYGMO664-13	Мужской Италия	MK930554
Adscita dujardini	ZYGMO980-14	Мужской Италия	MK930552
Adscita geryon	ZYGMO086-09	Мужской Испания	GU705787
Adscita geryon	ZYGMO087-09	Мужской Крым	GU705654
Adscita geryon	ZYGMO088-09	Мужской Крым	GU705655
Adscita geryon	ZYGMO089-09	Мужской Крым	GU705652
Adscita geryon	ZYGMO090-09	Мужской Крым	GU705653
Adscita geryon	ZYGM0091-09	Мужской Крым	GU705650
Adscita geryon	ZYGMO1000-14	Мужской Австрия	MK930556
Adscita geryon	ZYGMO1117-14	Женский Македония	MK930569
Adscita geryon	ZYGMO249-10	Мужской Франция	HQ584942
Adscita geryon	ZYGMO250-10	Мужской Франция	HQ584943
Adscita geryon	ZYGMO251-10	Женский Франция	HQ584944
Adscita geryon	ZYGMO252-10	Мужской Австрия	HQ584945
Adscita geryon	ZYGMO253-10	Мужской Австрия	HQ584946
Adscita geryon	ZYGMO254-10	Мужской Австрия	HQ584947
Adscita geryon	ZYGMO255-10	Мужской Австрия	HQ584948
Adscita geryon	ZYGMO256-10	Мужской Италия	HQ584949
Adscita geryon	ZYGMO257-10	Женский Италия	HQ584950
Adscita geryon	ZYGMO258-10	Мужской Австрия	HQ584951
Adscita geryon	ZYGMO259-10	Мужской Австрия	HQ584952
Adscita geryon	ZYGMO260-10	Женский Австрия	HQ584953
Adscita geryon	ZYGMO261-10	Мужской Австрия	HQ584954
Adscita geryon	ZYGMO262-10	Мужской Италия	HQ584955

Adscita geryon	ZYGMO263-10	Мужской Италия	KX048671
Adscita geryon	ZYGMO264-10	Женский Италия	HQ584956
Adscita geryon	ZYGMO265-10	Женский Италия	HQ584957
Adscita geryon	ZYGMO266-10	Мужской Македония	HQ584958
Adscita geryon	ZYGMO267-10	Мужской Македония	HQ584959
Adscita geryon	ZYGMO268-10	Мужской Македония	HQ584960
Adscita geryon	ZYGMO269-10	Мужской Македония	HQ584961
Adscita geryon	ZYGMO448-10	Мужской Италия	HQ987588
Adscita geryon	ZYGMO449-10	Мужской Македония	HQ987589
Adscita geryon	ZYGMO450-10	Женский Македония	HQ987590
Adscita geryon	ZYGMO451-10	Женский Македония	HQ987591
Adscita geryon	ZYGMO982-14	Мужской Турция	MK930568
Adscita geryon	ZYGMO986-14	Мужской Италия	MK930567
Adscita geryon	ZYGMO989-14	Мужской Швейцария	MK930565
Adscita geryon	ZYGMO991-14	Мужской Сербия	MK930564
Adscita geryon	ZYGMO994-14	Мужской Австрия	MK930561
Adscita geryon	ZYGMO995-14	Мужской Австрия	MK930560
Adscita geryon	ZYGMO997-14	Мужской Италия	MK930559
Adscita geryon	ZYGMO998-14	Мужской Италия	MK930558
Adscita geryon	ZYGMO999-14	Мужской Австрия	MK930557
Adscita italica	ZYGMO1182-15	Женский Италия	MK930571
Adscita italica	ZYGMO1180-15	Мужской Италия	MK930572
Adscita italica	ZYGMO1181-15	Мужской Италия	MK930570
Adscita italica	ZYGMO240-10	Мужской Италия	HQ584933
Adscita italica	ZYGMO239-10	Мужской Италия	HQ584932
Adscita italica	ZYGMO1171-15	Мужской Италия	MK930573
Adscita italica	ZYGMO447-10	Женский Турция	HQ987587
Adscita italica	ZYGM0072-09	Женский Турция	GU705783
Adscita italica	ZYGMO070-09	Мужской Турция	GU705782
Adscita italica	ZYGMO071-09	Мужской Турция	GU705664
Adscita jordani	ZYGM0063-09	Женский Испания	GU705670
Adscita jordani	ZYGM0062-09	Женский Испания	GU705669
Adscita jordani	ZYGMO061-09	Мужской Испания	GU705672
Adscita jordani	ZYGMO060-09	Мужской Испания	GU705671
Adscita jordani	ZYGMO059-09	Мужской Испания	GU705673
Adscita mannii	ZYGM01173-15	Женский Италия	MK930602

Adscita mannii	ZYGM01172-15	Мужской	Итапия	MK930601
Adscita mannii	ZYGM01143-14	Мужской	Грения	MK930577
Adscita mannii	ZYGM01139-14	Женский	Грения	MK930578
Adscita mannii	ZYGM01137-14	Мужской	Грения	MK930605
Adscita mannii	ZYGM01119-14	Мужской	Албания	MK930580
Adscita mannii	ZYGM01118-14	Мужской	Албания	MK930579
Adscita mannii	ZYGMO445-10	Мужской	Макелония	HO987585
Adscita mannii	ZYGMO452-10	Мужской	Макелония	HO987592
Adscita mannii	ZYGMO277-10	Мужской	Македония	HQ584969
Adscita mannii	ZYGMO278-10	Мужской	Македония	HO584970
Adscita mannii	ZYGMO279-10	Мужской	Македония	HQ584971
Adscita mannii	ZYGMO280-10	Мужской	Македония	HQ584972
Adscita mannii	ZYGMO1128-14	Мужской	Греция	MK930583
Adscita mannii	ZYGM01124-14	Мужской	Греция	MK930581
Adscita mannii	ZYGMO1125-14	Мужской	Греция	MK930582
Adscita mannii	ZYGMO1010-14	Мужской	Италия	MK930596
Adscita mannii	ZYGM0094-09	Мужской	Франция	GU705649
Adscita mannii	ZYGMO1019-14	Мужской	Италия	MK930587
Adscita mannii	ZYGMO1014-14	Женский	Италия	MK930592
Adscita mannii	ZYGMO1018-14	Мужской	Италия	MK930588
Adscita mannii	ZYGMO1016-14	Мужской	Италия	MK930590
Adscita mannii	ZYGMO1020-14	Мужской	Италия	MK930586
Adscita mannii	ZYGMO1009-14	Мужской	Италия	MK930597
Adscita mannii	ZYGMO987-14	Женский	Италия	MK930606
Adscita mannii	ZYGMO1011-14	Женский	Италия	MK930595
Adscita mannii	ZYGMO1012-14	Мужской	Италия	MK930594
Adscita mannii	ZYGMO1007-14	Мужской	Италия	MK930599
Adscita mannii	ZYGMO1185-15	Мужской	Италия	MK930576
Adscita mannii	ZYGMO1184-15	Мужской	Италия	MK930575
Adscita mannii	ZYGMO1183-15	Мужской	Италия	MK930574
Adscita mannii	ZYGMO1132-14	Мужской	Болгария	MK930604
Adscita mannii	ZYGM01131-14	Мужской	Болгария	MK930603
Adscita mannii	ZYGMO1130-14	Мужской	Греция	MK930585
Adscita mannii	ZYGMO1129-14	Мужской	Греция	MK930584
Adscita mannii	ZYGM0095-09	Мужской	Франция	GU705647
Adscita mannii	ZYGMO1015-14	Мужской	Италия	MK930591

Adscita mannii	ZYGMO1013-14	Мужской	Италия	MK930593
Adscita mannii	ZYGMO1017-14	Мужской	Италия	MK930589
Adscita mannii	ZYGMO1006-14	Мужской	Италия	MK930600
Adscita mannii	ZYGMO1008-14	Мужской	Италия	MK930598
Adscita mauretanica	ZYGMO248-10	Мужской	Марокко	HQ584941
Adscita mauretanica	ZYGMO247-10	Мужской	Марокко	HQ584940
Adscita mauretanica	ZYGMO207-10	Женский	Марокко	HQ584913
Adscita mauretanica	ZYGMO206-10	Женский	Марокко	HQ584912
Adscita mauretanica	ZYGMO205-10	Женский	Марокко	HQ584911
Adscita mauretanica	ZYGMO078-09	Мужской	Марокко	GU705784
Adscita mauretanica	ZYGMO077-09	Женский	Марокко	GU705660
Adscita mauretanica	ZYGMO076-09	Женский	Марокко	GU705662
Adscita mauretanica	ZYGMO208-10	Женский	Марокко	MK930607
Adscita mauretanica	ZYGM0079-09	Женский	Марокко	GU705785
Adscita obscura	ZYGM0080-09	Мужской	Турция	HM417802
Adscita obscura	ZYGMO1120-14	Мужской	Греция	MK930613
Adscita obscura	ZYGMO1121-14	Мужской	Греция	MK930614
Adscita obscura	ZYGMO1122-14	Женский	Греция	MK930615
Adscita obscura	ZYGMO1135-14	Мужской	Болгария	MK930610
Adscita obscura	ZYGMO1196-15	Мужской	Иран	MK930611
Adscita obscura	ZYGMO1197-15	Мужской	Иран	MK930612
Adscita obscura	ZYGMO270-10	Мужской	Турция	HQ584962
Adscita obscura	ZYGMO271-10	Женский	Турция	HQ584963
Adscita obscura	ZYGMO272-10	Мужской	Турция	HQ584964
Adscita obscura	ZYGMO273-10	Мужской	Турция	HQ584965
Adscita obscura	ZYGMO274-10	Мужской	Иран	HQ584966
Adscita obscura	ZYGMO275-10	Женский	Иран	HQ584967
Adscita obscura	ZYGMO276-10	Мужской	Иран	HQ584968
Adscita obscura	ZYGMO209-10	Мужской	Турция	HQ987488
Adscita pligori	ZYGMO204-10	Женский	Афганистан	HQ584910
Adscita pligori	ZYGMO203-10	Мужской	Афганистан	HQ584909
Adscita pligori	ZYGMO202-10	Мужской	Афганистан	HQ584908
Adscita schmidti	ZYGM0069-09	Женский	Испания	GU705663
Adscita schmidti	ZYGM0067-09	Мужской	Испания	GU705665
Adscita schmidti	ZYGM0068-09	Женский	Испания	GU705666
Adscita schmidti	ZYGM0066-09	Мужской	Испания	GU705668

Adscita schmidti	ZYGM0065-09	Мужской	Испания	GU705667
Adscita statices	ZYGMO1127-14	Мужской	Греция	MK930616
Adscita statices	ZYGMO1126-14	Мужской	Греция	MK930619
Adscita statices	ZYGMO246-10	Мужской	Македония	HQ584939
Adscita statices	ZYGMO244-10	Мужской	Сербия	HQ584937
Adscita statices	ZYGMO446-10	Женский	Македония	HQ987586
Adscita statices	ZYGMO245-10	Мужской	Сербия	HQ584938
Adscita statices	ZYGMO444-10	Женский	Сербия	HQ987584
Adscita statices	ZYGMO074-09	Мужской	Турция	MK930617
Adscita statices	ZYGM0073-09	Мужской	Турция	GU705661
Adscita statices	ZYGMO243-10	Мужской	Сербия	HQ584936
Adscita statices	ZYGMO242-10	Женский	Австрия	HQ584935
Adscita statices	ZYGMO241-10	Мужской	Австрия	HQ584934
Adscita statices	ZYGMO443-10	Женский	Австрия	HQ987583
Adscita subdolosa	ZYGMO058-09	Женский	Таджикистан	HM417801
Adscita subdolosa	ZYGMO057-09	Мужской	Кыргызстан	HM417800
Adscita subtristis	ZYGM0559-12	Женский	Таджикистан	MK930620
Adscita subtristis	ZYGM0558-12	Женский	Таджикистан	MK930621
Adscita subtristis	ZYGMO056-09	Мужской	Кыргызстан	GU705674
Adscita subtristis	ZYGMO054-09	Мужской	Кыргызстан	GU705675
Adscita subtristis	ZYGM0055-09	Мужской	Кыргызстан	GU705676
Aethioprocris togoensis	ZYGMO954-14	Мужской	Гана	MK930622
Agalope eronioides	ZYGMO645-13	Мужской	Китай	MK930623
Agalope eronioides	ZYGMO644-13	Мужской	Мьянма	MK930624
Aglaope infausta	ZYGMO228-10	Мужской	Испания	KX045899
Aglaope infausta	ZYGMO227-10	Мужской	Испания	HQ584922
Aglaope infausta	ZYGMO225-10	Мужской	Испания	HQ584921
Alteramenelikia sp. 1	ZYGMO956-14	Женский	Гана	MK930627
Alteramenelikia sp. 1	ZYGMO955-14	Женский	Гана	MK930626
Alteramenelikia sp. 2	ZYGMO957-14	Мужской	Гана	MK930628
Amesia aliris	ZYGMO597-13	Женский	Мьянма	MK930630
Amesia aliris	ZYGMO596-13	Мужской	Мьянма	MK930629
Artona sp. 1	ZYGMO561-12	Женский	Тайланд	MK930633
Artona sp. 1	ZYGMO560-12	Мужской	Тайланд	MK930632
Astyloneura assimilis	ZYGMO669-13	Женский	Демократическая Республика Конго	MK930637

Astyloneura sp.	ZYGMO667-13	Мужской	Республика Бурунди	MK930638
Australartona mirabilis	ZYGM0513-12	Мужской	Австралия	MK930639
Barbaroscia amabilis	ZYGM0599-13	Женский	Мьянма	MK930641
Barbaroscia amabilis	ZYGMO598-13	Женский	Мьянма	MK930640
Callizygaeninae sp.1	ZYGMO961-14	Мужской	Тайланд	MK931150
Chalconycles sp. 01	ZYGM0729-13	Женский	Африка	MK930642
Chalcosia pectinicornis	ZYGMO601-13	Мужской	Мьянма	MK930643
Chalcosia pectinicornis	ZYGMO600-13	Мужской	Мьянма	MK930644
Chalcosia phalaenaria	ZYGMO603-13	Женский	Мьянма	MK930646
Chalcosia phalaenaria	ZYGMO602-13	Мужской	Мьянма	MK930645
Chalcosiinae sp.1	ZYGM0595-13	Мужской	Мьянма	MK930884
Chrysartona sinevi	ZYGM0571-13	Мужской	Мьянма	MK930647
Chrysartona sp. 1	ZYGM01223-15	Мужской	Тайланд	MK930877
Chrysartona sp. 1	ZYGMO1222-15	Мужской	Тайланд	MK930876
Corma maculata	ZYGMO647-13	Мужской	Мьянма	MK930650
Corma maculata	ZYGMO646-13	Мужской	Мьянма	MK930651
Cyclosia panthona	ZYGMO643-13	Мужской	Тайланд	MK930653
Cyclosia panthona	ZYGMO642-13	Мужской	Тайланд	MK930654
Cyclosia panthona	ZYGMO641-13	Женский	Китай	MK930655
Cyclosia panthona	ZYGMO640-13	Женский	Мьянма	MK930652
Cyclosia papilionaris	ZYGMO639-13	Мужской	Тайланд	MK930658
Cyclosia papilionaris	ZYGMO638-13	Женский	Мьянма	MK930657
Cyclosia papilionaris	ZYGMO637-13	Женский	Мьянма	MK930659
Cyclosia papilionaris	ZYGMO635-13	Женский	Мьянма	MK930656
Cyclosia papilionaris	ZYGMO636-13	Женский	Мьянма	MK930660
Dubernardia djreuma	ZYGM0009-09	Мужской	Китай	HM417797
Erasmia pulchella	ZYGMO606-13	Женский	Китай	MK930662
Erasmia pulchella	ZYGMO605-13	Мужской	Мьянма	MK930663
Erasmia pulchella	ZYGMO604-13	Женский	Мьянма	MK930661
Eterusia aedea	ZYGMO614-13	Женский	Китай	MK930668
Eterusia aedea	ZYGMO613-13	Мужской	Мьянма	MK930664
Eterusia aedea	ZYGMO608-13	Женский	Китай	MK930666
Eterusia aedea	ZYGMO607-13	Мужской	Мьянма	MK930665
Eterusia aedea	ZYGMO609-13	Мужской	Тайланд	MK930667
Eterusia angustipennis	ZYGMO610-13	Женский	Мьянма	MK930669

<i>Eterusia</i> sp. 1	ZYGMO611-13	Женский	Китай	MK930670
Eterusia tricolor	ZYGMO612-13	Женский	Мьянма	MK930671
<i>Eumorphiopais</i> sp. 1	ZYGMO650-13	Мужской	Китай	MK930672
Gynautocera papilionaria	ZYGMO617-13	Женский	Мьянма	MK930675
Gynautocera papilionaria	ZYGMO615-13	Мужской	Мьянма	MK930674
Gynautocera papilionaria	ZYGMO616-13	Мужской	Мьянма	MK930673
Harrisina coracina	ZYGM0533-12	Мужской	Мексика	MK930676
Harrisina metallica	ZYGM0851-13	Мужской	США	MK930682
Harrisina metallica	ZYGM0850-13	Мужской	США	MK930681
Harrisina metallica	ZYGM0849-13	Мужской	США	MK930680
Harrisina metallica	ZYGM0847-13	Мужской	США	MK930678
Harrisina metallica	ZYGMO334-10	Мужской	США	HQ987509
Harrisina metallica	ZYGMO335-10	Мужской	США	HQ987510
Harrisina metallica	ZYGM0848-13	Мужской	США	MK930679
Harrisina metallica	ZYGM0846-13	Женский	США	MK930677
Harrisinopsis robusta	ZYGM0832-13	Мужской	Французская Гвиана	MK930683
Hedina elegans	ZYGMO197-10	Мужской	Китай	MK930684
Hedina louisi	ZYGMO199-10	Женский	Китай	MK930686
Hedina psychina	ZYGM0537-12	Женский	Япония	MK930689
Hedina psychina	ZYGM0536-12	Женский	Япония	MK930687
Hedina psychina	ZYGM0535-12	Женский	Япония	MK930688
Hedina translucida	ZYGMO200-10	Женский	Китай	HQ584907
Hestiochora continentalis	ZYGMO506-12	Женский	Австралия	MK930690
Hestiochora continentalis	ZYGMO424-10	Мужской	Австралия	HQ987565
Hestiochora tricolor	ZYGMO440-10	Мужской	Австралия	HQ987580
Hestiochora tricolor	ZYGMO426-10	Мужской	Австралия	HQ987567
Hestiochora tricolor	ZYGMO425-10	Мужской	Австралия	HQ987566
Hestiochora xanthocoma	ZYGMO507-12	Мужской	Австралия	MK930691
Histia flabellicornis	ZYGMO620-13	Мужской	Мьянма	MK930694
Histia flabellicornis	ZYGMO618-13	Женский	Мьянма	MK930692
Histia flabellicornis	ZYGMO619-13	Мужской	Мьянма	MK930693
Homophylotis pseudothyridota	ZYGMO1229-15	Женский	Австралия	MK930696
Homophylotis pseudothyridota	ZYGMO1227-15	Женский	Австралия	MK930697
Homophylotis pseudothyridota	ZYGMO1225-15	Женский	Австралия	MK930695
Homophylotis pseudothyridota	ZYGM01224-15	Мужской	Австралия	MK930698

Homophylotis thyridota	ZYGM01228-15	Женский	Австралия	MK930699
Homophylotis thyridota	ZYGMO1226-15	Мужской	Австралия	MK930700
Hysteroscene extravagans	ZYGMO1210-15	Мужской	Тайвань	MK930701
Hysteroscene hyalina	ZYGMO1209-15	Мужской	Тайланд	MK930704
Hysteroscene hyalina	ZYGMO1208-15	Мужской	Тайланд	MK930703
Hysteroscene hyalina	ZYGMO1207-15	Мужской	Тайланд	MK930702
Illiberis banmauka	ZYGMO578-13	Мужской	Китай	MK930716
Illiberis banmauka	ZYGMO577-13	Женский	Китай	MK930719
Illiberis banmauka	ZYGMO576-13	Женский	Мьянма	MK930714
Illiberis banmauka	ZYGMO575-13	Мужской	Китай	MK930715
Illiberis banmauka	ZYGMO574-13	Мужской	Мьянма	MK930713
Illiberis banmauka	ZYGMO573-13	Мужской	Мьянма	MK930718
Illiberis banmauka	ZYGMO572-13	Мужской	Мьянма	MK930717
Illiberis cernyi	ZYGMO1219-15	Мужской	Тайланд	MK930706
Illiberis cernyi	ZYGMO1218-15	Мужской	Тайланд	MK930707
Illiberis cernyi	ZYGMO534-12	Мужской	Тайланд	MK930705
Illiberis ellenae	ZYGMO008-09	Женский	Китай	GU705705
Illiberis ellenae	ZYGMO006-09	Мужской	Китай	GU705704
Illiberis habaensis	ZYGMO287-10	Мужской	Китай	MK930708
Illiberis kislovskyi	ZYGMO579-13	Мужской	Мьянма	MK930720
Illiberis ochracea	ZYGMO196-10	Женский	Китай	HQ584906
Illiberis ochracea	ZYGMO195-10	Женский	Китай	MK930709
Illiberis pruni	ZYGMO563-12	Мужской	Монголия	MK930712
Illiberis pruni	ZYGMO191-10	Мужской	Россия	MK930710
Illiberis pruni	ZYGMO192-10	Женский	Россия	MK930711
Illiberis rotundata	ZYGMO004-09	Мужской	Япония	HM417796
Illiberis ulmivora	ZYGMO193-10	Женский	Китай	MK930721
Illiberis yuennanensis	ZYGMO194-10	Женский	Китай	MK930722
Jordanita algirica	ZYGMO318-10	Мужской	Марокко	HQ987504
Jordanita algirica	ZYGMO316-10	Мужской	Марокко	HQ987502
Jordanita algirica	ZYGMO317-10	Мужской	Марокко	HQ987503
Jordanita almatiensis	ZYGMO525-12	Женский	Kazakhstan	MK930724
Jordanita ambigua	ZYGMO310-10	Мужской	Кыргызстан	HQ987497
Jordanita ambigua	ZYGMO386-10	Женский	Таджикистан	HQ987530
Jordanita ambigua	ZYGMO385-10	Мужской	Таджикистан	HQ987529

Jordanita ambigua	ZYGMO384-10	Мужской	Таджикистан	HQ987528
Jordanita ambigua	ZYGMO383-10	Мужской	Узбекистан	HQ987527
Jordanita ambigua	ZYGMO382-10	Мужской	Узбекистан	HQ987526
Jordanita ambigua	ZYGMO315-10	Мужской	Туркменистан	HQ987501
Jordanita ambigua	ZYGMO314-10	Мужской	Туркменистан	HQ987500
Jordanita ambigua	ZYGMO210-10	Мужской	Афганистан	HQ584914
Jordanita anatolica	ZYGM0568-12	Мужской	Израиль	MK930726
Jordanita anatolica	ZYGMO138-09	Мужской	Турция	GU705749
Jordanita anatolica	ZYGM0137-09	Мужской	Турция	GU705748
Jordanita anatolica	ZYGMO135-09	Мужской	Турция	GU705750
Jordanita anatolica	ZYGMO134-09	Мужской	Турция	GU705753
Jordanita anatolica	ZYGM0136-09	Мужской	Турция	GU705751
Jordanita anatolica	ZYGM0567-12	Мужской	Иран	MK930729
Jordanita anatolica	ZYGM0566-12	Мужской	Иран	MK930727
Jordanita anatolica	ZYGMO402-10	Мужской	Иран	MK930728
Jordanita anatolica	ZYGMO401-10	Женский	Иран	HQ987545
Jordanita benderi	ZYGM0528-12	Мужской	Марокко	MK930730
Jordanita budensis	ZYGMO101-09	Мужской	Крым	HM386568
Jordanita budensis	ZYGMO102-09	Мужской	Крым	GU705772
Jordanita budensis	ZYGMO1022-14	Мужской	Франция	MK930731
Jordanita budensis	ZYGMO1023-14	Мужской	Австрия	MK930732
Jordanita budensis	ZYGMO1024-14	Мужской	Италия	MK930733
Jordanita budensis	ZYGMO1025-14	Мужской	Италия	MK930734
Jordanita budensis	ZYGMO1026-14	Мужской	Словения	MK930735
Jordanita budensis	ZYGMO1027-14	Женский	Словения	MK930736
Jordanita budensis	ZYGMO1028-14	Мужской	Сербия	MK930737
Jordanita budensis	ZYGMO1029-14	Мужской	Македония	MK930738
Jordanita budensis	ZYGMO1030-14	Женский	Македония	MK930739
Jordanita budensis	ZYGMO103-09	Мужской	Крым	GU705769
Jordanita budensis	ZYGMO281-10	Мужской	Македония	HQ584973
Jordanita budensis	ZYGMO282-10	Мужской	Македония	HQ584974
Jordanita budensis	ZYGMO283-10	Мужской	Македония	HQ584975
Jordanita budensis	ZYGMO453-10	Мужской	Македония	HQ987593
Jordanita budensis	ZYGMO564-12	Мужской	Монголия	MK930742
Jordanita budensis	ZYGM0565-12	Мужской	Монголия	MK930743

Jordanita chloros	ZYGMO220-10	Мужской	Крым	HQ584918
Jordanita chloros	ZYGM0127-09	Женский	Крым	HM386574
Jordanita chloros	ZYGMO130-09	Мужской	Турция	HM386576
Jordanita chloros	ZYGMO223-10	Мужской	Крым	HQ584919
Jordanita chloros	ZYGM0222-10	Мужской	Крым	KX048068
Jordanita chloros	ZYGM0128-09	Женский	Крым	HM386575
Jordanita chloros	ZYGMO224-10	Мужской	Крым	HQ584920
Jordanita chloros	ZYGM0125-09	Мужской	Крым	GU705754
Jordanita cirtana	ZYGMO313-10	Женский	Алжир	HQ987499
Jordanita cognata	ZYGM0527-12	Мужской	Тунис	MK930744
Jordanita cognata	ZYGMO321-10	Мужской	Алжир	HQ987507
Jordanita globulariae	ZYGM0133-09	Мужской	Крым	HM386577
Jordanita globulariae	ZYGMO1187-15	Женский	Италия	MK930750
Jordanita globulariae	ZYGMO1186-15	Мужской	Италия	MK930749
Jordanita globulariae	ZYGM01142-14	Мужской	Греция	MK930748
Jordanita globulariae	ZYGM01141-14	Женский	Греция	MK930747
Jordanita globulariae	ZYGMO1140-14	Мужской	Греция	MK930746
Jordanita globulariae	ZYGMO1138-14	Женский	Греция	MK930745
Jordanita globulariae	ZYGM0132-09	Мужской	Крым	GU705752
Jordanita globulariae	ZYGM0131-09	Мужской	Крым	GU705755
Jordanita globulariae	ZYGMO399-10	Мужской	Македония	HQ987543
Jordanita globulariae	ZYGMO396-10	Мужской	Македония	HQ987540
Jordanita globulariae	ZYGMO395-10	Мужской	Македония	HQ987539
Jordanita globulariae	ZYGMO455-10	Мужской	Македония	HQ987595
Jordanita globulariae	ZYGMO454-10	Мужской	Македония	HQ987594
Jordanita graeca	ZYGMO218-10	Женский	Армения	MK930752
Jordanita graeca	ZYGM0123-09	Женский	Крым	GU705756
Jordanita graeca	ZYGMO1133-14	Мужской	Болгария	MK930755
Jordanita graeca	ZYGMO214-10	Мужской	Крым	HQ584917
Jordanita graeca	ZYGM0121-09	Мужской	Крым	HM386572
Jordanita graeca	ZYGM0122-09	Мужской	Крым	HM386573
Jordanita graeca	ZYGMO1134-14	Мужской	Болгария	MK930754
Jordanita graeca	ZYGMO212-10	Женский	Крым	HQ584916
Jordanita graeca	ZYGMO124-09	Мужской	Турция	GU705757
Jordanita graeca	ZYGMO211-10	Мужской	Крым	HQ584915

Jordanita graeca	ZYGMO217-10	Мужской	Армения	MK930751
Jordanita graeca	ZYGMO213-10	Мужской	Крым	KX047699
Jordanita graeca	ZYGMO219-10	Женский	Армения	MK930753
Jordanita hector	ZYGMO110-09	Женский	Турция	GU705764
Jordanita hector	ZYGMO109-09	Мужской	Турция	GU705763
Jordanita hispanica	ZYGMO120-09	Мужской	Испания	HM417803
Jordanita hispanica	ZYGMO118-09	Мужской	Испания	HM386570
Jordanita hispanica	ZYGMO119-09	Мужской	Испания	HM386571
Jordanita horni	ZYGMO400-10	Мужской	Иран	HQ987544
Jordanita horni	ZYGMO153-09	Мужской	Армения	GU705734
Jordanita horni	ZYGMO152-09	Мужской	Армения	GU705737
Jordanita horni	ZYGMO151-09	Мужской	Армения	GU705736
Jordanita horni	ZYGMO150-09	Мужской	Армения	GU705739
Jordanita horni	ZYGMO149-09	Мужской	Армения	GU705738
Jordanita kurdica	ZYGMO381-10	Мужской	Иран	HQ987525
Jordanita maroccana	ZYGM0529-12	Мужской	Марокко	MK930756
Jordanita naufocki	ZYGMO311-10	Мужской	Кыргызстан	HQ987498
Jordanita notata	ZYGMO1176-15	Мужской	Италия	MK930757
Jordanita notata	ZYGMO115-09	Женский	Испания	HM386569
Jordanita notata	ZYGMO113-09	Женский	Крым	GU705759
Jordanita notata	ZYGMO112-09	Женский	Крым	GU705762
Jordanita notata	ZYGMO111-09	Мужской	Крым	GU705761
Jordanita paupera	ZYGMO524-12	Мужской	Иран	MK930766
Jordanita paupera	ZYGMO1032-14	Мужской	Китай	MK930759
Jordanita paupera	ZYGMO305-10	Мужской	Китай	HQ987494
Jordanita paupera	ZYGMO1031-14	Мужской	Северная Корея	MK930765
Jordanita paupera	ZYGMO1037-14	Мужской	Турция	MK930762
Jordanita paupera	ZYGMO304-10	Мужской	Иордания	HQ987493
Jordanita paupera	ZYGMO1034-14	Мужской	Казахстан	MK930761
Jordanita paupera	ZYGMO1033-14	Мужской	Казахстан	MK930760
Jordanita paupera	ZYGMO1036-14	Мужской	Иран	MK930764
Jordanita paupera	ZYGMO1035-14	Мужской	Иран	MK930763
Jordanita rungsi	ZYGMO320-10	Мужской	Марокко	HQ987506
Jordanita rungsi	ZYGMO319-10	Мужской	Марокко	HQ987505
Jordanita splendens	ZYGM0117-09	Мужской	Кыргызстан	GU705758

Jordanita splendens	ZYGMO116-09	Женский	Таджикистан	GU705760
Jordanita subsolana	ZYGMO1123-14	Женский	Греция	MK930769
Jordanita subsolana	ZYGMO1136-14	Мужской	Болгария	MK930768
Jordanita subsolana	ZYGMO139-09	Женский	Крым	GU705746
Jordanita subsolana	ZYGMO140-09	Женский	Армения	GU705747
Jordanita subsolana	ZYGMO141-09	Женский	Армения	GU705744
Jordanita subsolana	ZYGM0142-09	Женский	Армения	GU705745
Jordanita subsolana	ZYGMO143-09	Мужской	Турция	HM386578
Jordanita subsolana	ZYGMO145-09	Мужской	Турция	GU705742
Jordanita subsolana	ZYGMO146-09	Мужской	Крым	GU705743
Jordanita subsolana	ZYGMO147-09	Мужской	Крым	GU705740
Jordanita subsolana	ZYGMO148-09	Женский	Крым	GU705741
Jordanita subsolana	ZYGMO398-10	Мужской	Македония	HQ987542
Jordanita subsolana	ZYGM0542-12	Мужской	Италия	KX048939
Jordanita subsolana	ZYGM0543-12	Мужской	Италия	KX049598
Jordanita subsolana	ZYGM0569-12	Мужской	Украина (Харьков)	KX048986
Jordanita subsolana	ZYGM0570-12	Мужской	Украина (Харьков)	KX050128
Jordanita syriaca	ZYGMO530-12	Мужской	Иордания	MK930770
Jordanita tenuicornis	ZYGMO1175-15	Мужской	Италия	MK930771
Jordanita tenuicornis	ZYGMO1174-15	Мужской	Италия	MK930772
Jordanita tenuicornis	ZYGMO394-10	Мужской	Италия	HQ987538
Jordanita tenuicornis	ZYGMO393-10	Мужской	Италия	HQ987537
Jordanita tenuicornis	ZYGMO392-10	Мужской	Италия	HQ987536
Jordanita tenuicornis	ZYGMO390-10	Мужской	Италия	HQ987534
Jordanita tenuicornis	ZYGMO391-10	Мужской	Италия	HQ987535
Jordanita tenuicornis	ZYGMO389-10	Женский	Италия	HQ987533
Jordanita tenuicornis	ZYGMO388-10	Мужской	Италия	HQ987532
Jordanita tenuicornis	ZYGMO387-10	Мужской	Италия	HQ987531
Jordanita vartianae	ZYGMO323-10	Мужской	Испания	HQ987508
Jordanita volgensis	ZYGMO1042-14	Мужской	Россия (Омск)	MK930775
Jordanita volgensis	ZYGMO1041-14	Мужской	Россия (Омск)	MK930774
Jordanita volgensis	ZYGMO456-10	Мужской	Украина (Луганск)	HQ987596
Jordanita volgensis	ZYGMO108-09	Мужской	Крым	GU705766
Jordanita volgensis	ZYGMO107-09	Мужской	Крым	GU705765
Jordanita volgensis	ZYGMO106-09	Мужской	Крым	GU705768

Jordanita volgensis	ZYGMO105-09	Мужской	Крым	GU705767
Jordanita volgensis	ZYGMO104-09	Мужской	Крым	GU705770
Jordanita volgensis	ZYGMO309-10	Мужской	Турция	MK930773
Jordanita volgensis	ZYGMO308-10	Мужской	Турция	JN277135
Jordanita volgensis	ZYGMO285-10	Мужской	Турция	HQ584977
Jordanita volgensis	ZYGMO284-10	Мужской	Турция	HQ584976
Jordanita volgensis	ZYGMO307-10	Мужской	Сирия	HQ987496
Jordanita volgensis	ZYGMO306-10	Мужской	Сирия	HQ987495
Monalita faurei	ZYGM0834-13	Мужской	Французская Гвиана	MK930776
Monalita faurei	ZYGM0833-13	Мужской	Французская Гвиана	MK930777
Monalita laguerrei	ZYGM0835-13	Мужской	Французская Гвиана	MK930778
Myrtartona coronias	ZYGMO509-12	Мужской	Австралия	MK930780
Myrtartona leucopleura	ZYGMO966-14	Женский	Австралия	MK930781
Myrtartona rufiventris	ZYGMO512-12	Мужской	Австралия	MK930783
Myrtartona rufiventris	ZYGMO511-12	Мужской	Австралия	MK930784
Myrtartona rufiventris	ZYGMO510-12	Мужской	Австралия	MK930782
Neoalbertia constans	ZYGM0788-13	Мужской	США	MK930785
Neoalbertia constans	ZYGM0786-13	Мужской	США	MK930786
Neoalbertia constans	ZYGM0787-13	Мужской	США	MK930787
Neofelderia hoerwertneri	ZYGM0784-13	Мужской	Гватемала	MK930788
Neofelderia n. sp. 1	ZYGM0783-13	Женский	Мексика	MK930790
Neofelderia rata	ZYGM0780-13	Мужской	США	MK930793
Neofelderia rata	ZYGM0778-13	Мужской	США	MK930791
Neofelderia rata	ZYGM0779-13	Мужской	США	MK930792
Neofelderia sp. 1	ZYGM0760-13	Мужской	Мексика	MK930794
Neoilliberis fusca	ZYGM0772-13	Мужской	США	MK930797
Neoilliberis fusca	ZYGM0771-13	Мужской	США	MK930796
Neoilliberis fusca	ZYGM0770-13	Мужской	США	MK930795
Neoilliberis ignorata	ZYGM0759-13	Женский	Мексика	MK930798
Neoilliberis mas	ZYGM0775-13	Женский	Мексика	MK930800
Neoilliberis mas	ZYGM0774-13	Мужской	Мексика	MK930799
Neoilliberis n. sp. 1	ZYGM0773-13	Мужской	Мексика	MK930801
Neoilliberis sp. 2	ZYGM0532-12	Женский	Мексика	MK930803
Neoilliberis sp. 2	ZYGMO531-12	Мужской	Мексика	MK930804
Neoilliberis sp. 4	ZYGM0757-13	Женский	Мексика	MK930806

Neoprocris aversa	ZYGMO791-13	Мужской	США	MK930808
Neoprocris aversa	ZYGMO790-13	Мужской	США	MK930809
Neoprocris aversa	ZYGM0789-13	Мужской	США	MK930810
Neoprocris floridana	ZYGM0792-13	Женский	США	MK930811
Onceropyga anelia	ZYGMO1232-15	Женский	Австралия	MK930813
Onceropyga anelia	ZYGMO439-10	Мужской	Австралия	HQ987579
Onceropyga anelia	ZYGMO438-10	Женский	Австралия	HQ987578
Onceropyga anelia	ZYGMO427-10	Женский	Австралия	MK930812
Pampa n. sp. 1	ZYGMO814-13	Женский	Коста Рика	MK930816
Pampa n. sp. 1	ZYGMO813-13	Мужской	Коста Рика	MK930814
Pampa hermieri	ZYGMO819-13	Женский	Французская Гвиана	MK930817
Pampa sp.	ZYGM0843-13	Женский	Французская Гвиана	MK930818
Phacusa sp.	ZYGMO590-13	Женский	Мьянма	MK930822
Phacusa sp.	ZYGM0589-13	Женский	Мьянма	MK930820
Phacusa sp.	ZYGM0588-13	Мужской	Мьянма	MK930821
Phacusa sp. 1	ZYGMO1217-15	Мужской	Лаос	MK930824
Phacusa sp. 1	ZYGMO1216-15	Мужской	Лаос	MK930823
Phacusa sp. 1	ZYGMO1215-15	Мужской	Лаос	MK930825
Phacusa tenebrosa	ZYGMO1214-15	Мужской	Лаос	MK930828
Phacusa tenebrosa	ZYGMO1213-15	Мужской	Лаос	MK930826
Phacusa tenebrosa	ZYGMO1212-15	Мужской	Лаос	MK930827
Philopator basimaculata	ZYGMO649-13	Женский	Мьянма	MK930829
Philopator basimaculata	ZYGMO648-13	Мужской	Мьянма	MK930830
Pidorus albifascia	ZYGMO623-13	Женский	Мьянма	MK930833
Pidorus albifascia	ZYGMO622-13	Женский	Мьянма	MK930832
Pidorus albifascia	ZYGMO621-13	Женский	Мьянма	MK930831
Pidorus circe	ZYGMO624-13	Женский	Китай	MK930834
Pidorus glaucopis	ZYGMO627-13	Женский	Мьянма	MK930835
Pidorus glaucopis	ZYGMO626-13	Мужской	Мьянма	MK930836
Pidorus glaucopis	ZYGMO625-13	Мужской	Мьянма	MK930837
Pollanisus acharon	ZYGMO413-10	Женский	Австралия	HQ987556
Pollanisus acharon	ZYGMO412-10	Женский	Австралия	HQ987555
Pollanisus acharon	ZYGMO409-10	Женский	Австралия	HQ987552
Pollanisus acharon	ZYGMO433-10	Женский	Австралия	HQ987573
Pollanisus acharon	ZYGMO411-10	Женский	Австралия	HQ987554

Pollanisus acharon	ZYGMO410-10	Мужской	Австралия	HQ987553
Pollanisus acharon	ZYGMO408-10	Женский	Австралия	HQ987551
Pollanisus apicalis	ZYGM0755-13	Мужской	Австралия	MK930840
Pollanisus apicalis	ZYGMO488-12	Женский	Австралия	MK930839
Pollanisus apicalis	ZYGMO487-12	Мужской	Австралия	MK930838
Pollanisus calliceros	ZYGMO500-12	Мужской	Австралия	MK930841
Pollanisus commoni	ZYGMO404-10	Женский	Австралия	HQ987547
Pollanisus commoni	ZYGMO405-10	Мужской	Австралия	HQ987548
Pollanisus commoni	ZYGMO406-10	Женский	Австралия	HQ987549
Pollanisus commoni	ZYGMO403-10	Женский	Австралия	HQ987546
Pollanisus commoni	ZYGMO428-10	Мужской	Австралия	HQ987568
Pollanisus commoni	ZYGMO429-10	Женский	Австралия	HQ987569
Pollanisus contrastus	ZYGMO495-12	Мужской	Австралия	MK930844
Pollanisus contrastus	ZYGMO496-12	Женский	Австралия	MK930845
Pollanisus contrastus	ZYGMO494-12	Женский	Австралия	MK930843
Pollanisus contrastus	ZYGMO492-12	Женский	Австралия	MK930846
Pollanisus contrastus	ZYGMO493-12	Женский	Австралия	MK930842
Pollanisus cupreus	ZYGMO478-12	Мужской	Австралия	MK930849
Pollanisus cupreus	ZYGMO479-12	Мужской	Австралия	MK930850
Pollanisus cupreus	ZYGMO477-12	Мужской	Австралия	MK930848
Pollanisus cupreus	ZYGMO476-12	Мужской	Австралия	MK930847
Pollanisus cyanota	ZYGMO1234-15	Женский	Австралия	MK930852
Pollanisus cyanota	ZYGMO1233-15	Мужской	Австралия	MK930851
Pollanisus edwardsi	ZYGMO491-12	Мужской	Австралия	MK930854
Pollanisus edwardsi	ZYGMO490-12	Мужской	Австралия	MK930853
Pollanisus empyrea	ZYGMO486-12	Мужской	Австралия	MK930857
Pollanisus empyrea	ZYGMO485-12	Мужской	Австралия	MK930855
Pollanisus empyrea	ZYGMO501-12	Мужской	Австралия	MK930856
Pollanisus eumetopus	ZYGMO407-10	Мужской	Австралия	HQ987550
Pollanisus eumetopus	ZYGMO430-10	Женский	Австралия	HQ987570
Pollanisus eumetopus	ZYGMO431-10	Мужской	Австралия	HQ987571
Pollanisus eumetopus	ZYGMO432-10	Женский	Австралия	HQ987572
Pollanisus eungellae	ZYGMO497-12	Мужской	Австралия	MK930858
Pollanisus incertus	ZYGM01238-15	Мужской	Австралия	MK930860
Pollanisus incertus	ZYGM01237-15	Мужской	Австралия	MK930859

Pollanisus lithopastus	ZYGMO484-12	Мужской	Австралия	MK930862
Pollanisus lithopastus	ZYGMO482-12	Мужской	Австралия	MK930864
Pollanisus lithopastus	ZYGMO419-10	Мужской	Австралия	HQ987562
Pollanisus marriotti	ZYGMO499-12	Мужской	Австралия	MK930865
Pollanisus nielseni	ZYGMO481-12	Женский	Австралия	MK930866
Pollanisus nielseni	ZYGMO480-12	Женский	Австралия	MK930867
Pollanisus sp. 5	ZYGMO502-12	Женский	Австралия	MK930868
Pollanisus sp. 5	ZYGMO434-10		Австралия	HQ987574
Pollanisus sp. 6	ZYGMO503-12	Мужской	Австралия	MK930869
Pollanisus sp. 6	ZYGMO416-10	Мужской	Австралия	HQ987559
Pollanisus sp. 6	ZYGMO418-10	Мужской	Австралия	HQ987561
Pollanisus sp. 6	ZYGMO417-10	Мужской	Австралия	HQ987560
Pollanisus sp. 7	ZYGMO414-10	Мужской	Австралия	HQ987557
Pollanisus sp. 7	ZYGMO504-12	Женский	Австралия	MK930872
Pollanisus sp. 7	ZYGMO415-10	Мужской	Австралия	HQ987558
Pollanisus sp. 8	ZYGMO505-12	Мужской	Австралия	MK930870
Pollanisus sp. 9	ZYGM0754-13	Женский	Австралия	MK930871
Pollanisus subdolosa	ZYGMO420-10	Мужской	Австралия	HQ987563
Pollanisus subdolosa	ZYGMO423-10	Мужской	Австралия	HQ987564
Pollanisus subdolosa	ZYGMO422-10	Мужской	Австралия	MK930874
Pollanisus subdolosa	ZYGMO421-10	Мужской	Австралия	MK930873
Pollanisus trimacula	ZYGMO489-12	Мужской	Австралия	MK930875
Pollanisus viridipulverulenta	ZYGMO437-10	Женский	Австралия	HQ987577
Pollanisus viridipulverulenta	ZYGMO436-10	Мужской	Австралия	HQ987576
Pollanisus viridipulverulenta	ZYGMO435-10	Мужской	Австралия	HQ987575
Procridinae sp.	ZYGM0747-13	Мужской	Африка	MK930878
Pseudophacusa multidentata	ZYGMO1221-15	Женский	Китай	MK930885
Pseudophacusa multidentata	ZYGMO591-13	Мужской	Мьянма	MK930880
Pseudophacusa multidentata	ZYGMO1220-15	Мужской	Мьянма	MK930879
Pseudophacusa multidentata	ZYGMO594-13	Мужской	Мьянма	MK930883
Pseudophacusa multidentata	ZYGMO593-13	Мужской	Мьянма	MK930882
Pseudophacusa multidentata	ZYGM0592-13	Женский	Мьянма	MK930881
Psaphis euschemoides	ZYGMO630-13	Женский	Китай	MK930887
Psaphis euschemoides	ZYGMO629-13	Женский	Китай	MK930886
Psaphis euschemoides	ZYGMO628-13	Женский	Мьянма	MK930888

Pseudoamuria neglecta	ZYGMO967-14	Женский	Австралия	MK930889
Pseudoprocris dolosa	ZYGM0794-13	Женский	Гватемала	MK930891
Pseudoprocris dolosa	ZYGM0793-13	Мужской	Гватемала	MK930892
Pseudoprocris gracilis	ZYGM0795-13	Мужской	Гватемала	MK930893
Pycnoctena angustula	ZYGM0838-13	Женский	Французская Гвиана	MK930896
Pycnoctena angustula	ZYGM0837-13	Женский	Французская Гвиана	MK930895
Pyromorpha brueckneri	ZYGMO803-13	Мужской	Гватемала	MK930898
Pyromorpha brueckneriana	ZYGMO806-13	Мужской	Мексика	MK930900
Pyromorpha brueckneriana	ZYGM0805-13	Мужской	Мексика	MK930901
Pyromorpha cuchumatana	ZYGMO808-13	Мужской	Гватемала	MK930904
Pyromorpha cuchumatana	ZYGMO807-13	Мужской	Гватемала	MK930905
Pyromorpha dyari	ZYGMO802-13	Мужской	США	MK930907
Pyromorpha dyari	ZYGMO801-13	Мужской	США	MK930908
Pyromorpha dyari	ZYGMO800-13	Мужской	США	MK930906
Rhagades amasina	ZYGMO018-09	Женский	Турция	GU705699
Rhagades amasina	ZYGMO016-09	Мужской	Турция	GU705702
Rhagades brandti	ZYGMO230-10	Мужской	Иран	HQ584924
Rhagades brandti	ZYGMO229-10	Мужской	Иран	HQ584923
Rhagades brandti	ZYGMO013-09	Женский	Иран	HM417798
Rhagades predotae	ZYGMO290-10	Мужской	Испания	HQ987489
Rhagades pruni	ZYGMO233-10	Женский	Германия	HQ584926
Rhagades pruni	ZYGMO232-10	Мужской	Германия	HQ584925
Rhagades pruni	ZYGMO231-10	Мужской	Дания	KX050087
Rhagades pruni	ZYGM0023-09	Мужской	Крым	GU705697
Rhagades pruni	ZYGMO024-09	Мужской	Крым	GU705698
Rhagades pruni	ZYGMO025-09	Мужской	Крым	GU705695
Rhagades pruni	ZYGMO026-09	Мужской	Крым	GU705696
Rhagades pruni	ZYGM0022-09	Мужской	Крым	GU705700
Rhagades pruni	ZYGMO293-10	Женский	Япония	MK930912
Rhagades pruni	ZYGMO292-10	Мужской	Япония	MK930911
Saliunca meruana	ZYGM0715-13	Мужской	Танзания	MK930915
Saliunca orphnina	ZYGM0714-13	Женский	Руанда	MK930918
Saliunca orphnina	ZYGMO701-13	Мужской	Руанда	MK930917
Saliunca styx	ZYGMO960-14	Женский	Демократическая Республика	MK930922
			Конго	

Saliunca styx	ZYGMO959-14	Женский	Кения	MK930921
Saliunca styx	ZYGM0958-14	Мужской	Кения	MK930923
Saliunca styx	ZYGM0703-13	Мужской	Камерун	MK930920
Saliunca styx	ZYGM0702-13	Мужской	Камерун	MK930924
Soritia pulchella	ZYGMO634-13	Женский	Мьянма	MK930927
Soritia pulchella	ZYGMO633-13	Мужской	Мьянма	MK930929
Soritia pulchella	ZYGM0631-13	Мужской	Мьянма	MK930930
Soritia pulchella	ZYGMO632-13	Мужской	Мьянма	MK930928
Sthenoprocris brondeli	ZYGM0737-13	Женский	Мадагаскар	MK930931
Stylura brasiliensis	ZYGM0829-13	Женский	Парагвай	MK930932
Stylura cirama	ZYGM0845-13	Мужской	Коста Рика	MK930933
Stylura forficula	ZYGM0828-13	Женский	Бразилия	MK930934
Syringura triplex	ZYGMO698-13	Мужской	Камерун	MK930935
Tascia finalis	ZYGM0709-13	Женский	Зимбабве	MK930936
Theresimima ampellophaga	ZYGMO011-09	Женский	Крым	GU705701
Theresimima ampellophaga	ZYGMO010-09	Женский	Крым	GU705703
Triprocris cyanea	ZYGM0811-13	Мужской	США	MK930937
Triprocris cyanea	ZYGM0812-13	Женский	США	MK930938
Triprocris cyanea	ZYGM0810-13	Мужской	США	MK930939
Triprocris cyanea	ZYGM0809-13	Мужской	США	MK930940
Turneriprocris dolens	ZYGMO508-12	Мужской	Австралия	MK930941
Zama endocyanea	ZYGMO1206-15	Мужской	Бутан	MK930942
Zama endocyanea	ZYGMO1205-15	Мужской	Бутан	MK930943
Zama nigrigemma	ZYGMO1043-14	Мужской	Мьянма	MK930952
Zama nigrigemma	ZYGMO1044-14	Женский	Мьянма	MK930944
Zama nigrigemma	ZYGMO1045-14	Мужской	Китай	MK930945
Zama nigrigemma	ZYGMO1046-14	Мужской	Лаос	MK930946
Zama nigrigemma	ZYGMO1047-14	Женский	Лаос	MK930949
Zama nigrigemma	ZYGMO580-13	Мужской	Мьянма	MK930948
Zama nigrigemma	ZYGMO581-13	Женский	Мьянма	MK930951
Zama nigrigemma	ZYGMO582-13	Женский	Мьянма	MK930947
Zama sp.	ZYGMO587-13	Мужской	Китай	MK930950
Zama sp.	ZYGMO586-13	Мужской	Мьянма	MK930954
Zama sp.	ZYGM0585-13	Мужской	Мьянма	MK930956
Zama sp.	ZYGM0584-13	Женский	Мьянма	MK930953

Zama sp.	ZYGM0583-13	Мужской	Мьянма	MK930955
Zygaena afghana	ZYGMO463-10	Женский	Афганистан	HQ987602
Zygaena angelicae	ZYGMO1084-14	Мужской	Греция	MK930958
Zygaena angelicae	ZYGMO1082-14	Мужской	Греция	MK930960
Zygaena angelicae	ZYGMO1083-14	Мужской	Греция	MK930959
Zygaena angelicae	ZYGMO1054-14	Женский	Македония	MK930961
Zygaena angelicae	ZYGMO1053-14	Женский	Македония	MK930957
Zygaena brizae	ZYGMO163-09	Мужской	Крым	GU705728
Zygaena brizae	ZYGMO162-09	Мужской	Крым	GU705731
Zygaena cambysea	ZYGMO924-14	Мужской	Иран	MK930965
Zygaena cambysea	ZYGMO923-14	Мужской	Иран	MK930964
Zygaena cambysea	ZYGMO922-14	Мужской	Иран	MK930963
Zygaena cambysea	ZYGMO369-10	Женский	Армения	HQ987519
Zygaena carniolica	ZYGMO1106-14	Женский	Греция	MK930972
Zygaena carniolica	ZYGMO1107-14	Мужской	Греция	MK930973
Zygaena carniolica	ZYGMO1112-14	Мужской	Греция	MK930966
Zygaena carniolica	ZYGMO1113-14	Мужской	Греция	MK930967
Zygaena carniolica	ZYGMO1114-14	Мужской	Греция	MK930968
Zygaena carniolica	ZYGMO1158-15	Женский	Италия	MK930971
Zygaena carniolica	ZYGMO1159-15	Мужской	Италия	MK930970
Zygaena carniolica	ZYGMO1160-15	Женский	Италия	MK930969
Zygaena carniolica	ZYGMO171-09	Женский	Крым	GU705721
Zygaena carniolica	ZYGMO172-09	Мужской	Крым	GU705722
Zygaena carniolica	ZYGMO464-10	Мужской	Турция	HQ987603
Zygaena chirazica	ZYGMO380-10	Мужской	Иран	HQ987524
Zygaena cocandica	ZYGMO373-10	Женский	Кыргызстан	HQ987521
Zygaena cocandica	ZYGMO372-10	Мужской	Кыргызстан	HQ987520
Zygaena cuvieri	ZYGMO459-10	Женский	Армения	HQ987598
Zygaena cuvieri	ZYGMO458-10	Мужской	Армения	HQ987597
Zygaena cynarae	ZYGMO1165-15	Мужской	Италия	MK930975
Zygaena cynarae	ZYGMO1164-15	Мужской	Италия	MK930974
Zygaena ephialtes	ZYGMO185-09	Мужской	Крым	GU705712
Zygaena ephialtes	ZYGM0183-09	Мужской	Крым	GU705714
Zygaena ephialtes	ZYGM0184-09	Женский	Крым	GU705711
Zygaena erythrus	ZYGM0930-14	Мужской	Италия	MK930980

Zygaena erythrus	ZYGMO928-14	Мужской	Италия	MK930979
Zygaena erythrus	ZYGMO929-14	Мужской	Италия	MK930978
Zygaena escalerai	ZYGMO376-10	Мужской	Иран	HQ987522
Zygaena filipendulae	ZYGMO1170-15	Мужской	Италия	MK931019
Zygaena filipendulae	ZYGMO1169-15	Мужской	Италия	MK931018
Zygaena filipendulae	ZYGMO1167-15	Женский	Италия	MK931016
Zygaena filipendulae	ZYGMO1166-15	Женский	Италия	MK931015
Zygaena filipendulae	ZYGMO1168-15	Мужской	Италия	MK931017
Zygaena filipendulae	ZYGMO1155-15	Мужской	Италия	MK931007
Zygaena filipendulae	ZYGMO1154-15	Мужской	Италия	MK931002
Zygaena filipendulae	ZYGMO1156-15	Мужской	Италия	MK931008
Zygaena filipendulae	ZYGMO1157-15	Женский	Италия	MK931011
Zygaena filipendulae	ZYGMO1153-15	Мужской	Италия	MK931001
Zygaena filipendulae	ZYGMO1152-15	Мужской	Италия	MK931000
Zygaena filipendulae	ZYGMO1151-15	Мужской	Италия	MK930999
Zygaena filipendulae	ZYGMO1116-14	Мужской	Греция	MK931010
Zygaena filipendulae	ZYGMO1060-14	Женский	Албания	MK930983
Zygaena filipendulae	ZYGMO1100-14	Мужской	Греция	MK930998
Zygaena filipendulae	ZYGMO1096-14	Женский	Болгария	MK930981
Zygaena filipendulae	ZYGMO1055-14	Мужской	Греция	MK930987
Zygaena filipendulae	ZYGMO1108-14	Женский	Греция	MK931006
Zygaena filipendulae	ZYGMO1095-14	Женский	Болгария	MK930995
Zygaena filipendulae	ZYGMO1079-14	Мужской	Греция	MK931012
Zygaena filipendulae	ZYGMO1061-14	Мужской	Албания	MK930988
Zygaena filipendulae	ZYGMO1057-14	Мужской	Греция	MK930985
Zygaena filipendulae	ZYGMO1056-14	Мужской	Греция	MK930986
Zygaena filipendulae	ZYGMO1104-14	Мужской	Греция	MK931004
Zygaena filipendulae	ZYGMO1103-14	Мужской	Греция	MK931003
Zygaena filipendulae	ZYGMO1097-14	Мужской	Болгария	MK930996
Zygaena filipendulae	ZYGMO1059-14	Мужской	Албания	MK930982
Zygaena filipendulae	ZYGMO1099-14	Женский	Греция	MK930997
Zygaena filipendulae	ZYGM01115-14	Мужской	Греция	MK931009
Zygaena filipendulae	ZYGMO1072-14	Мужской	Греция	MK930993
Zygaena filipendulae	ZYGMO1067-14	Женский	Греция	MK930991
Zygaena filipendulae	ZYGMO1066-14	Женский	Греция	MK930990

Zygaena filipendulae	ZYGMO1065-14	Мужской	Греция	MK930989
Zygaena filipendulae	ZYGMO1071-14	Мужской	Греция	MK930992
Zygaena filipendulae	ZYGMO1105-14	Мужской	Греция	MK931005
Zygaena filipendulae	ZYGMO1058-14	Мужской	Албания	MK930984
Zygaena filipendulae	ZYGMO473-10	Мужской	Украина (Харьков)	MK930994
Zygaena filipendulae	ZYGMO187-09	Женский	Крым	GU705710
Zygaena filipendulae	ZYGMO186-09	Женский	Крым	GU705709
Zygaena filipendulae	ZYGMO1081-14	Мужской	Греция	MK931014
Zygaena filipendulae	ZYGMO1080-14	Мужской	Греция	MK931013
Zygaena formosa	ZYGMO460-10	Мужской	Турция	HQ987599
Zygaena haematina	ZYGMO364-10	Женский	Иран	HQ987517
Zygaena haematina	ZYGMO363-10	Мужской	Иран	HQ987516
Zygaena haematina	ZYGMO362-10	Женский	Иран	HQ987515
Zygaena haematina	ZYGMO361-10	Мужской	Иран	HQ987514
Zygaena haematina	ZYGMO365-10	Мужской	Иран	HQ987518
Zygaena laeta	ZYGMO161-09	Мужской	Крым	GU705730
Zygaena laeta	ZYGMO159-09	Женский	Крым	GU705775
Zygaena laeta	ZYGMO160-09	Женский	Крым	GU705733
Zygaena lonicerae	ZYGMO1147-15	Мужской	Италия	MK931020
Zygaena lonicerae	ZYGMO1146-15	Мужской	Италия	MK931021
Zygaena lonicerae	ZYGMO190-09	Женский	Крым	GU705706
Zygaena lonicerae	ZYGMO189-09	Женский	Крым	GU705708
Zygaena lonicerae	ZYGMO188-09	Мужской	Крым	GU705707
Zygaena loti	ZYGMO1163-15	Мужской	Италия	MK931025
Zygaena loti	ZYGMO1162-15	Мужской	Италия	MK931026
Zygaena loti	ZYGMO1161-15	Мужской	Италия	MK931027
Zygaena loti	ZYGMO1094-14	Женский	Болгария	MK931029
Zygaena loti	ZYGMO1049-14	Мужской	Македония	MK931033
Zygaena loti	ZYGMO1078-14	Женский	Греция	MK931023
Zygaena loti	ZYGMO1077-14	Мужской	Греция	MK931024
Zygaena loti	ZYGMO1075-14	Женский	Греция	MK931030
Zygaena loti	ZYGMO1074-14	Мужской	Греция	MK931031
Zygaena loti	ZYGMO1073-14	Мужской	Греция	MK931032
Zygaena loti	ZYGMO1050-14	Мужской	Македония	MK931022
Zygaena loti	ZYGMO180-09	Женский	Крым	GU705713
Zygaena loti	ZYGMO178-09	Мужской	Крым	GU705715
----------------------	--------------	---------	-----------	----------
Zygaena loti	ZYGMO177-09	Мужской	Крым	GU705718
Zygaena loti	ZYGMO179-09	Мужской	Крым	GU705716
Zygaena loti	ZYGMO1076-14	Мужской	Греция	MK931028
Zygaena minos	ZYGMO164-09	Мужской	Крым	GU705729
Zygaena minos	ZYGMO165-09	Мужской	Крым	GU705726
Zygaena minos	ZYGMO868-14	Мужской	Австрия	MK931035
Zygaena minos	ZYGM0875-14	Мужской	Греция	MK931055
Zygaena minos	ZYGMO880-14	Мужской	Австрия	MK931054
Zygaena minos	ZYGM0885-14	Женский	Австрия	MK931049
Zygaena minos	ZYGMO887-14	Мужской	Турция	MK931047
Zygaena minos	ZYGM0889-14	Женский	Турция	MK931045
Zygaena minos	ZYGMO890-14	Женский	Турция	MK931044
Zygaena minos	ZYGMO891-14	Мужской	Турция	MK931043
Zygaena minos	ZYGMO903-14	Мужской	Италия	MK931042
Zygaena minos	ZYGMO908-14	Женский	Иран	MK931041
Zygaena minos	ZYGMO910-14	Мужской	Турция	MK931040
Zygaena minos	ZYGMO918-14	Мужской	Албания	MK931056
Zygaena minos	ZYGMO921-14	Женский	Турция	MK931057
Zygaena minos	ZYGMO940-14	Мужской	Иран	MK931050
Zygaena minos	ZYGMO945-14	Мужской	Македония	MK931034
Zygaena minos	ZYGMO946-14	Мужской	Македония	MK931048
Zygaena minos	ZYGMO949-14	Женский	Македония	MK931036
Zygaena naumanni	ZYGMO378-10	Женский	Иран	HQ987523
Zygaena nevadensis	ZYGMO1145-15	Мужской	Италия	MK931059
Zygaena nevadensis	ZYGMO1048-14	Мужской	Италия	MK931058
Zygaena nevadensis	ZYGMO1144-15	Мужской	Италия	MK931060
Zygaena nevadensis	ZYGMO1102-14	Женский	Греция	MK931062
Zygaena olivieri	ZYGMO462-10	Женский	Армения	HQ987601
Zygaena olivieri	ZYGMO461-10	Мужской	Армения	HQ987600
Zygaena osterodensis	ZYGMO471-10	Мужской	Турция	HQ987605
Zygaena punctum	ZYGMO1070-14	Мужской	Греция	MK931064
Zygaena punctum	ZYGMO1069-14	Мужской	Греция	MK931065
Zygaena punctum	ZYGM01062-14	Мужской	Албания	MK931068
Zygaena punctum	ZYGMO1063-14	Женский	Албания	MK931067

Zygaena punctum	ZYGMO1068-14	Женский Греция	MK931063
Zygaena punctum	ZYGMO1064-14	Женский Греция	MK931066
Zygaena punctum	ZYGMO158-09	Мужской Крым	GU705732
Zygaena punctum	ZYGMO157-09	Мужской Крым	GU705735
Zygaena purpuralis	ZYGMO1085-14	Мужской Греция	MK931114
Zygaena purpuralis	ZYGMO1086-14	Мужской Греция	MK931113
Zygaena purpuralis	ZYGMO1087-14	Мужской Греция	MK931134
Zygaena purpuralis	ZYGMO1088-14	Мужской Болгария	MK931133
Zygaena purpuralis	ZYGMO1089-14	Мужской Болгария	MK931084
Zygaena purpuralis	ZYGMO1090-14	Женский Болгария	MK931085
Zygaena purpuralis	ZYGMO1091-14	Мужской Болгария	MK931086
Zygaena purpuralis	ZYGMO1092-14	Мужской Болгария	MK931087
Zygaena purpuralis	ZYGMO1093-14	Мужской Болгария	MK931088
Zygaena purpuralis	ZYGMO1098-14	Женский Греция	MK931089
Zygaena purpuralis	ZYGMO1101-14	Женский Греция	MK931090
Zygaena purpuralis	ZYGMO1109-14	Мужской Греция	MK931102
Zygaena purpuralis	ZYGMO1110-14	Мужской Греция	MK931106
Zygaena purpuralis	ZYGMO1111-14	Мужской Греция	MK931108
Zygaena purpuralis	ZYGMO166-09	Мужской Крым	GU705727
Zygaena purpuralis	ZYGMO167-09	Мужской Крым	HM417804
Zygaena purpuralis	ZYGM0856-14	Мужской Босния и Герцоговина	MK931115
Zygaena purpuralis	ZYGM0857-14	Мужской Германия	MK931116
Zygaena purpuralis	ZYGM0858-14	Мужской Австрия	MK931117
Zygaena purpuralis	ZYGM0860-14	Мужской Австрия	MK931119
Zygaena purpuralis	ZYGM0861-14	Мужской Италия	MK931120
Zygaena purpuralis	ZYGM0863-14	Женский Босния и Герцоговина	MK931069
Zygaena purpuralis	ZYGM0867-14	Мужской Сербия	MK931073
Zygaena purpuralis	ZYGM0869-14	Женский Австрия	MK931074
Zygaena purpuralis	ZYGM0871-14	Мужской Греция	MK931076
Zygaena purpuralis	ZYGM0872-14	Женский Италия	MK931077
Zygaena purpuralis	ZYGM0878-14	Мужской Италия	MK931082
Zygaena purpuralis	ZYGM0879-14	Женский Италия	MK931083
Zygaena purpuralis	ZYGM0893-14	Мужской Турция	MK931092
Zygaena purpuralis	ZYGM0894-14	Женский Турция	MK931093
Zygaena purpuralis	ZYGM0895-14	Мужской Турция	MK931094

Zygaena purpuralis	ZYGM0896-14	Мужской	Италия	MK931095
Zygaena purpuralis	ZYGMO897-14	Мужской	Италия	MK931096
Zygaena purpuralis	ZYGMO898-14	Мужской	Италия	MK931097
Zygaena purpuralis	ZYGMO899-14	Мужской	Италия	MK931098
Zygaena purpuralis	ZYGMO900-14	Женский	Италия	MK931099
Zygaena purpuralis	ZYGMO901-14	Женский	Италия	MK931100
Zygaena purpuralis	ZYGMO902-14	Мужской	Италия	MK931101
Zygaena purpuralis	ZYGMO904-14	Мужской	Сербия	MK931103
Zygaena purpuralis	ZYGMO905-14	Мужской	Сербия	MK931104
Zygaena purpuralis	ZYGMO907-14	Женский	Сербия	MK931105
Zygaena purpuralis	ZYGMO909-14	Женский	Montenegro	MK931107
Zygaena purpuralis	ZYGMO914-14	Мужской	Македония	MK931127
Zygaena purpuralis	ZYGMO915-14	Мужской	Македония	MK931128
Zygaena purpuralis	ZYGMO916-14	Мужской	Македония	MK931129
Zygaena purpuralis	ZYGMO917-14	Мужской	Сербия	MK931130
Zygaena purpuralis	ZYGMO919-14	Мужской	Турция	MK931131
Zygaena purpuralis	ZYGMO920-14	Мужской	Турция	MK931132
Zygaena purpuralis	ZYGMO932-14	Мужской	Греция	MK931137
Zygaena purpuralis	ZYGMO933-14	Мужской	Македония	MK931138
Zygaena purpuralis	ZYGMO934-14	Мужской	Македония	MK931139
Zygaena purpuralis	ZYGMO935-14	Мужской	Македония	MK931121
Zygaena purpuralis	ZYGMO936-14	Женский	Сербия	MK931122
Zygaena purpuralis	ZYGMO937-14	Женский	Montenegro	MK931123
Zygaena purpuralis	ZYGMO938-14	Мужской	Македония	MK931124
Zygaena purpuralis	ZYGMO939-14	Мужской	Македония	MK931125
Zygaena purpuralis	ZYGMO941-14	Женский	Сербия	MK931126
Zygaena purpuralis	ZYGMO942-14	Женский	Сербия	MK931111
Zygaena purpuralis	ZYGMO943-14	Женский	Сербия	MK931112
Zygaena purpuralis	ZYGMO944-14	Женский	Македония	MK931110
Zygaena purpuralis	ZYGMO947-14	Мужской	Македония	MK931136
Zygaena purpuralis	ZYGMO948-14	Мужской	Македония	MK931135
Zygaena purpuralis	ZYGMO950-14	Женский	Македония	MK931109
Zygaena romeo	ZYGMO1150-15	Мужской	Италия	MK931141
Zygaena romeo	ZYGMO1149-15	Мужской	Италия	MK931142
Zygaena romeo	ZYGM01148-15	Мужской	Италия	MK931140

Zygaena rubicundus	ZYGMO927-14	Мужской	Италия	MK931145
Zygaena rubicundus	ZYGMO926-14	Мужской	Италия	MK931144
Zygaena rubicundus	ZYGMO925-14	Мужской	Италия	MK931143
Zygaena sedi	ZYGMO170-09	Мужской	Крым	GU705724
Zygaena sedi	ZYGMO169-09	Мужской	Крым	GU705723
Zygaena sedi	ZYGMO168-09	Женский	Крым	GU705725
Zygaena tamara	ZYGMO360-10	Мужской	Армения	HQ987513
Zygaena tamara	ZYGMO359-10	Мужской	Армения	HQ987512
Zygaena transalpina	ZYGMO544-12	Мужской	Италия	KX043033
Zygaena transalpina	ZYGMO545-12	Женский	Италия	KX043594
Zygaena transalpina	ZYGMO546-12	Женский	Италия	KX043825
Zygaena transalpina	ZYGM0547-12	Женский	Италия	KX042900
Zygaena transalpina	ZYGM0548-12	Мужской	Италия	KX043211
Zygaena transalpina	ZYGM0549-12	Мужской	Италия	KX043617
Zygaena transalpina	ZYGM0550-12	Мужской	Италия	KX043004
Zygaena transalpina	ZYGM0551-12	Женский	Италия	KX043021
Zygaena transalpina	ZYGM0552-12	Мужской	Италия	KX044098
Zygaena transalpina	ZYGM0553-12	Мужской	Италия	KX042933
Zygaena transalpina	ZYGM0554-12	Мужской	Италия	KX044124
Zygaena transalpina	ZYGMO555-12	Мужской	Италия	KX043784
Zygaena transalpina	ZYGM0556-12	Женский	Италия	KX043867
Zygaena transalpina	ZYGM0557-12	Женский	Италия	KX043954
Zygaena trifolii	ZYGMO475-10	Мужской	Испания	MK931147
Zygaena trifolii	ZYGMO474-10	Мужской	Испания	HQ987607
Zygaena viciae	ZYGMO173-09	Мужской	Крым	GU705719
Zygaena viciae	ZYGMO1052-14	Женский	Македония	MK931149
Zygaena viciae	ZYGMO176-09	Женский	Крым	GU705776
Zygaena viciae	ZYGMO1051-14	Мужской	Македония	MK931148
Zygaena viciae	ZYGMO175-09	Женский	Крым	GU705717
Zygaena viciae	ZYGMO174-09	Женский	Крым	GU705720
Zygaenoprocris chalcochlora	ZYGMO1203-15	Мужской	Афганистан	MK931151
Zygaenoprocris chalcochlora	ZYGM0048-09	Женский	Афганистан	GU705681
Zygaenoprocris chalcochlora	ZYGM0046-09	Мужской	Афганистан	GU705682
Zygaenoprocris chalcochlora	ZYGM0047-09	Мужской	Афганистан	GU705680
Zygaenoprocris chalcochlora	ZYGM01200-15	Мужской	Афганистан	MK931159

Zygaenoprocris chalcochlora	ZYGMO1199-15	Мужской	Афганистан	MK931158
Zygaenoprocris chalcochlora	ZYGMO1201-15	Мужской	Афганистан	MK931160
Zygaenoprocris chalcochlora	ZYGMO541-12	Женский	Иран	MK931156
Zygaenoprocris chalcochlora	ZYGMO520-12	Мужской	Иран	MK931152
Zygaenoprocris chalcochlora	ZYGM0539-12	Женский	Иран	MK931155
Zygaenoprocris chalcochlora	ZYGM0538-12	Женский	Иран	MK931154
Zygaenoprocris chalcochlora	ZYGMO521-12	Мужской	Иран	MK931153
Zygaenoprocris chalcochlora	ZYGMO1202-15	Мужской	Афганистан	MK931161
Zygaenoprocris chalcochlora	ZYGMO1198-15	Мужской	Афганистан	MK931157
Zygaenoprocris duskei	ZYGMO518-12	Женский	Иран	MK931162
Zygaenoprocris duskei	ZYGMO235-10	Мужской	Иран	HQ584928
Zygaenoprocris duskei	ZYGMO234-10	Мужской	Иран	HQ584927
Zygaenoprocris duskei	ZYGM0042-09	Мужской	Иран	HM417799
Zygaenoprocris duskei	ZYGM0044-09	Женский	Иран	GU705780
Zygaenoprocris duskei	ZYGMO043-09	Мужской	Иран	GU705779
Zygaenoprocris duskei	ZYGM0040-09	Женский	Иран	GU705778
Zygaenoprocris duskei	ZYGM0039-09	Мужской	Иран	GU705777
Zygaenoprocris duskei	ZYGM0037-09	Мужской	Иран	GU705683
Zygaenoprocris duskei	ZYGMO038-09	Мужской	Иран	GU705684
Zygaenoprocris eberti	ZYGMO663-13	Мужской	Афганистан	MK931163
Zygaenoprocris eberti	ZYGMO662-13	Мужской	Афганистан	MK931165
Zygaenoprocris eberti	ZYGM0661-13	Мужской	Афганистан	MK931164
Zygaenoprocris efetovi	ZYGMO050-09	Мужской	Иран	GU705781
Zygaenoprocris efetovi	ZYGMO049-09	Мужской	Иран	GU705679
Zygaenoprocris fredi	ZYGMO236-10	Мужской	Иран	HQ584929
Zygaenoprocris hofmanni	ZYGMO053-09	Мужской	Иран	GU705678
Zygaenoprocris hofmanni	ZYGMO052-09	Мужской	Иран	GU705677
Zygaenoprocris khorassana	ZYGMO540-12	Мужской	Иран	MK931170
Zygaenoprocris khorassana	ZYGMO523-12	Женский	Иран	MK931168
Zygaenoprocris khorassana	ZYGMO339-10	Мужской	Иран	HQ987511
Zygaenoprocris khorassana	ZYGMO522-12	Мужской	Иран	MK931169
Zygaenoprocris minna	ZYGMO294-10	Женский	Туркменистан	HQ987490
Zygaenoprocris persepolis	ZYGM0032-09	Мужской	Иран	GU705690
Zygaenoprocris persepolis	ZYGM0033-09	Мужской	Иран	GU705687
Zygaenoprocris persepolis	ZYGMO034-09	Мужской	Иран	GU705688

Zygaenoprocris persepolis	ZYGM0035-09	Мужской	Иран	GU705685
Zygaenoprocris persepolis	ZYGM0036-09	Мужской	Иран	GU705686
Zygaenoprocris persepolis	ZYGMO1188-15	Мужской	Иран	MK931177
Zygaenoprocris persepolis	ZYGMO1189-15	Мужской	Иран	MK931180
Zygaenoprocris persepolis	ZYGMO1190-15	Мужской	Иран	MK931171
Zygaenoprocris persepolis	ZYGMO1191-15	Мужской	Иран	MK931172
Zygaenoprocris persepolis	ZYGMO1192-15	Мужской	Иран	MK931173
Zygaenoprocris persepolis	ZYGMO1193-15	Мужской	Иран	MK931174
Zygaenoprocris persepolis	ZYGMO1194-15	Мужской	Иран	MK931175
Zygaenoprocris persepolis	ZYGMO1195-15	Мужской	Иран	MK931176
Zygaenoprocris persepolis	ZYGMO516-12	Мужской	Иран	MK931178
Zygaenoprocris persepolis	ZYGMO517-12	Женский	Иран	MK931179
Zygaenoprocris rjabovi	ZYGMO296-10	Женский	Иран	HQ987492
Zygaenoprocris rjabovi	ZYGMO295-10	Мужской	Иран	HQ987491
Zygaenoprocris taftana	ZYGMO515-12	Женский	Иран	MK931181
Zygaenoprocris taftana	ZYGMO031-09	Мужской	Армения	GU705689
Zygaenoprocris taftana	ZYGMO030-09	Мужской	Армения	GU705692
Zygaenoprocris taftana	ZYGM0029-09	Мужской	Армения	GU705691
Zygaenoprocris taftana	ZYGM0028-09	Мужской	Армения	GU705694
Zygaenoprocris taftana	ZYGMO027-09	Мужской	Армения	GU705693
Zygaenoprocris taftana	ZYGM0514-12	Мужской	Иран	MK931182

Таблица А.2 – Список последовательностей ДНК-штрихкодов, полученных в процессе исследования, которые в Генбанке

можно увидеть, только перейдя по ссылке номера последовательности

Вид	BOLD process ID HOMED	Последовательность нуклеотидов	Номер доступа в GenBank
ta		AACACTTTATTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG GAGCTCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAAATTTTTT	
k <i>Adscit</i> brid)	0	TTATGGTAATACCTATTATAATTGGTGGTTTTGGAAATTGATTAGTTCCTTTAATATTAGGGGGCTCCTGATATAGCT	
	-2-1	TTCCCGCGAATAAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTCTTAATTTCAAGAAGAATTGTAGA	82
hy (hy	044	AACAGGAGCAGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGA	875
alpi ces	3M(TTTAACGATCTTTTCTTTACATTTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAA	60 1
ita e tati	CXC	TATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	Н
dsci s		TACTTTCTTTACCGGTATTAGCTGGAGCAATCACTATACTTTTAACAGATCGAAATCTTAATACATCTTTTTTGAT	
Α		CCTGCAGGAGGAGAGATCCAATTCTTTATCAACATTTATTT	
		AACACTTTATTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACATCATTAAGTTTATTAATTCGTACAGAACTAG	
lis	6	GAACCCCTGGATCTTTAATTGGTGATGATGATCAAATTTATAATACTATTGTTACTGCCCATGCTTTTATTATAATTTTTT	
ital	35-(ITATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT TTCCCCCCCAATAAATAATAATAACATTTCATTCATT	57
cap	30C	A C A G C A G C T G C A T G A A C T G T T A C C C C C C C C T C T C A A A T A T)56
ita	3M(TTAGCGATCTTTTCTTTACATTTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACAACTATTATTAAT	U7(
dsc	XO	ATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	G
$A \epsilon$	Z	ACTTTCTTTACCGGTATTAGCTGGAGCAATTACTATACTTTAACAGATCGAAATCTTAATACATCTTTCTT	
		CTGCAGGAGGAGGAGATCCAATTCTTATCAACATTTATTT	

Adscita capitalis	ZYGM0082-09	AACACTTTATTTTATTTTGGTATTTGATCAGGAATAGTAGGAACATCATTAAGTTTATTAATTCGTACAGAACTAG GAACCCCTGGATCTTTAATTGGTGATGATGATCAAATTTATAATACTATTGTTACTGCCCATGCTTTTATTATAATTTTT TTATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGGAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT TTCCCGCGAATAAATAATATAAGATTTTGATTACTTCCCCCCCTCTTTAACTCTCTTAATTTCAAGAAGAATTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCCTCTCCTCAAATATTGCTCATGGAGGAAGAATCGTAGAT TTAGCGATCTTTTCTTT	GU705659
Adscita capitalis	ZYGM0081-09	AACACTTTATTTTATTTTGGTATTTGATCAGGAATAGTAGGAACATCATTAAGTTTATTAATTCGTACAGAACTAG GAACCCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCCCATGCTTTTATTATAATTTTT TTATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGGAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT TTCCCGCGAATAAATAATATAAGATTTTGATTACTTCCCCCCCTCTTTAACTCTCTTAATTTCAAGAAGAATTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGAATCTGTAGAT TTAGCGATCTTTTCTTT	GU705658
Adscita capitalis	ZYGMO084-09	AACACTTTATTTATTTTGGTATTTGATCAGGAATAGTAGGAACATCATTAAGTTTATTAATTCGTACAGAACTAG GAACCCCTGGATCTTTAATTGGTGATGATGATCAAATTTATAATACTATTGTTACTGCCCATGCTTTTATTATAATTTTT TTATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGGAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT TTCCCGCGAATAAATAATATAAGATTTTGATTACTTCCCCCCCTCTTTAACTCTCTTAATTTCAAGAAGAATTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGAATCTGTAGAT TTAGCGATCTTTTCTTT	GU705786

\$		AACACTTTATTTTATTTTGGTATTTGATCAGGAATAGTAGGAACATCATTAAGTTTATTAATTCGTACAGAACTAG GAACCCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCCCATGCTTTTATTATAATTTTTT	
alis	60-	TTATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT	9
ıpit	3M0083	TTCCCGCGAATAAATAATAATAAGATTTTGATTACTTCCCCCCTCTTTAACTCTCTTAATTTCAAGAAGAATTGTAGA	65
1 CC		AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGAT	705
dscita		TTAGCGATCTTTTCTTTACATTTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACAACTATTATTAAT	U.
	λ	ATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	0
A		ACTTTCTTTACCGGTATTAGCTGGAGCAATTACTATACTTTAACAGATCGAAATCTTAATACATCTTTCTT	
		CTGCAGGAGGAGGAGATCCAATTCTTATCAACATTTATTT	
		AACACTTTATTTTATTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	
		GAGCTCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTATTATAATTTTTT	
ica	:7-10	TTATAGTAATACCTATTATAATTGGTGGTTTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT	
ital		TTCCCACGAATAAATAACATAAGATTTTGATTATTACCCCCCTCTTTAACTCTCTTAATTTCAAGAAGAATTGTAGA	758
ta i) 42	AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGAT	98
sci	{GMC	TTAACGATTTTTTCCTTACATTTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT	Q
Ad		ATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	1
	N	ACTCTCTCTACCAGTATTAGCTGGAGCAATTACCATACTTTTAACGGATCGAAATCTTAATACATCTTTTTGATC	
		CTGCAGGAGGAGGAGATCCAATTCTTTAT	
		AACACTTTATTTTATTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	
		GAGCTCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTATTATAATTTTTT	
ica	60	TTATAGTAATACCTATTATAATTGGTGGTTTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT	33
ital	72-(TTCCCACGAATAAATAACATAAGATTTTGATTATTACCCCCCTCTTTAACTCTCTAATTTCAAGAAGAATTGTAGA	578
ta i	<u>, 10</u>	AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGAT	105
sci	M	TTAACGATTTTTTCCTTACATTTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT	Ď
Ad	ζ <u></u>	ATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	\cup
	N	ACTCTCTCTACCAGTATTAGCTGGAGCAATTACCATACTTTTAACGGATCGAAATCTTAATACATCTTTTTGATC	
		CTGC	

		AACACTTTATTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	
		GAGCTCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTTT	
ica	6(TTATAGTAATACCTATTATAATTGGTGGTTTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT	2
tali	0-0	TTCCCACGAATAAATAACATAAGATTTTGATTATTACCCCCCTCTTTAACTCTCTTAATTTCAAGAAGAATTGTAGA	78
Adscita i	A 007	AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCTCAAATATTGCTCATGGAGGAAGATCTGTAGAT	'05
		TTAACGATTTTTTCCTTACATTTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT	¹
	G	ATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	0
7	Z	ACTCTCTCTACCAGTATTAGCTGGAGCAATTACCATACTTTTAACGGATCGAAATCTTAATACATCTTTTTTGATC	
		CTGCAGGAGGAGGAGATCCAATTCTTATCAACATTTATTT	
		AACACTTTATTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	
	6(GAGCTCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTTT	
ca		TTATAGTAATACCTATTATAATTGGTGGTTTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT	4
tali	1-(TTCCCACGAATAAATAACATAAGATTTTGATTATTACCCCCCTCTTTAACTCTCTTAATTTCAAGAAGAATTGTAGA	99
a i	00	AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCTCAAATATTGCTCATGGAGGAAGATCTGTAGAT	705
sciı	MC	TTAACGATTTTTTCCTTACATTTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT	GUJ
Ad	5	ATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	
•	Z	ACTCTCTCTACCAGTATTAGCTGGAGCAATTACCATACTTTTAACGGATCGAAATCTTAATACATCTTTTTTGATC	
		CTGCAGGAGGAGGAGATCCAATTCTTATCAACATTTATTT	
		AACACTTTATTTTATCTTTGGAATTTGATCTGGGATAGTAGGTACATTATTAAGTGTATTAATTCGTACAGAATTAG	
2		GAACTCCCGGATCTTTAATTGGTGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTTCT	
a vicc	10 %	TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTGATATTAGGAGCCCCCGATATAGCT	41
ıdscita ıretan	24	TTCCCACGAATAAATAATATAAGATTCTGATTACTCCCCCCTTCATTAACTCTTTTAATTTCAAGAAGACTTGTAGA	349
	ЧC	AACAGGAGCTGGAACAGGATGAACTGTTTATCCTCCCCTCTCCAAATATTTCCCATGGAGGGAG	258
+ nai	G	TTAGCAATTTTTTCCTTACACTTAGCAGGTATTTCATCAATTCTAGGAGCAGTAAATTTTATTACAACTATTATTAA	H(
И	Z	CATACGACCTAACGGTATATCATTTGATCAAATACCTTTATTTGTTTG	
		TACTCTCTTTACCGGTATTAGCAGGAGCAATTACTATATTATTAACTGATCGAAATCTTAATACTTCTTTTTTG	

Adscita mauretanica	17-10	AACACTTTATTTTATCTTTGGAATTTGATCTGGGATAGTAGGTACATTATTAAGTGTATTAATTCGTACAGAATTAG GAACTCCCGGATCTTTAATTGGTGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTTCT TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTGATATTAGGAGCCCCCGATATAGCT TTCCCACGAATAAATAATATAAGATTCTGATTACTCCCCCCCTTCATTAACTCTTTTAATTTCAAGAAGACTTGTAGA	1940
	ZYGMO2	AACAGGAGCTGGAACAGGATGAACTGTTTATCCTCCCCTCTCCAAATATTTCCCATGGAGGGAG	HQ58,
Adscita mauretanica	ZYGM0207-10	AACACTTTATTTTATCTTTGGAATTTGATCTGGGATAGTAGGTACATTATTAAGTGTATTAATTCGTACAGAATTAG GAACTCCCGGATCTTTAAATTGGTGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTTCT TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTGATATTAGGAGCCCCCGATATAGCT TTCCCACGAATAAATAATATAAGATTCTGATTACTCCCCCCCTTCATTAACTCTTTTAATTTCAAGAAGACTTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTATCCTCCCCCCTCTCATAACTCTTTCCATGGAGGGAG	HQ584913
Adscita mauretanica	ZYGM0206-10	AACACTTTATTTTATCTTTGGAATTTGATCTGGGATAGTAGGTACATTATTAAGTGTATTAATTCGTACAGAATTAG GAACTCCCGGATCTTTAATTGGTGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTTCT TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTGATATTAGGAGCCCCCGATATAGCT TTCCCACGAATAAATAATATAAGATTCTGATTACTCCCCCCTTCATTAACTCTTTTAATTTCAAGAAGACTTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTATCCTCCCCCTCTCCAAATATTTCCCATGGAGGGAG	HQ584912

Adscita mauretanica	MO205-10	AACACTTTATTTATCTTTGGAATTTGATCTGGGATAGTAGGTACATTATTAAGTGTATTAATTCGTACAGAATTAG GAACTCCCGGATCTTTAATTGGTGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTTCT TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTGATATTAGGAGCCCCCGATATAGCT TTCCCACGAATAAATAATATAAGATTCTGATTACTCCCCCCTTCATTAACTCTTTTAATTTCAAGAAGACTTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTATCCTCCTCCACTAAATATTTCCCATGGAGGGAG	IQ584911
	ÐAZ	CATACGACCTAACGGTATATCATTTGATCAAATACCTTTATTTGTTTG	Ţ
Adscita mauretanica	ZYGMO078-09	AACACTTTATTTATCTTTGGAATTTGATCTGGGATAGTAGGTACATTATTAAGTGTATTAATTCGTACAGAATTAG GAACTCCCGGATCTTTAATTGGTGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTCT TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTGATATTAGGAGCCCCCGATATAGCT TTCCCACGAATAAATAATATAAGATTCTGATTACTCCCCCCTTCATTAACTCTTTTAATTTCAAGAAGACTTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTATCCTCCCCCCTCTCCAAATATTTCCCATGGAGGGAG	GU705784
Adscita mauretanica	ZYGMO077-09	AACACTTTATTTATCTTTGGAATTTGATCTGGGATAGTAGGTACATTATTAAGTGTATTAATTCGTACAGAATTAG GAACTCCCGGATCTTTAATTGGTGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTTCT TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTGATATTAGGAGCCCCCGATATAGCT TTCCCACGAATAAATAATATAAGATTCTGATTACTCCCCCCTTCATTAACTCTTTTAATTTCAAGAAGACTTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTATCCTCCCCCTCTCCTCAAATATTTCCCATGGAGGGAG	GU705660

ta mauretanica	90-9200WE	AACACTTTATTTATCTTTGGAATTTGATCTGGGATAGTAGGTACATTATTAAGTGTATTAATTCGTACAGAATTAG GAACTCCCGGATCTTTAATTGGTGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTTCT TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTG	GU705662
Adso	ZY(TACTCTCTTTTACCGGTATTAGCAGGAGCAATTACCTATATTATTAACTGATCGAAATCTTAATACTTCTTTTTTGAC CCTGCAGGTGGTGGTGACCCAATTCTTTATCAACACTTATTT	
Adscita mauretanica	ZYGMO079-09	AACACTTTATTTATCTTTGGAATTTGATCTGGGATAGTAGGTACATTATTAAGTGTATTAATTCGTACAGAATTAG GAACTCCCGGATCTTTAAATTGGTGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTTCT TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTGATATTAGGAGCCCCCGATATAGCT TTCCCACGAATAAATAATATAAGATTCTGATTACTCCCCCCCTTCATTAACTCTTTTAATTTCAAGAAGACTTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTATCCTCCCCCCTCTCCTCAAATATTTCCCATGGAGGAAGATCTGTTGAT TTAGCAATTTTTTCCTTACACTTAGCAGGTATTTCATCAACTATTCTAGGAGCAGTAAATTTTATACAACTATTATAA CATACGACCTAACGGTATATCATTTGATCAAATACCTTTTATTGTTTGAGCAGTAGGAATTACCGCTTTACTATTAT TACTCTCTTTACCGGTATTAGCAGGAGCAATTACTATATTATTAACTGATCGAAATCTTAATACTTCTTTTTTTT	GU705785
Adscita obscura	ZYGM0080-09	AACACTTTACTTTATTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG GAACTCCAGGATCTTTAAATTGGTGGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT TTATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGGAATTGATTAGTCCCTTTAATATTAGGAGCCCCTGATATAGCT TTTCCACGAATAAATAATAAAGATTTTGATTATTACCCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAATTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGAATCTGTAGAT TTAACGATTTTCTCTTTACATCTAGCTGGTATTTCATCAATATTTAGGAGCAGTTAATTTTATTACTACTATTAAT ATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTGTTTGAGCAGTAGGAATTACTGCTTTACTATTATT ACTTTCTTTACCAGTATTAGCCGGAGCAATTACTATACTCTTAACTGACCGAAATTTAAATACATCTTTCTT	HM417802

AACACTTTACTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG GAACTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT Adscita obscura TTATAGTAATACCTATTATAATCGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCCCCTGATATAGCT ZYGM0270-10 HQ584962 TTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGAT TTAACGATTTTCTCTTTACATCTAGCCGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT CCGCAGGAGGAGGAGACCCAATTCTTTATCAACATTTATT AACACTTTACTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG GAGCTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT Adscita obscura TTATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT ZYGM0271-10 HQ584963 TTTCCACGAATAAATAATAAAGATTTTGATTATTACCCCCCTCTTTAACCCTTTTAATTTCAAGAAGAATTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGAT TTAACGATTTTCTCTTTACATCTAGCCGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT CCGCAGGAGGAGGAGACCCAATTCTTTATCAACATTTATT AACACTTTACTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG GAGCTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT Adscita obscura TTATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT ZYGM0272-10 HQ584964 TTCCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTCTAATTTCAAGAAGAATTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGAT **TTAACGATTTTCTCTCTACATCTAGCCGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT**

oscura		AACACTTTACTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	
		GAGCTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTTT	
	0	TTATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT	ŝ
	3-1	TTCCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTCTAATTTCAAGAAGAATTGTAGA	96
t of	27	AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGAT	НQ584
cita	40	TTAACGATTTTCTCTCTACATCTAGCCGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT	
dsa	G	ATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	
A	ΧZ	ACTTTCTTTACCAGTATTAGCCGGAGCAATTACTATACTCTTAACTGACCGAAATTTAAATACATCTTTCTT	
		CCGCAGGAGGGGGAGACCCAATTCTTTATCAACATTTATTT	
		AACACTTTACTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	
		GAGCTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT	
лга	0	TTATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCCCCTGATATAGCT	5
sci	ZYGM0274-1	TTCCCGCGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACCCCTTTTAATTTCAAGAAGAATTGTAGA	96(
ob		AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGAT	84
cita		TTAACGATTTTCTCTTTACATCTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT	Q5
dsc		ATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	H
A		ACTTTCTTTACCAGTATTAGCCGGAGCAATTACTATACTTTAACTGATCGAAATTTAAATACATCTTTCTT	
		CCGCAGGAGGAGGAGACCCAATTCTTTATCAACATTTATTT	
		AACACTTTACTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	
		GAGCTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT	
иra	0	TTATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCCCCTGATATAGCT	~
sci	5-1	TTCCCGCGAATAAATAATAAGATTTTGATTATTACCCCCCTCTTTAACCCTTTTAATTTCAAGAAGAATTGTAGA	96,
ob	27.	AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGAT	84
ita	40	TTAACGATTTTCTCTTTACATCTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT	Q5
dsc	5	ATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	Η
A	ZΥ	ACTTTCTTTACCAGTATTAGCCGGAGCAATTACTATACTTTAACTGATCGAAATTTAAATACATCTTTCTT	
		CCGCAGGAGGAGGAGACCCAATTCTTTATCAACATTTATTT	
			1

AACACTTTACTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG GAACTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT Adscita obscura **TTATAGTAATACCTATTATAATTGGTGGATTTGGGAATTGATTAGTTCCTTTAATATTAGGAGCCCCTGATATAGCT** ZYGM0276-10 HQ584968 TTCCCGCGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAATTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGAT TTAACGATTTTCTCTTTACATCTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT CCGCAGGAGGAGGAGACCCAATTCTTTATCAACATTTATT AACACTTTACTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG GAACTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT Adscita obscura TTATAGTAATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAGCT ZYGM0209-10 HQ987488 TTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACCCCTTTTAATTTCAAGAAGAATTGTAGA AACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGAT TTAACGATCTTCTCTTTACATCTAGCCGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT CTGCAGGAGGAGGAGACCCAATTCTTTATCAACATTTATT AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG GAACTCCTGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTTATTATAATTTTT Adscita pligori TTTATAGTTATACCTATTATAATCGGAGGATTTGGAAATTGACTAATTCCTTTAATATTAGGAGCTCCTGATATAGC ZYGM0204-10 HQ584910 TTTCCCACGAATAAATAATAATAAGATTTTGACTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGTAG AAACAGGAGTTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGA TCTGGCAATCTTTTCCTTACATTTAGCTGGGATTTCTTCAATCTTAGGAGCAGTTAATTTTATTACAACTATTATTAA TACTCTCTCTCCAGTATTAGCTGGAGCAATTACTATATTATTAACTGATCGAAATCTTAATACATCTTTTTTGATC

ligori		AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	
		GAACTCCTGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTTATTATAATTTTT	
	0	TTTATAGTTATACCTATTATAATCGGAGGATTTGGAAATTGACTAATTCCTTTAATATTAGGAGCTCCTGATATAGC	6
	3-]	TTTCCCACGAATAAATAATATAAGATTTTGACTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGTAG	06
a p	020	AAACAGGAGTTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGA	HQ584
cit	10	TCTGGCAATCTTTTCCTTACATTTAGCTGGGATTTCTTCAATCTTAGGAGCAGTTAATTTTATTACAACTATTATTAA	
<i>ads</i>	5	TATACGACCTAATGGTATATCATTTGATCAAATACCCCTATTTGTTTG	
ł	Z	TACTCTCTCTCCAGTATTAGCTGGAGCAATTACTATATTATTAACTGATCGAAATCTTAATACATCTTTTTTGATC	
		CTGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATTT	
		AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	
		GAACTCCTGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTTATTATAATTTTT	
ori	01	TTTATAGTTATACCTATTATAATCGGAGGATTTGGAAATTGACTAATTCCTTTAATATTAGGAGCTCCTGATATAGC	∞
lig	ZYGM0202-1	TTTCCCACGAATAAATAATATAAGATTTTGACTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGTAG	<u> 06</u>
a p		AAACAGGAGTTGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGA	284
scit		TCTGGCAATCTTTTCCTTACATTTAGCTGGGATTTCTTCAATCTTAGGAGCAGTTAATTTTATTACAACTATTATTAA	Ŏ
Ads		TATACGACCTAATGGTATATCATTTGATCAAATACCCCTATTTGTTTG	ц Ц
7		TACTCTCTCTCCAGTATTAGCTGGAGCAATTACTATATTATTAACTGATCGAAATCTTAATACATCTTTTTTGATC	
		CTGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATTT	
		AACACTTTATTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	9
2		GAGCTCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTATTATAATTTTTT	
ice	.14	TTATAGTAATACCTATTATAATTGGAGGTTTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCCCCTGATATAGCT	
tati	27-	TTTCCGCGAATAAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTCTAATTTCAAGAAGAATTGTAGA)61
a s	11	AACAGGAGCAGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCCGTAGA	93(
scit	40	TTTAACGATCTTTTCTTTACATTTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAA	Å
4ds	5	TATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	2
ł	ZY	TACTATCTTTACCGGTATTAGCCGGAGCAATTACTATACTTTAACGGATCGAAATCTTAATACATCTTTTTGAT	
		CCTGCAGGAGGAGGAGATCCAATTCTTTATCAACATTTATTT	

ces		AACACTTTATTTTATTTTTGGTATTTGATCAGGAATAGTTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	
		GAGCTCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTTT	
	6(TTATGGTAATACCTATTATAATTGGTGGTTTTGGAAATTGATTAGTTCCTTTAATGTTAGGAGCTCCTGATATAGCT	-
ati	3-(TTCCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTCTAATTTCAAGAAGAATTGTAGA	GU70566
1 St	01	AACAGGAGCAGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATGGAGGAAGATCTGTAGA	
citc	40	TTTAACGATCTTTTCTTTACATTTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAA	
<i>ids</i>	5	TATACGACCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	
V	ZY	TACTTTCTTTACCGGTATTAGCTGGAGCAATCACTATACTTTTAACAGATCGAAATCTTAATACATCTTTTTTGAT	
		CCTGCTGGAGGAGGGGATCCAATTCTTTATCAACATTTATTT	
		AACACTTTATTTCATTTTTGGAATTTGATCAGGAATAATTGGAACATCATTAAGTTTATTAATTCGTACAGAATTAG	
a		GAACTCCTGGATCTCTAATTGGAGATGATCAAATTTATAATACTATTGTTACAGCTCATGCTTTTATTATAATTTTT	l
los	6	TTTATAGTTATACCTATCATAATTGGAGGATTTGGAAATTGACTAATTCCTTTAATATTAGGAGCCCCTGATATAGC	_
ора	8-0	TTTCCCACGAATAAATAATATAAGATTTTGGTTATTACCCCCCTCACTAACCCTCTTAATTTCAAGAAGAATTGTAG	HM41780
sut	ZYGM005	AAACAGGAGCAGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCACAGAGGAAGATCTGTAG	
ta		ATTTAGCAATTTTTTCTCTACATTTAGCTGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACAACTATTATTA	
lsci		ATATACGACCTAATGGAATATCATTTGATCAAATACCTTTATTTGTTTG	
Ad		TTACTTTCTCTTCCAGTATTAGCTGGAGCAATTACTATATTATTAACTGATCGAAATCTTAATACATCTTTTTCGAC	
		CCAGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATTT	
		AACACTTTATTTTATTTTTGGAATTTGAGCAGGAATAATTGGAACATCATTAAGTTTATTAATTCGTACTGAATTAG	
a		GTACTCCTGGATCTCTAATTGGAGATGATCAAATTTATAACACTATTGTTACAGCTCATGCTTTTATTATAATTTTT	T
los	6	TTATAGTTATACCTATTATAATTGGAGGATTTGGAAATTGATTAATCCCTTTAATATTAGGAGCCCCCGATATAGCT	0
op_{0}	7-0	TTCCCACGAATAAATAATAAGATTTTGATTATTACCCCCCTCATTAACCCTCTTAATTTCGAGAAGAATTGTAGA	17800
sub	02	AACAGGAGCAGGAACAGGATGAACTGTTTACCCCCCCCTCTCCAAATATTGCTCATAGAGGAAGATCTGTAGA	
ta	40	TTTAGCAATCTTTTCTTTACATTTAGCCGGTATTTCATCAATTTTAGGAGCTGTTAATTTTATTACAACTATTATTAA	M4
sci	5	TATACGACCTAACGGTATATCATTTGATCAAATACCTTTATTTA	Η
Aa	ZΥ	TACTTTCTCTTCCAGTATTAGCTGGAGCAATTACTATATTATTAACTGATCGAAATCTTAATACATCTTTTTTGACC	
		CTGCGGGAGGTGGAGATCCAATTCTTATCAACATTTATTT	
			1

otristis		AACACTTTATTTTATTTTTGGAATTTGATCTGGAATAATTGGAACATCACTAAGTTTATTAATTCGCACAGAATTAG	
		GAACCCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACAGCTCATGCTTTTATTATAATTTTTT	
	6	TTATAGTTATACCTATTATAATTGGAGGATTTGGAAACTGATTAATTCCTTTAATATTAGGAGCCCCCGATATAGCT	+
	6-0	TTCCCTCGAATAAATAATATAAGATTTTGATTATTACCCCCCTCATTAACTCTATTAATTTCAAGAAGAATTGTAGA	674
sul	050	AACTGGAGCTGGAACAGGATGAACTGTCTATCCCCCCTTTCATCAAATATTGCTCATAGAGGAAGATCTGTAGAT	050
ita	10	TTAGCAATCTTTTCTTTACATTTAGCGGGTATTTCATCAATTTTAGGAGCAGTTAATTTTATTACTACTATTATTAAT	GU7
lsci	GN	ATACGACCTAATGGTATATCATTTGACCAAATACCATTATTTGTTTG	
$A \epsilon$	ZY	ACTTTCTTTACCAGTATTAGCTGGAGCAATTACTATATTATTAACTGATCGAAATCTTAATACATCTTTTTTTGATCC	
		TGCAGGTGGAGGTGATCCAATTCTTTATCAACATTTATTT	
		AACACTTTATTTTATTTTTGGAATTTGATCTGGAATAATTGGAACATCACTAAGTTTATTAATTCGCACAGAATTAG	
T.		GAACCCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACAGCTCATGCTTTTATTATAATATTTTT	GU705675
stis	6	ΤΤΑΤΑGTTATACCTATTATAATTGGAGGATTTGGAAAACTGATTAATTCCTTTAATATTAGGAGCCCCCCGATATAGCT	
otri	ZYGM0054-0	TTCCCTCGAATAAATAATAAGATTTTGATTATTACCCCCCTCATTAACTCTATTAATTCAAGAAGAATTGTAGA	
sut		AACTGGAGCTGGAACAGGATGAACTGTCTATCCCCCCCTTTCATCAAAATATTGCTCATAGAGGAAGAACATCTGTAGAT	
ta		TTAGCAATCTTTTCTTTACATTTAGCGGGGTATTTCATCAACTATTTAGGAGCAGTTAATTTATTACTACTACTATTAAT	
sci		AT A CG A CCT A ATGGT AT ATC ATTTGACC A A AT A CC ATT ATTTGTTTGAGC AGT A GG A ATT ACTGCTTT ATT ACT ATT	
Aa		ΔΩΤΤΤΩΤΤΤΔΩΩΑΩΤΑΤΤΔΩΩΤΑΠΤΙΟΛΟΕΛΛΙΤΑΤΤΔΤΤΔΑΤΩΤΙΟΤΠΟΛΟΕΛΟΙΑΟΟΛΛΙΤΑΕΙΟΕΙΤΙΑΙΤΑΕΙΑΤΑΓ	
		TGCAGGTGGAGGTGATCCAATTCTTTATCAACATTTATTT	
		A A C A C TTT A TTTT A TTTTTGG A ATTGG A ATTA A TTGG A A C A TC A C T A A G TTT A TT A	
is		CAACCCCTCCATCTTTAATTCCTCATCATCAATCATAATTCCTCATCA	9
ist.	- 6	TTATACTTATACCTATTATA ATTCCACCATTTCCAAATTACTATACTATOTTACAOCICATOCITITATAATTTIT	
btı	55 09	TTECCTCCA ATA ATATA ACATTTCATTACATTACCCCCCCC	67
SU SU	00		705
rita	M	AACIOUAUCIUUAACAUUAIUAACIUICIAICCCCCTIIICAICAAAIAIIUCICAIAUAUUAAUAICIUIAUAU	Ĵ,
dsc	YC	I I AUCAATUTI I I UTI I AUATTI AUUUUUI ATTICATUAATI I I AUUAUUAUTI AATTI I ATTACTAUTAUTAUTAUTAUTAATTI AAT ATACCA CCTA ATCCTATATCATTCACCA AATACCATTATTCTTTCACCACTACCA ATTACTCCTTACTACCAATTACTACTACTACTACTACTA	0
A_{0}	Ζ	ATAUGAUUTAATUGTATATUATITUGAUUAAATAUUATTATTATTAACTOATOO AAGTAUGAATTAUTATTAATTAACATOTTAATATTAATTAATTAACATOTTAATTA	
		Αυτιτυπταυμασταιταστισσασυαατιαυταταιταιτατιααυσατυσαατυπααταστατιστησατυ	

djreuma		AACACTTTATTTTATTTTTGGAATTTGATCCGGAATAGTAGGTACATCTTTAAGCTTATTAATTCGAGCAGAATTAG	
		GTACTCCTGGATCTTTAATTGGAGATGATCAAATTTATAATACAATTGTTACAGCTCATGCCTTTATTATAATTTTT	
	6	TTTATAGTTATACCAATTATAATTGGTGGATTTGGAAATTGATTAGTACCTTTAATATTAGGAGCTCCTGATATAGC	~
	0-0	TTTCCCACGAATAAATAATAAAGATTTTGATTATTACCTCCATCCCTAACTCTTTAATTTCAAGAAGAATTGTAG	HM417797
tia	00	AAACGGGAGCAGGAACAGGATGAACTGTTTACCCCCCCCTCTCTAATATTGCCCATGGGGGTAGATCAGTAG	
arc	10	ATCTAGCAATTTTTTCTCTTCATTTAGCTGGAATTTCATCAATTTTAGGAGCTGTTAATTTATTACCACTATTATTA	
ern	G	ATACGACCTAATGGTATATCTTTTGATCAAATACCTCTATTCGTTTGAGCAGTTGGTATTACAGCATTATTATTA	
npo	λ	ΤΤΑCΤΤΤCΤΤΤΑCCΤGTATTAGCTGGAGCTATTACTATACTATTAACAGATCGAAACCTTAATACATCATTTTTTGAT	
D		CCTGCTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
		AACTCTTTATTTTATTTTTGGAATTTGATCAGGTATATTAGGAACTTCTTTAAGATTATTAATTCGAGCTGAATTAG	
<i>a</i>		GAACTCCCGGATCATTAATTGGAGATGATCAAATTTATAATACAATTGTTACAGCTCATGCATTTATTATAAATTTT	
llic	0	ͲΤΤΑΤΑGTAΔΤΑCCTΔΤΤΑΤΑΔΤΤGGAGGTTTTGGΔΔΔCTGΔΤΤΔGTΔCCΔΤΤΔΔΤΔΤΤΔGGTGCΔCCTGΔΤΔΤΔGC	
eta	YGM0334-10	TTTCCCCCGAATAAATAATAAGTTTTTGACTTTTACCCCCCTCATTAACCCTGTTAATTTCAAGAAGAATCGTAG	HQ987509
m		A A A C A G G A G C T G G A T G G A T G G A C A G T A T A C C C C C A C T T T C A T A T A	
ina		ATTTAGCT ATTTTCTC ATTAC ATTTAGC AGGT ATTTC ATCT ATTTTAGGGGCTGTTA ATTTTATTACT ACT ACT ATT ATTA	
ris		AT AT ACG ACCT A ATGG A AT A AT ATTTG ACC A A AT ACCTTT ATTTGT ATG AGCTGT AGG A ATT AC AGC ATT ACTTCTT	
lar		TTACTTTCTCT & CC & GT & TT & GCTGG & GCT & TT & CT & T & CTTTTT & & CTG & TCGT & & TTT & & & AT & C & TCTTTTTTTG & T	
H		CCAGCAGGAGGAGGAGATCCTATTTTATATCAACATTTATTT	
		A A CTCTTT A TTTT A TTTTTCC A A TTTCATC A CCT A TATT A CC A A CTTCTTT A A C A TT A TTCC A CCTC A A TT A C	
а		CAACTEETTATTTATTTTTTTTTTTTTTTTTTTTTTTTT	
lic	_	ΟΆΑCΙCCCOOAICAIIAAIIOOAOAIOAICAAAIIIIAIAAIACAAIIOIIACAOCICAIOCAIIIAIIAIAAIIII ΤΤΤΑΤΑΤΑCΤΑΑΤΑΟCΤΑΤΤΑΤΑΑΙΙΟΟΑΟΑΙΟΑΙΟΑΙCΑΑΑΙΙΙΙΑΙΑΑΙΑCΑΑΙΙΟΙΙΑCΑΟCΙCΑΙΟCΑΙΟ	
tal	-10		10
те	35		75
па	O3		860
Harrisiı	M		H
	YC		
	Z		
		CCAGCAGGAGGAGGAGATCCTATTTTATATCAACATTTATTT	

ıcida		AACATTATATTTTATCTTTGGAATTTGATCTGGTATAGTAGGTACATCCTTAAGTTTATTAATTCGAGCAGAATTAG	
		GGACTCCTGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTTATTATAATTTTT	
	0	TTTATAGTTATACCTATCATAATTGGAGGATTTGGAAATTGACTAGTTCCTTTAATATTAGGAGCCCCTGATATAGC	~
ıslı	0-1	ATTCCCACGAATAAATAATATAAGATTTTGACTACTTCCCCCCTCATTAACCCTCTTAATTTCAAGAAGAATTGTAG	HQ584907
rar	20	AAACAGGAGCTGGTACAGGATGAACTGTATACCCCCCCCTCTCTTCAAATATTGCTCATGGAGGAAGATCAGTAG	
a t	40	ATTTAGCAATTTTTTCCTTACATTTAGCAGGAATTTCCTCAATTTTAGGGGGCCGTTAATTTTATTACTACTATTATTA	
din	G	ATATACGACCAAACGGAATAGCATTTGATCAAATACCCTTATTTGTTTG	
He_{c}	ZΥ	CTTCTTTCCTTACCAGTTTTAGCCGGAGCTATTACTATACTTTTAACCGATCGAAACCTTAATACTTCATTCTTTGAC	
		CCCGCTGGAGGAGGAGACCCAATTCTTTATCAACACTTATTT	
		AACATTATATTTTATTTTTGGTATTTGATCCGGAATAGTAGGAACCTCTTTAAGTTTATTAATTCGAACTGAATTAG	
		GAAATCCAGGATCTTTAATTGGAGATGATCAAATTTATAACACAATTGTAACAGCTCATGCTTTCATTATAATCTTT	
is is	0	TTTATAGTTATACCAATTATAATTGGAGGATTCGGAAACTGATTAGTACCTTTAATATTAGGAGCTCCCGATATAG	
tor tal	ZYGM0424-1	CTTTCCCACGAATAAATAATAAAGTTTTTGACTATTACCCCCATCATTAACATTATTAATCTCAAGAAGAATTGTT	56
ocl		GAAACAGGAGCTGGAACAGGATGAACAGTTTACCCCCCACTTTCATCTAATATTGCTCATGGAGGCAGTTCAGTTG	HQ987
esti ntir		ATTTAGCTATTTTTCCTTACATTTAGCGGGAATTTCATCAATTTTAGGTGCTGTTAACTTTATTACTACAATTATCA	
$H\epsilon$		ATATACGCCCTAATGGAATAAATTTTGACCAAATACCCTTATTTGTCTGAGCAGTAGGAATTACAGCTTTACTTTTA	
		CTTTTATCTTTACCAGTATTAGCTGGAGCTATTACCATACTTCTTACCGATCGAAATTTAAATACCTCATTTTTGAC	1
		CCTGCCGGGGGGGGGGAGATCCAATTTATATCAACATTTATTT	
		AACATTATATTTTATTTTTGGTATTTGATCCGGAATAGTAGGAACTTCTTTAAGTTTATTAATTCGAGCTGAATTAG	
lor		GAAACCCGGGATCTTTAATCGGAGATGATCAAATTTATAATACAATTGTAACAGCTCATGCTTTCATTATAATTTTT	
co	0	TTTATAGTTATACCAATTATAATTGGAGGATTTGGAAATTGATTAGTACCCTTAATATTGGGAGCCCCCGATATAG	
tri	0-1	CTTTCCCGCGAATAAATAATAAAGTTTTTGACTTTTACCCCCATCATTAACATTGCTAATTTCAAGAAGAATTGTC	580
ora	44	GAAACAGGAGCTGGAACAGGATGAACAGTTTACCCCCCACTTTCATCTAATATTGCTCATGGAGGAAGTTCAGTTG	87
chc	ЧO	ATTTAGCTATTTTTCCCTTCATTTAGCTGGAATTTCATCAATTTTAGGTGCTGTTAATTTTATTACTACAATTATTA	60
tio	5	ATATACGTCCTAATGGAATGAATTTTGATCAAATACCTTTATTTGTCTGAGCAGTAGGAATTACAGCTTTACTTTTA	H
Hes	Z	CTTTTATCTTTACCAGTATTAGCCGGAGCTATTACCATACTTCTTACTGATCGAAATTTAAATACCTCATTTTTGAT	
		CCTGCGGGAGGGGGGAGATCCAATTTTATACCAACATTTATTT	

Hestiochora tricolor	10426-10	AACATTATATTTTATTTTTGGTATTTGATCCGGAATAGTAGGAACTTCTTTAAGTTTATTAATTCGAGCTGAATTAG GAAACCCGGGATCTTTAATCGGAGATGATCAAATTTATAATACAATTGTAACAGCTCATGCTTTCATTATAATTTT TTTATAGTTATACCAATTATAATTGGAGGATTTGGAAATTGAATTGATAGTACCCTTAATATTGGGAGCCCCCGATATAG CTTTCCCGCGAATAAATAATATAAGTTTTTGACTTTTACCCCCCATCATTAACATTGCTAATTTCAAGAAGAATTGTC GAAACAGGAGCTGGAACAGGATGAACAGTTTACCCCCCACTTTCATCTAATATTGCTCATGGAGGAAGTTCAGTTG ATTTAGCTATTTTTCCCTTCATTTAGCTGGAATTTCATCAACATTTAGGTGCTGTTAATTTATTACTACAATTAT	Q987567
	ZYGN	ATATACGTCCTAATGGAATGAATTTTGATCAAATACCTTTATTTGTCTGAGCAGTAGGAATTACAGCTTTACTTTTA CTTTTATCTTTACCAGTATTAGCCGGAGCTATTACCATACTTCTTACTGATCGAAATTTAAATACCTCATTTTTGAT CCTGCGGGAGGGGGGGGAGATCCAATTTTATACCAACATTTATTT	H
Hestiochora tricolor	ZYGM0425-10	AACATTATATTTTATTTTGGTATTTGATCCGGAATAGTAGGAACTTCTTTAAGTTTATTAATTCGAGCTGAATTAG GAAACCCGGGATCTTTAATCGGAGATGATCAAATTTATAATACAATTGTAACAGCTCATGCTTTCATTATAATTTT TTTATAGTTATACCAATTATAATTGGAGGATTTGGAAATTGATTAGTACCCTTAATATTAGGAGCCCCCGATATAG CTTTCCCGCGAATAAATAATAAGTTTTTGACTTTTACCCCCCATCATTAACATTGCTAATTTCAAGAAGAATTGTC GAAACAGGAGCTGGAACAGGATGAACAGTTTACCCCCCACTTTCATCTAATATTGCTCATGGAGGAAGTTCAGTTG ATTTAGCTATTTTTCCCTTCATTTAGCTGGAATTTCATCAACTTTTAGGTGCTGTTAATTTATTACTACAATTATTA ATATACGTCCTAATGGAATGAATTTGATCAAATACCTTTATTGTCTGAGCAGTAGGAATTACAGCTTTACTTTA CTTTTATCTTTACCAGTATTAGCCGGAGCTATTACCATACTTCTTACTGATCGAAATTTAAATACCTCATTTTTGAT CCTGCGGGAGGGGGAGATCCAATTTTATACCAACATTTATT	HQ987566
Illiberis ellenae	ZYGM0008-09	AACACTTTACTTTATTTTGGAATTTGATCAGGATTAATTGGAACTTCTTTAAGCTTATTAATTCGAGCTGAATTAG GAATCCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTTACAGCTCATGCTTTTATTATAATTTT TTTATAGTTATACCCATTATAATTGGAGGATTTGGTAATTGATTAATTCCTTTAATATTAGGAGCCCCTGATATAGC TTTCCCCCGAATAAATAACATAAGATTTTGATTATTACCCCCCATCTTTAACTCTTTTAATTTCAAGAAGAAGTAGTAG AAAATGGAGCAGGAACTGGATGAACTGTTTACCCCCCCCTTTCATCTAATATTGCTCATAGAGGAAGAATCAGTTGA TTTAGCTATTTTTCCTTACATTTAGCTGGAATTTCTTCAATTTCCATCTAATATTGCTCATAGAGGAAGATCAGTTGA TATACGTCCCAATGGAATATCATTTGATCAAATACCTTTAATTCGTTTGAGCTGTAGGAATTACAGCTCTTCTATTAT TACTTTCCCTTCCAGTTTTAGCTGGAGCAATTACCATATACTTTTAACAGATCGGAATCTTAATACTTCTTTTTTTT	GU705705

AACACTTTACTTTATTTTTGGAATTTGATCAGGATTAATTGGAACTTCTTTAAGCTTATTAATTCGAGCTGAATTAG GAATCCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTTACAGCTCATGCTTTTATTATAATTTTT Illiberis ellenae **TTTATAGTTATACCCATTATAATTGGAGGATTTGGTAATTGATTAATTCCTTTAATATTAGGAGCCCCTGATATAGC** ZYGM0006-09 GU705704 TTTCCCCCGAATAAATAACATAAGATTTTGATTATTACCCCCATCTTTAACTCTTTTAATTTCAAGAAGAATTGTAG AAAATGGAGCAGGAACTGGATGAACTGTTTACCCCCCCTTTCATCTAATATTGCTCATAGAGGAAGATCAGTTGA TTTAGCTATTTTTCCTTACATTTAGCTGGAATTTCTTCAATTTTAGGAGCAGTTAACTTTATTACTACTATTATTAA TATACGTCCCAATGGAATATCATTTGATCAAATACCTTTATTCGTTTGAGCTGTAGGAATTACAGCTCTTCTATTAT TACTTTCCCTTCCAGTTTTAGCTGGAGCAATTACTATACTTTTAACAGATCGGAATCTTAATACTTCTTTTTTGACC CTGCAGGAGGAGGAGATCCTATTTATATCAACATTTATTC AACACTTTATTTTATTTTCGGAATTTGATCAGGAATAGTAGGAACTTCTTTAAGTTTATTAATTCGAGCTGAATTAG GAATTCCTGGATCTCTAATTGGAGATGACCAAATTTATAATACTATTGTTACAGCTCATGCCTTTATTATAATTTTT Illiberis ochracea TTTATGGTTATACCTATTATAATTGGAGGATTTGGTAATTGATTAATTCCCCTAATATTAGGGGGCCCCTGATATAGC ZYGM0196-10 HQ584906 AAAATGGAGCAGGAACTGGATGAACTGTTTACCCCCCCTTTCATCTAATATTGCCCATAGAGGAAGTTCTATTGA TTTAGCAATTTTCTCCTTACATTTAGCAGGAATTTCTTCAATTTTAGGGGGCAGTTAATTTTATTACTACCATTATTAA TACTTTCTCTCCAGTTTTAGCAGGAGCTATTACTATACTTTTAACTGATCGGAATCTTAATACTTCTTTTTTGATC CTGCGGGAGGAGGAGATCCTATTCTTTATCAACATCTATTT AACACTTTATTTTATTTTTGGTATTTGATCTGGAATAGTAGGAACCTCTTTAAGTTTACTAATTCGAGCCGAATTAG GAACTCCTGGATCATTAATTGGTGACGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT Illiberis rotundata TTATAGTTATACCTATTATAATTGGAGGATTTGGAAATTGATTAGTACCCTTAATATTAGGAGCACCTGATATAGCT ZYGM0004-09 HM417796 TTCCCTCGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAAGCCTATTAATTTCAAGAAGAATTGTAGA AACAGGAGCAGGAACAGGATGAACTGTTTACCCCCCCTTTCATCAAATATTGCTCATAGAGGAAGATCAGTTGA

Jordanita algirica	ZYGM0318-10	TACACTTTATTTTATTTTGGAGTTTGATCAGGAATAATTGGAACTTTATTAAGTGTTTTAATTCGTACTGAATTAG GAATACCAGGTTCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTAG	HQ987504
Jordanita algirica	ZYGM0316-10	TACACTTTATTTTATTTTGGGGGTTTGATCAGGAATAATTGGAACTTTATTAAGTGTTTTAATTCGTACTGAATTAG GAATACCAGGTTCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTAG	НQ987502
Jordanita algirica	ZYGM0317-10	TACACTTTATTTTATTTTGGGGTTTGATCAGGAATAATTGGAACTTTATTAAGTGTTTTAATTCGTACTGAATTAG GAATACCAGGTTCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT TTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGGATAGTTCCTTTAATATTAGGAGCGCCAGATATAGCT TTCCCACGAATAAATAATATAAGATTTTGATTACTTCCCCCTTCATTAACTCTTTTAATTTCGAGAAGAATTGTAGA AACAGGAACTGGAACAGGATGGACTGTTTACCCCCCCTCTCTCT	НQ987503

igua		AACACTTTATTTTATTTTTGGAGTTTGATCAGGAATAGTAGGAACATTATTAAGTGTTTTAATTCGTACAGAATTAG	,
		GAAACCCAGGTTCTTTAATTGGTGATGATCAAATTTATAACACTATTGTTACCGCTCATGCTTTTATTATAATTTTT	
	0	TTATAGTTATACCTATTATAATTGGTGGGTTTGGAAATTGATTAATTCCCTTAATATTAGGAGCTCCAGATATAGCT	~
hmb	0-1	TTCCCACGAATAAATAATAATAAGATTTTGACTACTCCCCCCTTCATTAACTCTTTTAATTTCAAGAAGAATTGTAGA	49′
a a	31	AACAGGAGCAGGAACAGGATGAACTGTTTACCCCCCCTTTCTGCTAATATTGCTCATAGTGGAAGATCTGTAGAT	87
nit	40	TTAGCAATTTTTTTTTTACATTTAGCTGGTATTTCATCTATTTTAGGAGCAGTAAATTTTATTACAACTATTATCAAT	НО9
-da	5	ATACGTCCTAATGGAATATCATTTGATCAAATGCCTTTATTTGTTTG	
Joi	Z	ACTTTCTTTACCTGTATTAGCTGGTGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCATTTTTTGACCC	
·		AGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATTT	
		AACACTTTATTTTATTTTTGGAGTTTGATCAGGAATAGTAGGAACATTATTAAGTGTTTTAATTCGTACAGAATTAG	
la la		GAAATCCAGGCTCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT	
igu	0	TCATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCCTTAATATTAGGGGGCTCCAGATATAGCT	
qm	6-1	TTCCCACGAATAAATAATAATAAGATTTTGACTACTCCCCCCCTCATTAACTCTTTAATTTCAAGAAGAATTGTAGA	HQ98753(
a a	ZYGM038	AACAGGAGCAGGAACAGGATGAACTGTTTATCCCCCCCTTTCTGCTAATATTGCTCATAGTGGAAGATCTGTAGAT	
nita		TTAGCAATTTTTTTTTTACATTTAGCTGGTATTTCATCTATTTTAGGAGCAGTAAATTTTATTACAACTATTATCAAT	
.qa		ATACGTCCTAATGGAATATCATTTGATCAAATACCTTTATTTGTTTG	
Jor		ACTTTCTTTACCTGTATTAGCTGGTGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCATTTTTGACCC	
		AGCAGGTGGTGGAGATCCAATTCTTTAT	
		AACACTTTATTTTATTTTTGGAGTTTGATCAGGAATAGTAGGAACATTATTAAGTGTTTTAATTCGTACAGAATTAG	
ïa		GAAATCCAGGCTCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT	529
igu	0	TCATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCCTTAATATTAGGGGGCTCCAGATATAGCT	
qm	5-1	TTCCCACGAATAAATAATAAGATTTTGACTACTCCCCCCCTCATTAACTCTTTAATTTCAAGAAGAATTGTAGA	
a a	38	AACAGGAGCAGGAACAGGATGAACTGTTTATCCCCCCCTTTCTGCTAATATTGCTCATAGTGGAAGATCTGTAGAT	87.
nita	90	TTAGCAATTTTTTTTTTTACATTTAGCTGGTATTTCATCTATTTTAGGAGCAGTAAATTTTATTACAACTATTATCAAT	6
.qa	5	ATACGTCCTAATGGAATATCATTTGATCAAATACCTTTATTTGTTTG	Η
loi	ZΥ	ACTTTCTTTACCTGTATTAGCTGGTGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCATTTTTTGACCC	
-		AGCAGGTGGTGGAGATCCAATTCTTTAT	
			1

ordanita ambigua	CYGMO384-10	AACACTTTATTTTATTTTGGAGTTTGATCAGGAATAGTAGGAACATTATTAAGTGTTTTAATTCGTACAGAATTAG GAAATCCAGGCTCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT TCATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTG	НQ987528
		AGCAGGTGGTGGAGATCCAATTCTTTAT	
Jordanita ambigua	ZYGM0383-10	AACACTTTATTTTATTTTGGAGTTTGATCAGGAATAGTAGGAACATTATTAAGTGTTTTAATTCGTACAGAATTAG GAAATCCAGGTTCTCTAATTGGTGATGATCAAATTTATAATACTATTGTTACCGCTCATGCTTTTATTATAATTTTT TCATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGGATAGTTCCCTTAATATTAGGGGGCTCCAGATATAGCT TTCCCACGAATAAATAATATAAGATTTTGACTACTCCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGTAGA AACAGGAGCAGGAACAGGATGAACTGTTTATCCCCCCCCTTTCTGCTAATATTGCTCATAGTGGAAGAATCTGTAGAT TTAGCAATTTTTTCTTTACATTTAGCTGGTATCTCATCTATTTTAGGAGCAGTAAAATTTTATACAACTATTATCAAT ATACGCCCTAATGGAATATCATTTGATCAAATACCTTTATTTGTTTG	НQ987527
Jordanita ambigua	ZYGM0382-10	AACACTTTATTTTATTTTGGAGTTTGATCAGGAATAGTAGGAACATTATTAAGTGTTTTAATTCGTACAGAATTAG GAAATCCAGGTTCTCTAATTGGTGATGATGATCAAATTTATAATACTATTGTTACCGCTCATGCTTTTATTATAATTTTT TCATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGGATAGTTCCCTTAATATTAGGGGGCTCCAGATATAGCT TTCCCACGAATAAATAATATAAGATTTTGACTACTCCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGTAGA AACAGGAGCAGGAACAGGATGAACTGTTTATCCCCCCCCTTTCTGCTAATATTGCTCATAGTGGAAGAATCTGTAGAT TTAGCAATTTTTTCTTTACATTTAGCTGGTATCTCATCTATTTTAGGAGCAGTAAAATTTTATTACAACTATTATCAAT ATACGCCCTAATGGAATATCATTTGATCAAATACCTTTATTTGTTTG	НQ987526

ambigua	- 0 0	AACACTTTATTTTATTTTGGAGTTTGATCAGGAATAGTAGGAACATTATTAAGTGTTTTAATTCGTACAGAATTA	
		GGAAATCCAGGTTCTTTAATTGGTGATGATCAAATTTATAACACTATTGTTACTGCTCATGCTTTTATTATAATTTT	
		TTTCATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCCTTAATATTAGGGGGCTCCAGATATA)1
	$\frac{31}{1}$	GCTTTCCCACGAATAAATAATAATAAGATTTTGACTACTCCCCCCCTCATTAACTCTTTAATTTCAAGAAGAATTG	75(
ta i	ĮÕ	TAGAAACAGGAGCAGGAACAGGATGAACTGTTTATCCCCCCCTTTCTGCTAATATTGCTCATAGTGGAAGATCTG	98
ımi	A5	TAGATTTAGCAATTTTTCTTTACATTTAGCTGGTATTTCATCTATTTTAGGAGCAGTAAATTTTATTACAACTATT	Q
rde	X	ATTAATATACGTCCTAATGGAATATCATTTGATCAAATACCTTTATTTGTTTG	
Jo	Ζ	TATTATTACTTTCTTTACCTGTATTAGCTGGTGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCATTT	
r		AACACITTATTITATTITTGGAGITTGGATCAGGAATAGTAGGAACATTATTAAGTGTTTTAATTCGTACAGAATTA	
gua		GGAAATCCAGGTTCTTTAATTGGTGATGATCAAATTTATAACACTATTGTTACTGCTCATGCTTTATTATAATTTT	
ıbi	10	TTTCATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCCTTAATATTAGGGGGCTCCAGATATA	00
an	4	GCTTTCCCACGAATAAATAATAATAAGATTTTGACTACTCCCCCCCC	75
ita)3]		НQ98
an	M		
brd	ZYGI		
J_{c}			
ta	ZYGMO210- 10		
igı			
qm		GATATAGCTTTCCCACGAATAAATAATATAAGATTTTGATTACTCCCCCCCC	91
a a		GAATIGTAGAAACAGGAGCAGGAACAGGATGAACCGTTTACCCCCCTCTTTCCGCTAATATIGCTCATAGTGGAA	84
nita		GATCTGTAGATTTAGCAATTTTTTCTTTACATTTAGCTGGTATTTCATCTATTTTAGGAGCAGTAAATTTTATTACA	Q5
dan		ACTATTATTAATATACGCCCTAATGGAATATCATTTGATCAAATACCTTTATTTGTTTG	H
or		CTTTATTACTATTACTTTCTTTACCTGTATTAGCTGGTGCAATTACTATACTTTAACTGATCGAAATCTTAATACA	
د.		TCATTTTTGACCCAGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATTT	
		AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGAGTATTAATTCGTACAGAATTA	
са		GGAACCCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATCGTTACTGCCCATGCTTTTATTATAATTT	
<i>oli</i>	6(TTTTTATAGTAATGCCAATTATAATTGGTGGATTTGGAAATTGATTAATCCCCTTAATATTAGGAGCTCCCGATAT	6
nai	8-(AGCTTTCCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATT	74
ı a	13	GTAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	05
nita	4C	GTAGATCTGGCAATCTTTTCCCTCCATTTAGCTGGTATTTCATCAATCCTAGGAGCAGTAAATTTTATTACAACTA	U1
dan	5	TTATTAATATACGACCCAATAATATATCATTTGATCAAATACCTTTATTTGTGTGAGCAGTAGGAATTACTGCCTT	9
lor	ZΥ	ATTATTATTACTTTCCCTACCTGTATTAGCAGGTGCAATTACTATACTATACTGATCGAAATCTTAATACATCTT	
د ا		TTTTTGATCCTGCGGGTGGGGGGGGGGCCCAATTCTTTACCAACATTTATT	
1			

natolica		AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGAGTATTAATTCGTACAGAATTA	
		GGAACCCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATCGTTACTGCCCATGCTTTTATTATAATTT	
	- 6	TTTTTATAGTAATGCCAATTATAATTGGTGGATTTGGAAATTGATTAATCCCCTTAATATTAGGAGCTCCCGATAT •	×,
	0	AGCTTTCCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATT	4
a a	01	GTAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	5
nita	ίGΜ	GTAGATCTGGCAATCTTTTCCCTCCATTTAGCTGGTATTTCATCAATCCTAGGAGCAGTAAATTTTATTACAACTA	$\overline{\mathbf{D}}$
dan		TTATTAATATACGACCCAATAATATATCATTTGATCAAATACCTTTATTTGTGTGAGCAGTAGGAATTACTGCCTT	5
oro	Ń	ATTATTATTACTTTCCCTACCTGTATTAGCAGGTGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCTT	
7		TTTTTGATCCTGCGGGTGGGGGGGGGGAGACCCAATTCTTTACCAACATTTATTT	
		AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGAGTATTAATTCGTACAGAATTA	
са		GGAACCCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATCGTTACTGCCCATGCTTTTATTATAATTT	
oli	6	TTTTTATAGTAATGCCAATTATAATTGGTGGATTTGGAAATTGATTAATCCCCTTAATATTAGGAGCTCCCGATAT	<u> </u>
ıat	YGM0135-0	AGCTTTCCCACGAATAAATAATATAAGATTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATT	12(
ar		GTAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	02
ita		GTAGATCTGGCA ATCTTTTCCCTCCATTTAGCTGGTATTTCATCAATCCTAGGAGCAGTAAATTTTATTACAACTA	
lan		TTATTAATACCACCCAATATATATCATCATCAAACCTTTATTCTCTCTCACCAC	ษ
ora			
J_{i}	Z		
		TTTTTGATCCTGCGGGTGGGGGGGGGGGGGGGGGGGGGG	
a		AACACITTATTTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGAGTATTAATTCGTACAGAATTA	
lic		GGAACCCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATCGTTACTGCCCATGCTTTTATTATAATTT	
ato	4 6	TTTTTATAGTAATGCCAATTATAATTGGTGGATTTGGAAATTGATTAATCCCCTTAATATTAGGAGCTCCCGATAT	55
ana	13	AGCTTTCCCACGAATAAATAATATAAGATTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATT	0
Jordanita c	10	GTAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	2
	A5	GTAGATCTGGCAATCTTTTCCCTCCATTTAGCTGGTATTTCATCAATCCTAGGAGCAGTAAATTTTATTACAACTA	
	ZYC	TTATTAATATACGACCCAATAATATATCATTTGATCAAATACCTTTATTTGTGTGAGCAGTAGGAATTACTGCCTT	
		ATTATTATTACTTTCCCTACCTGTATTAGCAGGTGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCTT	
		TTTTTGATCCTGCGGGGGGGGGGGGGGGGGGGGGGGGGG	

ıatolica		AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGAGTATTAATTCGTACAGAATTA	
		GGAACCCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTTACTGCCCATGCTTTTATTATAATTT	
	6(TTTTTATAGTAATGCCAATTATAATTGGTGGATTTGGGAATTGATTAATCCCCTTAATATTAGGAGCTCCCGATAT	-
	9-0	AGCTTTCCCACGAATAAATAATATAAGATTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATT	75
ı aı	13	GTAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	02
vitc	10	GTAGATCTAGCAATCTTTTCCCTCCATTTAGCTGGTATTTCATCAATCCTAGGAGCAGTAAATTTTATTACAACTA	U1
dan	G	TTATTAATATACGACCCAATAATATATCATTTGATCAAATACCTTTATTTGTTTG	G
lor	ΧZ	ATTATTATTACTTTCCCTACCTGTATTAGCAGGTGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCTT	
,		TTTTTGATCCTGCAGGTGGGGGGGGGAGACCCAATTCTTTACCAACATTTATTT	
		AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGAGTATTAATTCGTACAGAATTA	<u> </u>
ica		GGAACTCCAGGATCTTTAATTGGAGATGATCAAATTTATAACACTATCGTTACTGCTCATGCTTTTATTATAATTT	
tol	- 0	TTTTTATAGTTATACCAATTATAATTGGTGGATTTGGGAATTGATTAGTCCCTTTAATATTAGGAGCTCCAGATAT	S
ina	ZYGM0401 1	AGCTTTCCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATT	154
a a		GTAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	987
nit		GTAGATCTAGCAATTTTTTTTTTTTTACATTTAGCTGGTATTTCATCAATTCTAGGAGCAGTAAATTTTATTACAACTAT	ğ
da		TATTAACATACGACCTAATAATATATCATTTGATCAGATACCTTTATTTGTTTG	H
lor		TTATTATTACTTTCTTTACCTGTATTAGCAGGTGCAATTACTATACTTTTAACTGATCGAAACCTTAATACATCTTT	
,		TTTTGATCCTGCGGGTGGAGGAGACCCAATTCTTTATCAACATCTATTT	
	ZYGM0130-09	AACACTTTATTTTATTTTGGAGTTTGATCAGGAATAGTTGGAACATTACTAAGTGTTTTAATTCGTACAGAATTA	576
SC		GGAGCTCCAGGCTCTTTAATTGGTGATGATCAAATTTATAACACTATTGTTACTGCTCATGCTTTATTATAATTTT	
orc		TTTTATGGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCAGATATA	
chi		GCTTTCCCACGAATAAATAATAATAAGATTTTGATTACTACCCCCCTCATTAACTCTCTTAATTTCAAGAAGAATTG	
ta		TAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCACTTTCATCTAATATTGCTCATGGAGGAGGAGGATCTG	386
Jordani		TAGATCTTGCAATCTTTTCTTTACACCTAGCAGGTATTTCATCAATCTTAGGAGCAGTAAATTTTATTACAACTATT	M
		ATTAATATACGACCTAATGGAATATCTTTTGATCAAATACCTTTATTTGTTTG	H
		TATTATTACTTTCTTTACCTGTACTAGCTGGTGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCATTT	
		TTTGACCCAGCAGGAGGTGGTGATCCAATTCTTTATCAACATTTATT	

rdanita cirtana	YGMO313- 10	AACACTTTATTTTATTTTGGGGGTTTGGATCAGGTATAATTGGAACCTTATTAAGTGTGTTAATTCGAACAGAATTA GGTATACCAGGATTCTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTT TTTTATAGTTATACCTATTATAATTGGAGGAGGATTTGGAAAATTGATTAGTCCCTTTAATATTAGGAGCTCCAGATATA GCTTTCCCACGTATAAATAACATAAGATTTTGATTATTACCCCCCCTCATTAACTCTCTTAATTTCAAGAAGAAGAATTG TAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	HQ987499
Jc	Z	TATTATTGCTCTCATTACCAGTATTAGCTGGAGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCATTT TTTGATCCAGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATTT	
		AACACTTTATTTTTTGGAGTTTGATCAGGAATAGTCGGAACATTATTAAGTGTCCTAATTCGTACAGAATTA	
aeca	60	TTTTATAGTTATACCTATTATAATTGGTGGATGATGATGATGATGATGATGATGA	22
ta gr	124-	GCTTTCCCACGAATAAATAATAATAAGATTTTGATTACTCCCCCCTTCACTTACCCTTTTAATTTCAAGAAGAATTG TAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCACTTTCCTCTAATATTGCTCATGGAGGAGGAGCATCTG	0575
rdani	GMC	TTGATTTAGCAATTTTTTTTTTTTACACTTAGCAGGTATTTCTTCAATTTTAGGAGCAGTAAACTTTATTACAACTATT	GU7
lol	ZYC	TATTATTACTTCTTTACCTGTATTAGCTGGTGCAATTACCTATACTATTACTAGAGAACGATCGAAACCTTAATACATCATTT	
		TTTGATCCAGCAGGTGGTGGAGATCCAATTCTTTACCAACACTTATTC	
ector	- 6	GGAACCCCAGGTTCTTTAATTGGTGACGATCAGGAATAATTGGAACATTATTAAGTGTATTAATTCGTACAGAATTA TTTTATAGTTATACCTATTATAATTGGTGGACGATCAAATTTGGAAATTGATTAATTGTTACTGCTCATGCTTTTATTATAATTGGTGGATTTGGAAATTGGATGATTAATTCCTTTAATATTAGGAGCTCCTGATATAG	5
nita h	1011)	CCTTCCCACGAATAAATAATATAAGATTTTGATTACTACCCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATTGT AGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	17057
ordaı	YGN	AGATTTAGCAATCTTTTACATTTAGCAGGTATTTCATCAATTTTAGGAGCAGTAAATTTTATTACAACTATTA TTAATATACGTCCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	GU
ſ	Ζ	TTATTACTTTCATTGCCAGTATTAGCGGGAGCAATTACTATACTTTTAACTGATCGAAATCTTAACACATCATTTTT TGATCCTGCAGGTGGTGGAGATCCAATCCTTTATCAACATTTATTT	
		AACACTTTATTTTTGGAGTTTGGAGTTTGATCAGGAATAATTGGAACATTATTAAGTGTATTAATTCGTACAGAATTA	
ctor	6	TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAAATTGATTAATTA	3
a he	0109-0	CCTTCCCACGAATAAATAATATAAGATTTTGATTACTACCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAATTGT	1576
unitu		AGAAACAGGAGCIGGAACAGGAIGAACIGIIIACCCCCCCC	U70
orde	GM	TTAATATACGTCCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	U
Jc	У	TTATTACTTTCATTGCCAGTATTAGCAGGAGCAATTACTATACTTTAACTGATCGAAAATCTTAACACATCATTTTTTTT	
		IGATUUIGUAGGIGGIGGAGAICUAAICUIITATUAAUAITTAITT	

horni	1	AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGTGTATTAATTCGTACAGAATTA	
		GGAACTCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTT	
	6	CTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATTCCTTTAATATTAGGAGCCCCTGATATA	
	3-0	GCTTTCCCACGAATAAAACAATATAAGATTTTGATTACTTCCCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATTGT	137
ita	15	AGAAATAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	05
an	10	AGACTTAGCAATTTTCTCCTTACATTTAGCTGGTATTTCTTCAATTTTAGGGGGCAGTAAATTTTATTACAACTATTA	U7
ord	G	TTAATATACGACCTAATGGAATATCATTTGATCAAATACCTTTATTTGTATGAGCTGTAGGAATTACTGCTTTACT	5
J,	λ	ATTACTACTTTCTTTACCAGTATTAGCTGGTGCAATTACTATACTATACTTCTAACTGATCGAAATCTTAATACATCTTTTT	
		TTGATCCTGCAGGAGGAGGAGGAGATCCAATTCTTTATCAACATTTATTT	
		GGA ACTCC AGGA TCTTT A ATTGGA GATGATCA A ATTTAT A AT ACT ATTGTT ACTGCTC ATGCTTTT ATTATA ATTTT	ı
ını		CTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAAATTGATTAATTCCTTTAATATAGGAGCCCCTGATATA	~
oy	ZYGMO152- 09	GCTTTCCCACGAATAAACAATATAAGATTTTGATTACTTCCCCCCCTCTTTAACTCTTTAATTTCAAGAAGAAGAATTGT	73′
ita		AGAAATAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	02
an		AGACTTAGCAATTTTCTCCTTACATTTAGCTGGTATTTCTTCAATTTTAGGGGGCAGTAAATTTTATTACAACTATTA	U1
prd		TTAATATACGACCTAATGGAATATCATTTGATCAAATACCTTTATTTGTATGAGCTGTAGGAATTACTGCTTTACT	G
r		ATTACTACTTTCTTTACCAGTATTAGCTGGTGCAATTACTATACTTCTAACTGATCGAAATCTTAATACATCTTTTT	
		TTGATCCTGCAGGAGGAGGAGATCCAATTCTTTATCAACATTTATT	
	ZYGM0151-09	AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGTGTATTAATTCGTACAGAATTA	1
		GGAACTCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTT	
Jordanita horni		CTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATTCCTTTAATATTAGGAGCCCCTGATATA	9
		GCTTTCCCACGAATAAACAATATAAGATTTTGATTACTTCCCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATTGT	73
		AGAAATAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	05
		AGACTTAGCAATTTTCTCCTTACATTTAGCTGGTATTTCTTCAATTTTAGGGGGCAGTAAATTTTATTACAACTATTA	U1
		TTAATATACGACCTAATGGAATATCATTTGATCAAATACCTTTATTTGTATGAGCTGTAGGAATTACTGCTTTACT	5
		ATTACTACTTTCTTTACCAGTATTAGCTGGTGCAATTACTATACTTCTAACTGATCGAAATCTTAATACATCTTTTT	
		TTGATCCTGCAGGAGGAGGAGGAGATCCAATTCTTATCAACATTTATT	
			1

horni	6	AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGTGTATTAATTCGTACAGAATTA	
		GGAACTCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTT	
		CTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATTCCTTTAATATTAGGAGCCCCTGATATA	6
	0-0	GCTTTCCCACGAATAAACAATATAAGATTTTGATTACTTCCCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATTGT	13
ita	15	AGAAATAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	05
lan	GMO	AGACTTAGCAATTTTCTCCTTACATTTAGCTGGTATTTCTTCAATTTTAGGGGGCAGTAAATTTTATTACAACTATTA	U1
ora		TTAATATACGACCTAATGGAATATCATTTGATCAAATACCTTTATTTGTATGAGCTGTAGGAATTACTGCTTTACT	5
ſ	λZ	ATTACTACTTTCTTTACCAGTATTAGCTGGTGCAATTACTATACTTCTAACTGATCGAAATCTTAATACATCTTTTT	
		TTGATCCTGCAGGAGGAGGAGATCCAATTCTTATCAACATTTATT	
		AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGTGTATTAATTCGTACAGAATTA	
i		GGAACTCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTATTATAATTTT	
nn	- 6	CTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATTCCTTTAATATTAGGAGCCCCTGATATA	∞
hc	ZYGMO149 00	GCTTTCCCACGAATAAAACAATATAAGATTTTGATTACTTCCCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATTGT	73
ita		AGAAATAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	'05
lan		AGACTTAGCAATTTTCTCCTTACATTTAGCTGGTATTTCTTCAATTTTAGGGGGCAGTAAATTTTATTACAACTATTA	5
orc		TTAATATACGACCTAATGGAATATCATTTGATCAAATACCTTTATTTGTATGAGCTGTAGGAATTACTGCTTTACT	5
r		ATTACTACTTTCTTTACCAGTATTAGCTGGTGCAATTACTATACTTCTAACTGATCGAAATCTTAATACATCTTTTT	
		TTGATCCTGCAGGAGGAGGAGATCCAATTCTTTATCAACATTTATT	
	[0	AACACTTTATTTTATTTTCGGAATTTGATCGGGAATAGTTGGAACATTATTAAGTGTATTAATTCGTACAGAATTA	
3a		GGAGCTCCAGGCTCCTTAATTGGCGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTATTATAATTTT	•
did:		TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATTCCTTTAATGTTAGGAGCCCCTGATATA	S
Jordanita kur	-	GCTTTCCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTCTTAATTTCAAGAAGAATTG	52
)38	TAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	987
	ZYGMO	TAGATTTAGCAATCTTTTCTTTACATTTAGCAGGTATTTCATCAATTTTAGGAGCAGTAAATTTTATTACAACTATT	ğ
		ATTAATATACGTCCTAATAATATATCATTTGATCAAATACCTTTATTTGTTTG	Ē
		ATTATTACTTTCTTTACCAGTATTAGCAGGAGCAATTACTATACTTTAACGGATCGAAATCTTAATACATCATTT	1
		TTGACCCGGCGGGTGGTGGAGACCCAATCCTTTACCAACATTTATTT	

aufocki		AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGGACATTATTAAGTATATTAATTCGTACAGAATTA	
		GGGACTCCAGGCTCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTT	
	0	TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGACTAGTTCCTTTAATATTAGGAGCCCCTGACATA	~
	1-1	GCTTTCCCGCGAATAAATAATATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATTGT	496
a n	31	AGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	87
nit	40	GGATTTAGCAATTTTTTTTTTTTACATTTAGCAGGTATTTCATCAATTTTAGGAGCAGTAAATTTTATTACAACCATTA	6
.da	G	TTAATATACGTCCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	H
loi	ZΥ	TTATTACTTTCCTTACCAGTATTAGCAGGAGCAATTACTATACTTTTAACTGATCGAAACCTTAATACATCATTTT	I.
		TGACCCGGCGGGTGGTGGAGATCCAATTCTTTATCAACATTTATTC	
		CTGCTCATGCTTTTATCATAATTTTTTTTTTTTTTTTTT	1
		TTAATATTAGGGGGCTCCTGATATAGCTTTCCCACGAATAAATA	-
ita ra	0 0	CTCTTTTAATTTCAAGAAGAATTGTAGAAACAGGAACTGGAACAGGATGAACTGTTTACCCCCCCTTTCCTCCA	492
an pei	03 7-1	ATATTGCTCACAGAGGAAGATCTGTAGATTTAACAATTTTTTTT	87
ora	N,	GGCAGTAAATTTTATTACAACTATTATTAATATACGTCCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTT	6
J, J	YC	GAGCAGTAGGAATTACTGCTTTATTATTATTATTACTTTCATTACCGGTATTAGCTGGGGCAATTACTATACTTTTAAC	H
	Z	CGATCGAAATCTTAATACATCATTTTTTGATCCAGCAGGTGGTGGAGATCCAATTCTTTACCAACATTTATTT	
		AACACTTTATTTTATTTTGGGATTTGATCGGGAATAATTGGAACATTATTAAGTGTATTAATTCGCACAGAATTA	
ra	0304- 10	GGAACCCCAGGTTCTTTAATTGGTGATGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTATTATAATTTT	
ədi		TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATTCCTTTAATATTAGGAGCCCCTGATATA	3
npc		GCCTTCCCGCGAATAAATAATAATAAGATTTTGATTACTACCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATTG	49
ta p		TAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	987
mi	M	TAGATTTAGCAATCTTTTCTTTACATTTAGCGGGGTATTTCATCAATTTTAGGAGCAGTAAATTTTATTACAACTATT	ğ
rda	YC	ATTAATATACGTCCTAATAATATATCATTTGATCAGATACCTTTATTTGTTTG	H
Jo	Ζ	ATTATTACTTTCATTACCAGTATTAGCGGGGGGCAATTACCATACTTTTAACTGATCGAAATCTTAACACATCATTT	
		TTTGATCCGGCAGGTGGTGGAGATCCAATCCTTTATCAACATTTATTT	
		TACACTTTATTTTTGGAATTTGATCAGGAATGGTTGGAACTTTACTAAGTGTTTTAATTCGTACTGAATTAG	
gsi		GAATACCAGGIICTIITAATIGGIGATGATCAAATITATAATACTATIGIITACIGCICATGCIIITATIATAATIIIT	
Run	10^{-1}	TTTATGGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTACCCTTAATATTAGGGGGCACCAGATATAG	90
a r	32		12
nit	4C		860
dai	5		0H
Jor	λ		·[
		UGALUUGUUGUGAUGIGAIUUAAIIUIAIUAAUAIIIAIII	1

rungsi		TACACTTTATTTTATTTTTGGAATTTGATCAGGAATGGTTGGAACTTTACTAAGTGTTTTAATTCGTACTGAATTAG	
		GAATACCAGGTTCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTTT	
	0	TTTATGGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTACCCTTAATATTAGGGGGCACCAGATATAG	10
	9-1	CTTTCCCACGGATAAATAATAATAAGATTTTGATTACTCCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGT	50:
ta	GM031	AGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCGCTCTCCTAATATCGCACATGGGGGGAAGATCTGT	87
ani		AGATTTAGCAATTTTTCCTTGCATTTAGCTGGTATTTCATCAATTTTAGGAGCAGTAAATTTTATTACAACTATTA	60
rd		TTAATATACGTCCTAGTGGTATATCATTTGATCAAATACCTTTATTTGTTTG	Η
$J_{\mathcal{C}}$	λ	TTATTACTCTCTCTACCTGTATTAGCTGGTGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCATTTTT	
		CGACCCGGCGGGAGGTGGTGATCCAATTCTCTATCAACATTTT	
		AACACTTTATTTTATTTTGGAGTTTGATCAGGAATAGTTGGAACATTATTAAGTGTTTTAATTCGTACAGAATTA	
sua		GGAAACCCAGGATCTCTAATTGGTGATGATGATCAAATTTATAACACTATTGTTACTGCTCATGCTTTTATTATAATTT	
ppu		TTTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCCCCAGATAT	∞
iəle	ZYGMO117 09	AGCTTTCCCACGAATAAATAATATAAGATTTTGATTACTCCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATT	0575
ls ı		GTAGAAACAGGAGCAGGAACAGGATGAACTGTTTATCCCCCCCTTTCTGCTAATATTGCTCATAGTGGAAGATCT	
nitc		GTAGATTTAGCAATTTTTTCTTTACATTTAGCCGGTATTTCATCTATTTTAGGAGCAGTAAATTTTATTACAACTAT	U1
lar		TATTAATATACGACCTAATGGGATATCATTTGATCAAATACCTTTATTTGTTTG	U
ord		TTATTATTACTTTCTTTACCTGTATTAGCTGGTGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCATT	
ſ		TTTTGACCCGGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATTT	
	5-09	AACACTTTATTTTATTTTTGGAGTTTGATCAGGAATAGTGGGAACATTATTAAGTGTTTTAATTCGTACAGAATTA	760
su		GGAAACCCAGGTTCTCTAATTGGTGATGATCAAATTTATAACACTATTGTTACCGCTCATGCTTTTATTATAATTTT	
lende		TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATTCCCTTAATATTAGGGGCCCCAGATATA	
		GCTTTCCCACGAATAAATAATAATAAGATTTTGACTACTCCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTG	
ts i	11	TAGAAACAGGAGCAGGAACAGGATGAACTGTTTATCCCCCCCTTTCTGCTAATATTGCTCATAGCGGAAGATCTG	05
Jordanita	ZYGMO	TAGATTTAGCAATTTTTTTTTTTACATTTAGCTGGTATTTCATCTATTTTAGGAGCAGTAAATTTTATTACAACTATT	U1
		ATTAATACGTCCTAATGGAATATCATTTGATCAAATACCTTTATTTGTTTG	G
		TATTATTACTTTTACCTGTATTAGCTGGTGCGATTACTATACTTTTAACCGATCGAAAATCTTAATACATCATTT	
		TTTGACCCGGCAGGTGGTGGAGATCCAATTCTTTATCAGCATTTATT	
1			

olana		AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGTGTATTAATCCGTACAGAATTA	I
		GGAACTCCAGAATCTTTAATTGGAGATGATCAGATTTATAACACTATTGTCACTGCCCATGCTTTTATTATAATTT	l
	6	TCTTTATAGTTATGCCTATTATAATTGGAGGATTTGGAAATTGATTAATTCCTTTAATGTTAGGAGCCCCTGATAT	
sqi	0-(AGCTTTCCCACGAATAAATAATAATAAGATTTTGATTGCTCCCCCCCTCATTAACCCTACTAATTTCAAGAAGAGTT	74
IS I	0140	GTAGAAACAGGAGTTGGAACAGGATGAACTGTTTACCCCCCCC	02
vita		GTAGATTTAGCAATCTTTTCCTTACATTTAGCTGGTATCTCATCAATTTTAGGAGCAGTAAATTTCATTACAACCA	<u>Ū</u> 1
lan	Ň	TTATTAATATACGACCTAATGGTATATCATTTGATCGTATACCTTTATTTGTTTG	U
orc	YC	TTGTTATTACTTTCTTTACCAGTATTAGCTGGTGCAATTACTATACTTTTAACTGACCGAAATCTCAATACATCTTT	l
J	Z	TTTTGACCCCGCAGGTGGTGGAGACCCAATTCTTTATCAACATTTATTT	l
		AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGTGTATTAATCCGTACAGAATTA	
па		GGAACTCCAGAATCTTTAATTGGAGATGATCAGATTTATAACACTATTGTCACTGCCCATGCTTTTATTATAATTT	l
ola	6	TCTTTATAGTTATGCCTATTATAATTGGAGGATTTGGAAATTGATTAATTCCTTTAATGTTAGGAGCCCCTGATAT	
bsc	141-0	AGCTTTCCCACGAATAAATAATAAGATTTTGATTGCTCCCCCCCC	44
SU		GTAGA A ACAGGAGTTGGA ACAGGATGA ACTGTTTACCCCCCCTCTCCTCA A AT ATCGCTCATAGAGGA AGATCT	027
ita	0	GTAGATTTAGCA ATCTTTTCCTTACATTTAGCTGGTATCTCATCA ATTTTAGGAGCAGTA A ATTTCATTACA ACCA	5
an	ZYGN		5
brd			l
J_{ℓ}			l
na		AACACITTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATTATTAAGTGTATTAATCCGTACAGAATTA	
lar		GGAACICCAGAAICITTAATIGGAGAIGAICAGATTAAACACIATIGICACIGCCCAIGCITTIATIAATIT	l
os	39^{-1}	TCTTTATAGITATGCCTATTATAATIGGAGGATTTGGAAATTGATTAATICCTTTAATGTTAGGAGCCCCCIGATAT	45
aus	14	AGCTTTCCCACGAATAAATAATATAAGATTTTGATTGCTCCCCCCCC	57
Jordanita s	ZYGMO	GTAGAAACAGGAGTTGGAACAGGATGAACTGTTTACCCCCCCC	10
		GTAGATTTAGCAATCTTTTCCTTACATTTAGCTGGTATCTCATCAATTTTAGGAGCAGTAAATTTCATTACAACCA	D
		TTATTAATATACGACCTAATGGTATATCATTTGATCGTATACCTTTATTTGTTTG	\mathbf{C}
		TIGITATTACITICITIACCAGIATTAGCIGGIGCAATTACTATACITITAACIGACCGAAATCICAATACATCITI	l
		TTTTGACCCCGCAGGTGGTGGAGACCCAATTCTTTATCAACATTTATTT	I

bsolana		AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATTACTAAGTGTATTAATCCGTACAGAATTA	
		GGAACCCCAGAATCCTTAATTGGAGATGATCAAATCTATAATACTATTGTCACAGCCCATGCTTTTATTATAATTT	
	6(TCTTTATGGTTATACCTATTATAATTGGGGGGATTTGGAAATTGATTAATTCCCTTAATATTAGGAGCCCCTGATAT	∞
	3-(AGCTTTCCCACGAATAAATAATAATAAGATTTTGATTGCTTCCCCCCTCATTAACCCTACTAATTTCAAGAAGAGTT	57
i Sh	14	GTAGAAACAGGAGTTGGAACAGGATGAACTGTTTACCCCCCCC	86
uita	40	GTAGATTTAGCAATCTTTTCTTTACATTTAGCTGGTATCTCATCAATTTTAGGAGCAGTAAATTTCATTACAACCAT	M3
lar	G	TATTAATATACGACCTAATGGTATATCATTTGATCGTATACCCTTATTTGTTTG	H
orc	Ϋ́	TATTATTACTTTCTTTACCAGTATTAGCCGGTGCAATTACTATACTTTTAACTGACCGAAATCTTTAATACATCTTTT	
7		TTTGATCCTGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATTT	
па		GGA ACCCC AGA ATCCTT A ATTGGAGATGATCA A ATCT ATA AT ACT ATTGTC AC AGCCC ATGCTTTT ATTATA ATTT	
ola		TCTTTATAGTTATACCTATTATAATTGGAGGATTTGGAAAATTGATTAATTCCCTTAATATTAGGAGCCCCTGATAT	\sim
psq	95	AGCTTTCCCACGAATAAATAATAAGATTTTGATTGCTTCCCCCCCTCATTAACCCTACTAATTTCAAGAAGAGTT	74,2
ns	01	GTAGAAACAGGAGTTGGAACAGGATGAACTGTTTACCCCCCCTCTCCTCAAATATCGCTCATAGAGGAAGATCT	05′
ita	M	GTAGATTTAGCAATCTTTTCTTTACATTTAGCTGGTATCTCATCAATTTTAGGAGCAGTAAATTTCATTACAACCAT	LU
lan	{G	TATTAATATACGACCTAATGGTATATCATTTGATCGTATACCTTTATTTGTTTG	Ð
ord	Z	TATTATTACTTTCTTTACCAGTATTAGCCGGTGCAATTACTATACTTTTAACTGACCGAAATCTTAATACATCTTTT	
r		TTTGATCCTGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATT	
	ZYGM0308-10	AACACTTTATTTTATTTTTGGAGTTTGATCAGGAATAATTGGAACATTATTAAGTGTATTAATTCGTACAGAATTG	
isis		GGAACCCCAGGTTCTTTAATTGGTGACGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTT	
ser		TTTTATGGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATTCCTTTAATATTAGGAGCTCCTGATATAG	S
ol_{8}		CCTTCCCACGAATAAATAATAATAAGATTTTGATTACTACCCCCCTCTTTAACTCTTTAATATCAAGAAGAATTGT	13
a v		AGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	LL
nit		AGATTTAGCAATCTTTTCTTTACATTTAGCAGGTATTTCATCAATTTTAGGAGCAGTAAATTTTATTACAACTATTA	Z
da		TTAATATACGTCCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	J
lor		TTATTACTTTCATTACCGGTATTAGCGGGGAGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCATTTTT	'
-		TGATCCAGCAGGTGGTGGAGATCCAATCCTTTATCAACATTTATTT	
5		AACACTTTATTTTATTTTGGAGTTTGATCAGGAATAATTGGAACATTATTAAGTGTATTAATTCGTACAGAATTA	
ısi	5-10	GGAACCCCAGGTTCTTTAATTGGTGATGATCAAATCTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTT	
gei		TTTTATAGTTATACCTATTATAATTGGTGGATTTGGGAATTGATTAATTCCTTTAATATTAGGAGCTCCTGATATAG	LL
Jov	28	CCTTCCCACGAATAAATAATAATAAGATTTTGATTGCTACCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATTGT	49
ta 1	GMO	AGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	58
mi		AGATTTAGCAATCTTTTCTTTACATTTAGCAGGTATTTCATCAATTTTAGGAGCAGTAAATTTTATTACAACTATTA	QĮ
Jorda	ίχ	TTAATATACGTCCTAATGGTATATCATTTGATCAAATACCTTTATTTGTTTG	Н
	L N	TTATTACTTTCATTGCCAGTATTAGCAGGAGCAATTACTATACTTTTAACTGATCGAAATCTTAATACATCATTTTT	
		TGATCCAGCGGGAGGTGGAGATCCAATCCTTTATCAACATTTATTT	
Jordanita volgensis	ZYGM0284-10	AACACTTTATTTTATTTTGGAGTTTGATCAGGAATAATTGGAACATTATTAAGTGTATTAATTCGTACAGAATTA GGAACCCCAGGTTCTTTAATTGGTGATGATCAAATCTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTTT TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATTCCTTTAATATTAGGAGCTCCTGATATAG CCTTCCCACGAATAAATAATATAAGATTTTGATTACTACCCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAATTGT	976
---------------------	-------------	--	----------
		AGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	HQ584
Jordanita volgensis	ZYGM0307-10	AACACTTTATTTATTTTGGGATTTGGTCAGGAATAATTGGAACATTATTAAGTGTATTAATTCGTACAGAATTA GGAACCCCAGGTTCTTTAATTGGTGACGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTT TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGGAAATTGATTAATTCCTTTAATATTAGGAGCCCCTGATATA GCCTTTCCACGAATAAATAATATAAGATTTTGATTACTACCCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAAGAATTG TAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	HQ987496
Jordanita volgensis	ZYGM0306-10	AACACTTTATTTATTTTGGGATTTGGATCAGGAATAATTGGAACATTATTAAGTGTATTAATTCGTACAGAATTA GGAACCCCAGGTTCTTTAATTGGTGACGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTTATTATAATTT TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGGAAATTGATTAATTCCTTTAATATTAGGAGCCCCTGATATA GCCTTTCCACGAATAAATAATATAAGATTTTGATTACTACCCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAAGAATTG TAGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	HQ987495

ıelia		TACATTATACTTTATTTTTGGGATTTGATCAGGTATAATCGGAACATCATTAAGATTATTAATTCGGGCAGAATTA	
		GGAAATCCCGGTTCTTTAATCGGAGATGATCAAATTTATAACACTATTGTTACAGCACATGCATTTATTATAATTT	
	0	TTTTTATAGTTATGCCAATTATAATTGGTGGATTTGGCAATTGATTAGTTCCTTTAATACTCGGAGCGCCAGATAT	6
ı aı	9-1	AGCTTTCCCTCGAATAAATAATAAAGTTTTTGACTTTTACCCCCCTCATTAACCCTATTAATTTCAAGAAGAATC	579
ygı	43	GTGGAATCAGGAGCAGGAACAGGGTGAACAGTGTACCCCCCACTTTCCTCTAATATTGCTCATAGTGGTAGATCG	87.
.do	10	GTTGACTTAGCTATTTTTCCCTTCATTTAGCTGGTATTTCTTCAATTTTAGGGGGCTATTAATTTATTACTACTATT	60
cer	G	GTTAATACGCCCTAATGGAATAACTTTTGATCAAATACCCCTATTTGTTTG	H
Dne	λ	TATTATTATCCCTACCAGTTTTAGCAGGAGCTATTACTATGTTATTAACTGACCGAAATTTAAATACCTCTTTT	
•		TTCGACCCTGCGGGAGGAGGAGGAGCCCAATTTTATACCAACATTTATT	
		CACATTATATTTTATTTTTGGAATTTGATCAGGTATGGTCGGAACATCATTAAGATTATTAATTCGGCAGAATTA	
ia		GGA A ATCCTGGCTCTTTA ATCGGAGATGATCA A ATTTATA ACACCATTGTTACAGCACATGCATTTATTATTATA ATTTA	
lən		TTTTCATAGTAATGCCAATTATAATTGGTGGATTTGGCAATTGATTAGTTCCTTTAATGCTCGGAGCACCAGATAT	\sim
ı aı	ZYGM0438- 10	AGCTTTCCCTCGAATAAATATAAAGTTTTTGACTTTTACCTCCCTC	278
vgc		TAGAATCAGGAGCAGGAACAGGGTGAACAGTGTACCCCCCACTTTCCTCTAACATTGCTCATGGTGGTAGATCAG	87:
op:		TTGACTTAGCTATTTTTTTTTTCTCTTCATTTAGCTGGTATTTCTTCAATTTTAGGAGCTATTAATTTTATTACTACTATTA	60
cer		TTAATATACGCCCTAATGGAATAACTTTTGATCAAATACCCCTATTTGTTTG	H
Энс		ATTATTATTATCCCTACCAGTTTTAGCAGGAGCTATTACTATGCTATTAACTGACCGAAATTTAAATACCTCTTTTT	
\mathbf{O}		TCGACCCTGCGGGAGGGGGGGGAGACCCAATTTTATATCAACACTTATTT	
		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
ис		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
ara	0	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGGAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	<u>`</u>
tch	3-1	AGCTTTTCCACGAATAAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATT	556
12 C	41.	GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCTCTTTCCTCAAATATTGCCCACGGAGGAAGATCA	87.
Pollanisu	10	GTAGATTTAGCTATTTTCTCATTACATTTAGCGGGAATTTCATCTATTTAGGAGCTGTAAATTTTATTACTACTAT	60
	G	TATTAACATGCGACCTAATGGAATATCATTTGACCAAATACCACTATTTGTTTG	Η
	X	TTATTACTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAAATTTAAAATACTTCATT	
		TTTTCATCCTCCACCACCACCACCACCACTACTACTACTA	

aron		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATCATAATTT	
	0	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	ŝ
uch	2-1	AGCTTTTCCACGAATAAATAATATAAGATTTTGATTATTACCCCCCTCTTTAACCCTTTTAATTTCAAGAAGAATT	55:
12 C	41	GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCCCTTTCCTCAAATATTGCCCACGGAGGAAGATCA	87
nisu	40	GTAGATTTAGCTATTTTCTCACTACATTTAGCGGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTAT	6
lar	G	TATTAACATGCGACCTAATGGAATATCATTTGACCAAATACCACTATTTGTTTG	Н
100	λ	TTATTACTTCTTTACCAGTATTAGCTGGAGCTATTACTACTACTACTGATCGAAAATTTAAATACTTCATT	
		TTTTGATCCTGCAGGAGGAGGAGATCCAATTTTATATCAACATTT	
		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
ис		GGA ACTCCTGGATCCTTA ATTGGAGATGATCA A ATTTATA ATACTATTGTA ACAGCACATGCTTTTATCATA ATTT	
an		TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	\sim
ıch	ZYGM0409- 10	AGCTTTTCCACGAATAAATAATATAAGATTTTGATTATTACCCCCCTCTTTAACCCCTTTTAATTTCAAGAAGAATT	55.
rs c		GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCCCTTTCCTCAAATATTGCCCACGGAGGAAGATCA	87
uisu		GTAGATTTAGCTATTTTCTCACTACATTTAGCGGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTAT	60
lar		TATTAACATGCGACCTAATGGAATATCATTTGACCAAATACCACTATTTGTTTG	H
100		TTATTACTTCTTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAATTTAAATACTTCATT	
ł		TTTTGATCCTGCAGGAGGAGGAGATCCAATTTTATATCAACATTTATTT	
		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
ис	0	GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATCATAATTT	
ara		TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	573
ıch	3-1	AGCTTTTCCACGAATAAATAATATAAGATTTTGATTATTACCCCCCTCTTTAACCCTTTTAATTTCAAGAAGAATT	
12 C	43	GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCCCTTTCCTCAAATATTGCCCACGGAGGAAGATCA	87
Pollanisu	40	GTAGATTTAGCTATTTTCTCACTACATTTAGCGGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTAT	6
	ß	TATTAACATGCGACCTAATGGAATATCATTTGACCAAATACCACTATTTGTTTG	Н
	λ	TTATTACTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAAATTTAAAATACTTCATT	
		TTTTGATCCTGCAGGAGGAGGAGATCCAATTTTATATCAACATTTATTT	
	1		

ron		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
hai	_ 0	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	4
ac	111 1	AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCTCCCTC	155
SH	Õ	TAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCCCCCCTTTCCTCAAATATTGCCCACGGAGGAAGATCAG	987
nis	M	TAGATTTAGCTATTTTCTCATTACATTTAGCGGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTATT	Ŏ
llan	YC	ATTAACATACGACCTAATGGAATATCATTTGACCAAATACCACTATTTGTTTG	H
DO_{1}	Ζ	TATTACTTCTTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAATTTAAATACTTCATTT	
Ţ.		TTTGATCCTGCAGGAGGAGGAGATCCAATTTTATATCAACATTTATT	
		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
ис		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
ar	0	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	ŝ
ıch	0-1	AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCTCCCTC	55
12 C	41	TAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCCCCCCTTTCCTCAAATATTGCCCACGGAGGAAGATCAG	87
isu	10	TAGATTTAGCTATTTCTCATTACATTTAGCGGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTATT	60
lan	A5	ΔΤΤΔΔCΔTΔCGΔCCTΔΔTGGΔΔTΔTCΔTTTGΔCCΔΔΔTΔCCΔCTΔTTTGTTTG	H
100	ZY(ΤΑΤΤΑCTTCTTTACCAGTATTAGCTGGAGCTATTACTACTACTACTGATCGAAAATTTAAATACTTCATT	
ł			
ис		α α α α τη τη τη τη τη τη τη τη τη τη τη τη τη	
arc		TTTTTATAGTTATACCTATTATAATACGAGGATTTGGAAAACTGATTAGTACCACATACTAGGAGCTCCAGATAT	_
ich	CGMO408- 10	AGCTTTTCCACGAATAAATAAAAGATTTTGATTATTACCTCCCTC	551
s a		TAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCCCCCCTTTCCTCAAATATTGCCCACGGAGGAAGATCAG	87:
isu		TAGATTTAGCTATTTCTCATTACATTTAGCGGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTACTATT	60
an		ATTAACATACGACCTAATGGAATATCATTTGACCAAATACCACTATTTGTTTG	H(
llo	Z	TATTACTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAATTTAAATACTTCATTT	
F		TTTGATCCTGCAGGAGGAGGAGGAGATCCAATTTTATATCAACATTTATT	
•••>		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTGATTCGAGCTGAATTG	
oni		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
ш	. 0	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	
ю	104	AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCTTCTTTAACTCTTTTAATTTCAAGAAGAATTG	54
tS (04	TAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCCCTTTCCTCAAATATTGCCCACGGGGGAAGATCAG	87
isı	M	TAGATTTAGCTATTTTCTCATTACATTTAGCAGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTATT	6
lan	ΥC	ATTAACATACGACCTAATGGAATATCATTTGATCAAATACCACTATTTGTTTG	Н
Poli	N	TATTACTTCTTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAATTTAAATACTTCATTT	
		TTTGATCCTGCAGGAGGAGGAGATCCAATTTTATATCAACATTTATTT	

moni		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTG	
		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
	0	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	∞
uo.	5-]	AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCTTCTTTAACTCTTTTAATTTCAAGAAGAATTG	54
rs c	40	TAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCCCTTTCCTCAAATATTGCCCACGGGGGAAGATCAG	87
isu	ИC	TAGATTTAGCTATTTTCTCATTACATTTAGCAGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTATT	50
lan	Ð	ATTAACATACGACCTAATGGAATATCATTTGATCAAATACCACTATTTGTTTG	Η
10c	ZΥ	TATTACTTCTTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAATTTAAATACTTCATTT	
I		TTTGATCCTGCAGGAGGAGGAGATCCAATTTTATATCAACATTTATT	
i		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTG	
ио		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
ши	<u>, </u>	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	6
cor	ZYGM0406 1	AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCTTCTTTAACTCTTTTAATTTCAAGAAGAATTG	HQ98754
SK 1		TAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCCCTTTCCTCAAATATTGCCCACGGGGGAAGATCAG	
nisı		TAGATTTAGCTATTTTCTCATTACATTTAGCAGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTATT	
lar		ATTAACATACGACCTAATGGAATATCATTTGATCAAATACCACTATTTGTTTG	
10a		TATTACTTCTTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAATTTAAATACTTCATTT	
1		TTTGATCCTGCAGGAGGAGGAGATCCAATTTTATATCAACATTTATTT	
•		AACATTATACTTTATTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTG	
iuo		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
ши	10	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	9
uoc)3-	AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCTTCTTTAACTCTTTTAATTTCAAGAAGAATTG	54
12 C	040	TAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCCCTTTCCTCAAATATTGCCCCACGGGGGAAGATCAG	987
ıisı	МС	TAGATTTAGCTATTTTCTCATTACATTTAGCAGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTATT	ğ
lan	[Ð]	ATTAACATACGACCTAATGGAATATCATTTGATCAAATACCACTATTTGTTTG	щ
Poi	Z	TACTACTTCTTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTCACTGATCGAAATTTAAATACTTCATTT	
7		TTTGATCCTGCGGGAGGAGGAGATCCAATTTTATATCAACATTTATTT	

Pollanisus commoni	ZYGM0428- 10	AACATTATACTTTATTTTGGTATTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTG GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT TTTTTATAGTTATACCTATTATAATCGGAGGAGGAGGAGGAACTGGAAACTGATTAGTACCATTAATATAGGAGCTCCAGATAT AGCTTTTCCACGAATAAATAATAAAGATTTTGATTATTACCCCCTTCTTTAACTCTTTTAATTTCAAGAAGAATTG TAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCCCCTTTCCTCAAATATTGCCCACGGGGGAAGATCAG TAGATTTAGCTATTTTCTCATTACATTTAGCAGGAACTGTTTATCCTCCCCTTTTTAGGGGGCTGTAAATTTTATTACTACTATT ATTAACATACGACCTAATGGAATATCATTTGATCAAATACCACTATTTGTTTG	HQ987568
Pollanisus commoni	ZYGM0429-10	AACATTATACTTTATTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTG GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT TTTTTATAGTTATACCTATTATAATCGGAGGATGTAGGAACTGGATAGTACCATTAATATTAGGAGCTCCAGATAT AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCTTCTTTAACTCTTTTAATTTCAAGAAGAATTG TAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCCCTTTCCTCAAATATTGCCCACGGGGGAAGAACTAG TAGATTAGCTATTTTCTCATTACATTTAGCAGGAATTTCATCTCTCTTTTAGGAGCTGTAAATTTTATTACTACTATT ATTAACATACGACCTAATGGAATATCATTTGATCAAATACCACTATTTGTTTG	НQ987569
Pollanisus eumetopus	ZYGM0407-10	AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT TTTTTATAGTTATACCTATTATAATCGGAGGATGATCAAATTTGGGAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT AGCTTTTCCACGAATAAATAATATAAGATTTTGATTATTACCCCCCCTCTTTAACTATTTAAGTACCAGGAGGAAGAATT GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCTCTTTCCTCAAATATTGCCCACGGAGGAAGAATCA GTAGATTAGCTATTTTCTCATTACATTTAGGGGGGAATTTCATCTATTTTAGGAGCTGTAAATTTTATTACTACTAT TATTAACATGCGACCTAATGGAATATCATTTGACCCCAAATACCACTATTTGTTTG	НQ987550

S		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	Q987570
		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
	- 0	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGGAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	
isu nde	1 1	AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATT	
an etc	Ŏ	GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCTCTTTCCTCAAATATTGCCCACGGAGGAAGATCA	
un Mir	M	GTAGATTTAGCTATTTTCTCATTACATTTAGCGGGAATTTCATCTATTTTAGGAGCTGTAAATTTTATTACTACTAT	
P ei	YC	TATTAACATGCGACCTAATGGAATATCATTTGACCAAATACCACTATTTGTTTG	Ε
	N	TTATTACTTCTTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAATTTAAATACTTCATT	
		TTTTGATCCTGCAGGAGGAGGAGATCCAATTTTATATCAACATTTATT	
5		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
ma		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
eto,	0	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGGAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	
mu	ZYGM0431-1	AGCTTTTCCACGAATAAATAATATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATT	НQ98757
nə :		GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCTCTTTCCTCAAATATTGCCCACGGAGGAAGATCA	
sns		GTAGATTTAGCTATTTTCTCATTACATTTAGCGGGAATTTCATCTATTTTAGGAGCTGTAAATTTTATTACTACTACTAT	
imi		TATTA ACATGCGACCTA ATGGA ATATCATTTGACCA A ATACCACTATTTGTTTGAGCTGTAGGA ATTACTGCATTA	
pHc		TTATTACTTCTTTACCAGTATTACCTGGAGCTATTACTACTACTACTGATCGAAATTTAAAATACTTCATT	
P_{c}			
SY			
ndc		GGAACICCIGGAICCITAATIGGAGAIGAICAAATITATAATACIATIGIAACAGCACAIGCITITATIATAATIT	
ıeta	10	TITITATAGITATACCTATTATAATCGGAGGATTTGGGAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	12
un.	32-	AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAATT	757
S 6)4	GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCTCTTTCCTCAAATATTGCCCACGGAGGAAGATCA	98
isu	MC	GTAGATTTAGCTATTTTCTCATTACATTTAGCGGGAATTTCATCTATTTTAGGAGCTGTAAATTTTATTACTACTAT	ğ
ollanı	Ð	TATTAACATGCGACCTAATGGAATATCATTTGACCAAATACCACTATTTGTTTG	
	Z	TTATTACTTCTTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAATTTAAATACTTCATT	
D_			1

Pollanisus lithopastus	ZYGM0419-10	AACATTATATTTTATCTTTGGAATTTGATCAGGAATAGTGGGAACTTCCTTAAGATTATTAATTCGAGCTGAATTA GGAACTCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACAATTGTTACAGCTCATGCCTTTATTATAATTT TTTTTATAGTTATACCAATTATAATTGGGGGGATTTGGAAATTGATTAGTCCCATTAATATTAGGAGCACCAGATAT AGCTTTCCCCCGAATAAATAAATAATATAAGTTTTTGACTTCTTCCCCCATCTTTAACCCTTCTAATTTCAAGAAGAATTG	7562
		TAGAAACTGGGGCAGGAACTGGATGAACGGTTTACCCCCCCC	НО98
Pollanisus sp. 5	ZYGM0434-10	AACATTATACTTTATTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA GGAACTCCCGGGTCCTTAATTGGAGATGATCAAATTTATAATACCATTGTAACAGCACATGCTTTTATTATAATTT TTTTTATAGTTATACCTATTATAATTGGAGGATGTCAAAATTTGGAAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT AGCTTTTCCACGAATAAATAATATAAGATTTTGATTACTACCCCCTTCTTTAACTCTTTTAATTTCAAGAAGAATC GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCCCCCTCTTTCCTCAAATATTGCTCACGGGGGAAGATCA GTAGATTTAGCTATTTTCTCATTGCATTTAGCAGGAACTGTTTATCCCCCTCTTTTAGGAGCTGTAAATTTTATTACTACTAT TATTAACATACGACCTAATGGAATATCATTTGATCCAAATACCACTATTTGTTTG	HQ987574
Pollanisus sp. 6	ZYGM0416-10	AACATTATACTTTATTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCCCCAGATAT AGCTTTTCCACGAATAAATAATATAAGATTTTGATTATTACCCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAATT GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCTCTTTCCTCAAATATTGCCCACGGAGGAAGAACA GTAGATTTAGCTATTTTCTCATTACATTTAGCGGGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTAT TATTAACATACGACCTAATGGAATATCATTTGACCAAATACCACTATTTGTTTG	НQ987559

s sp. 6		AACATTATACTTTATTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
	.1 0	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCCCCAGATAT	
	$\frac{118}{1}$	AGCTTTTCCACGAATAAATAATATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAATT	56
isu	070	GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCTCTTTCCTCAAATATTGCCCACGGAGGAAGATCA	87
an	M	GTAGATTTAGCTATTTTCTCATTACATTTAGCAGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTAT	Š
110.	YC	TATTAACATACGACCTAATGGAATATCATTTGACCAAATACCACTATTTGTTTG	H
P	Ζ	TTATTACTTCTTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAATTTAAATACTTCATT	
		TTTTGATCCTGCAGGAGGAGGAGATCCAATTTTATATCAACATTTATT	
		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
10		GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
j . (0]	TTTTTATAGTTATACCTATTATAATCGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCCCCAGATAT	0
s sl	ZYGM0417-1	AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAATT	56
isu		GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCTCTTTCCTCAAATATTGCCCACGGAGGAAGATCA	87
an		GTAGATTTAGCTATTTTCTCATTACATTTAGCAGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTAT	Ď
110,		TATTAACATACGACCTAATGGAATATCATTTGACCAAATACCACTATTTGTTTG	H
P		TTATTACTTCTTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGGAATTTAAATACTTCATT	
		TTTTGATCCTGCAGGAGGAGGAGATCCAATTTTATATCAACATTTATT	
		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
	C	GGAACTCCTGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTAT	
. 7		TTTTTATAGTTATACCTATTATAATTGGAGGATTTGGAAAACTGATTAGTACCATTAATATTAGGAGCTCCAGATAT	57
ds		AGCTTTTCCACGAATAAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTAATTCAAGAAGAATT	
sns	11	GTAGA & ACAGGAGCAGGA ACTGGATGA ACTGTTTATCCTCCTCTTTCCTCA & ATATTGCCCCACGGAGGA & GATCA	875
Pollanis	Õ	GTAGATTTAGCTATTTCTCATTACATTTAGCCGGAATTTCATCTATTTAGCGGCTGTAAAATTTTATTACTACTAT	60
	N2		H
	ΥC		
	Ζ		
		IIIIGAICCIGCAGGAGGAGGAGAICCAAIIIIAIAICAACAIITATT	

		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
s sp. 7		GGAACTCCCGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT) x
	10	TTTTTATAGTTATACCTATTATAATTGGAGGATTTGGAAAACTGATTAGTACCATTAATATTAGGAACTCCAGATAT	
	5-	AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTAATTTCAAGAAGAATT	55
isu)41	GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCTCTTTCCTCAAATATTGCCCACGGAGGAAGATCA	87
an	MC	GTAGATTTAGCTATTTTCTCATTACATTTAGCGGGAATTTCATCTATTTTAGGGGGCTGTAAATTTTATTACTACTAT	Ϊĝ
llo	5	TATTAACATACGACCTAATGGAATATCATTTGATCAAATACCACTATTTGTTTG	
P	ΧZ	TTATTACTTCTTTCTTTACCAGTATTAGCTGGAGCTATTACTATACTACTACTGATCGAAATTTAAATACTTCATT	
		TTTTGATCCTGCAGGAGGGGGGGAGATCCAATTTTATATCAACATTTATTT	
		ATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTTTTTTT	1
		GGAGGATTTGGAAACTGACTAGTACCATTAATATTAGGAGCTCCAGATATAGCTTTTCCACGAATAAATA	L
us a	- 0	AGATTTTGATTATTACCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAATTGTAGAAACAGGAGCAGGAACTGGAT	23
nisı los	42(1	GAACTGTTTATCCTCCTCTTTCCTCAAATATTGCCCCATGGAGGAAGATCAGTAGATTTAGCTATTTTCTCATTACAT	12
llan odo	10	TTAGCGGGAATTTCATCTATTTAGGAGCTGTAAATTTTATTACTACTATTATTAACATGCGACCTAATGGAATAT	66
Po	G	CATTTGATCAAATACCACTATTTGTTTGAGCTGTGGGAATTACTGCATTATTATTACTTCTTTCT	ΗČΗ
	ZYc	GCTGGAGCTATTACTATACTACTGATCGAAATTTAAATACTTCATTTTTGATCCTGCAGGAGGGGGGGAGATC	1
		CAATTTTATATCAACATTTATTT	
a		AACATTATACTTTATTTTTGGTATTTGATCAGGAATAGTAGGAACTTCTCTAAGATTATTAATTCGAGCTGAATTA	
los		GGAACTCCCGGATCCTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATTT	
op	~ O	TTTTTATGGTTATACCTATTATAATTGGAGGATTTGGAAAACTGACTAGTACCATTAATATTAGGAGCTCCAGATAT	4
qns	423 1	AGCTTTTCCACGAATAAATAATAATAAGATTTTGATTATTACCCCCCTCTTTAACTCTTTTAATTTCAAGAAGAATT	756
rs 7	Q	GTAGAAACAGGAGCAGGAACTGGATGAACTGTTTATCCTCCTCTTTCCTCAAATATTGCCCATGGAGGAAGATCA	98
ıisı	AD V	GTAGATTTAGCTATTTTCTCATTACATTTAGCGGGGAATTTCATCTATTTTAGGAGCTGTAAATTTTATTACTACTAT	Ĩĝ
lar	X	TATTAACATGCGACCTAATGGAATATCATTTGATCAAATACCACTATTTGTTTG	
10a	Ν	TTATTACTICITTCTTTACCAGTATTAGCIGGAGCTATTACTATACTA	
r			,
ntc			
ule	37- 10		
ver)43	GTAGAAAGAGAACAGGAACAGGAACTGGAACAGTTTACCCCCCTCTCTCATCTAATATTGCTCATAGAGGAAGAATA	875
olla	MC	GTAGATTTAGCTATTTTTCCCTTCATTTAGCCGGAACTCCTCTCTCT	<u>, 1</u> 86
P_{ζ}	<u>5</u>	TATTAATACGCCCTAACGGAATATCTTTTGATCAAATACCCCTATTTGTTTG	H(
viri	Z	CTTTTATTACTATCTTTACCAGTATTAGCTGGAGCTATTACTATACTTTTAACTGATCGAAATCTAAATACTTCTTT	
		TTTTGACCCTGCAGGAGGAGGAGATCCAATTTTATATCAACATTTT	

enta		AACATTATACTTTATTTTTGGAATTTGATCAGGAATAGTAGGAACTTCCTTAAGATTATTAATTCGTGCTGAACTT	ł
		GGAACTCCCGGATCTTTAATTGGTGATGACCAAATTTATAATACAATTGTTACAGCCCATGCTTTCATCATAATTT	
	0	TTTTTATGGTAATACCAATTATAATTGGAGGATTTGGAAAATTGATTAGTTCCCTTAATATTAGGAGCACCTGATAT	2
sus	6-1	AGCTTTCCCACGAATAAATAATATAAGTTTCTGATTATTACCCCCATCTTTGACCCTATTGATCTCAAGAAGAATT	57(
ani Ive	43	GTAGAAACAGGAGCAGGAACTGGATGAACAGTTTACCCCCCTCTCTCATCTAATATTGCCCATAGAGGAAGATCA	87
ollo pui	10	GTAGATTTAGCTATTTTTCCCTTCATTTAGCTGGGATTTCTTCTATTTTAGGGGGCTGTAAATTTCATTACAACTAT	60
P idi	ß	TATTAATATACGCCCTAATGGAATATCCTTTGATCAAATACCCCTATTTGTTTG	Η
vir	ZΥ	CTTTTATTATTATCTTTACCAGTATTAGCTGGAGCTATTACTATACTTTTAACCGATCGAAATCTAAATACTTCTTT	
		TTTTGACCCTGCGGGAGGGGGGGGAGATCCAATTTTATATCAACATTTATTT	
		AACACTTTATTTTATTTTTGGAATTTGATCTGGAATAATAGGAACCTCTTTAAGTTTATTAATCCGAGCAGAATTA	
a		GGAACACCTGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTTATTATAATTT	
sin	60-	TTTTCATAGTTATACCTATTATAATTGGAGGATTTGGAAATTGATTAATTCCTTTAATATTAGGAGCCCCTGATAT	
та	ZYGMO018-	AGCTTTTCCACGTATAAATATAAAGATTTTGATTATTACCCCCCCTCATTATTACTTTTAATTTCAAGAAGAAGAATTG	265
s a		TAGAAATAGGAGCAGGAACTGGATGAACTGTGTGTGCCCCCACTATCTTCCAATATCGCTCATAGAGGAAGATCTG	050
opi		TTGATTTAACAATTTTCTCCCTTCATTTAGCAGGAATTTCTTCAATTTTAGGTGCAATTAATT	GU7
ıBı		ATTAATACGCCCTAATGGTATATTATTTGATCAAATACCATTATTTGTTTG	
Rhu		TATTATTACTTTCCCTTCCAGTATTAGCAGGAGCAATTACTATACTATTAACAGATCGAAATATTAATACTTCTTTT	
		TTTGATCCAGCAGGAGGAGGAGGAGATCCAATTCTTTATCAACATTTATTT	
		AACACTTTATTTTATTTTGGAATTTGATCTGGAATAATAGGAACCTCTTTAAGTTTATTAATCCGAGCAGAATTA	
na	6	GGAACACCTGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTTATTATAATTT	2
asi	0	TTTTCATAGTTATACCTATTATAATTGGAGGATTTGGAAAATTGATTAATTCCTTTAATATTAGGAGCCCCTGATAT	
nma)16	AGCTTTTCCACGTATAAATAATAATAAGATTTTGATTATTACCCCCCTCATTATTACTTTTAATTTCAAGAAGAATTG	70
) Si	Ŏ	TAGAAATAGGAGCAGGAACTGGATGAACTGTGTACCCCCCACTATCTTCCAATATCGCTCATAGAGGAAGATCTG	'05
эрt	Ϋ́	TTGATTTAACAATTTTCTCCCTTCATTTAGCAGGAATTTCTTCAATTTTAGGTGCAATTAATT	LU 1
agi	ΥC	ATTAATATACGCCCTAATGGTATATTATTTGATCAAATACCATTATTTGTTTG	0
Rh	Z	TATTATTACTTTCCCTTCCAGTATTAGCAGGAGCAATTACTATACTATTAACAGATCGAAATATTAATACTTCTTTT	
		TTTGATCCAGCAGGAGGAGGAGATCCAATTCTTTATCAACATTTATT	

ndti		AACACTTTATTTCATTTTTGGAATTTGATCTGGAATATTAGGAACTTCTTTAAGTTTATTAATTCGAGCAGAATTA	
		GGAACTCCAGGATATTTAATTAGAGATGATCAAATTTATAATACAATTGTAACAGCTCATGCTTTTATTATAATTT	
	-1(TTTTTATAGTCATACCTATTATAATTGGTGGATTTGGAAATTGATTAATTCCCTTAATGTTAGGAGCTCCCGATAT	+
bra	30	AGCTTTCCCTCGTATAAATAATATAAGATTTTGGTTACTTCCCCCATCATTAACCCTCTTAATTTCAAGAAGAATT	92
ss l	02	GTAGAAAAGGAGCAGGAACTGGATGAACTGTGTACCCCCCACTTTCATCTAATATTGCTCATAGAGGAAGATCT	84
ade	M	GTAGATTTAGCTATTTTTTTTTTTTTACATTTAGCGGGAATTTCCTCAATTTTAGGAGCAATTAATT	Q5
ag	YC	TATTAATATACGACCTAATGGTATAATATTTGACCAAATACCTTTATTTGTTTG	H
Rh	Z	TTATTACTTTCCCTCCCAGTATTAGCGGGGGGGGGGGGG	
		TTTTGATCCTGCAGGAGGAGGAGAGATCCTATTCTTTATCAACATTTATTT	
		AACATTATATTTTATATTTGGAATTTGAGCTGGAATAGTAGGAACATCATTAAGATTATTAATTCGAGCAGAATTA	
2		GGA A ATCCTGG ATCTCT A ATTGGTGATG ATG ATC A A ATTTATA AT ACT ATTGTA AC AGC AC ACGCTTTC ATTATA ATTT	
знс		TCTTTATAGTTATACCTATTATAATTGGAGGATTTGGAAATTGGATAGTTCCTTTAATATTAGGTGCTCCAGATAT	
Ш.	ZYGM0463- 10	AGCTTTCCCACGAATAAATAATATAAGTTTTTGATTATTACCCCCCCTCATTAATATTATTAATTTCAAGAAGAATT	HQ987600
a a		GTAGAAAGAGGAGCAGGTACAGGTTGAACTGTTTATCCTCCTTTATCTTCTAATATCGCACACAGCGGAAGATCT	
en		GTAGATTTAGCTATTTTTTTTTTTTTTACATTTAGCTGGAATCTCATCAATTTTAGGAGCTGTAAATTTTATTACTACTAT	
<i>180</i>		TATTAATATACGACCCTATGGTATAAGTTTCGATCAAATACCTTTATTTGTTTG	
Ń		TATTACTTTTATCTTTACCAGTTTTAGCAGGAGCTATTACTATACTATACTTTAACAGATCGAAATTTAAATACTTCATTC	
		TTTGATCCTGCAGGAGGGGGGGGAGATCCAATTTTATATCAACATTTATTT	
		AACACTATATTTTTTTTTTGGAATTTGATCAGGAATAGTGGGAACTTCTTTAAGATTATTAATCCGGGCAGAATTA	
sa		GGAAATCCTGGATCATTAATTGGAGATGATCAAATTTACAACACTATTGTGACGGCTCATGCTTTTATTATAATTT	
yse	0	TCTTTATAGTTATACCTATTATAATTGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGGGGCTCCAGATAT	0987519
mb	9-1	AGCCTTTCCACGAATAAATAATATAAGTTTTTGATTATTACCTCCATCATTAATATTATTAATTTCAAGAAGAATT	
са	36	GTTGAAAATGGTGCTGGTACAGGATGAACTGTTTATCCTCCTCTAGCATCCAATATTGCTCATGGGGGGAAGATCT	
Zygaena	40	GTTGATTTAGCTATTTTTTCCTTACACTTAGCAGGAATTTCTTCAATCTTAGGAGCTGTAAATTTTATTACAACTAT	
	G	TATTAATATACGACCTTATGGAATAAGATTTGATCAAATACCTCTATTTGTATGATCTGTAGGTATTACTGCTTTA	Η
	ZY	CTTTTATTACTTTCTTTGCCAGTACTAGCTGGTGCAATTACTATACTATACAGATCGAAATTTAAATACTTCATT	
		TTTCGATCCTGCTGGGGGGGGGGGGGGGGGGGGGGGGGG	

na carniolica	MO464-10	AACTTTATATTTTATATTTGGAATTTGATCTGGAATAGTTGGTACATCTTTAAGATTATTAATTCGAGCAGAATTA GGAAATCCTGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTTACAGCTCATGCTTTTATTATAATTTT TTTTATAGTTATACCAATTATAATTGGAGGATTTGGAAAATTGGAAATTGATTAGTACCTTTAATATTAGGAGGCTCCAGATATG GCTTTTCCTCGAATAAATAATATAAGTTTTTGATTATTACCCCCCCTCATTAATATTATTAATTTCAAGAAGAAGAAGTGT AGAAAGAGGAGCAGGTACAGGTTGAACAGTTTATCCTCCTCTCTCATCTAATATTGCTCATGGAGGAAGAATCAGT AGATTTAGCTATTTTTTTTTT	HQ987603
Zyga	ZYG	TCAATATACGACCTTATGGAATAAGATTTGATCAAATACCTCTTTTTGTTTG	
		TTGATCCTGCAGGAGGAGGAGATCCTATTCTTTATCAACATTTATT	
Zygaena chirazica	ZYGMO380-10	AACATTATATTTTATATTTGGAATTTGAGCTGGAATAGTAGGAACATCATTAAGATTATTAATTCGAGCAGAATTA GGAAATCCTGGATCTTTAATTGGAGATGATCAAATTTATAACACTATTGTAACAGCACACGCTTTTATTATAATTT TTTTCATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCCGATATA GCCTTCCCACGAATAAATAATATAAGTTTTTGATTATTACCCCCCATCACTAATATTATTAATTTCGAGAAGAAGAATTG TAGAAAGAGGAGCAGGTACAGGTTGAACAGTTTACCCACCTCTATCTTCTAATATTGCACATGGAGGAAGAATCTG TAGATTAGCTATTTTTTCCCTACATTTAGCTGGAATTTCATCAATTTTAGGAGCTGTAAATTTTATTACTACTATT ATTAATATACGACCCTATGGTATAAATTTTGACCAAAATACCTCTATTTGTTTG	НQ987524
Zygaena cocandica	ZYGM0373- 10	AACATTATATTTTATATTTGGAATTTGAGCTGGAATAGTAGGAACATCATTAAGACTATTAATTCGAGCAGAATT AGGAAATCCTGGATCTTTAATTGGAGATGATCAAATTTATAATACTATCGTAACAGCTCATGCTTTTATTATAATT TTTTTTATAGTTATACCTATTATAATTGGAGGATTCGGAAATTGATTAGTTCCTTTAATATTAGGTGCTCCAGATAT AGCTTTCCCACGAATAAATAATATAAGTTTTTGATTACTACCTCCTTCATTAATATTACTCATCTCAAGAAGAAGT GTAGAAAGAGGAGCAGGTACAGGTTGAACAGTTTACCCGCCTTTATCCTCCAATATTGCACATAGAGGAAGAATT GTAGATTAGCTATTTTTTTTTT	НQ987521

candica		AACATTATATTTTATATTTGGAATTTGAGCTGGAATAGTAGGAACATCATTAAGATTATTAATTCGAGCAGAATTA	
		GGAAATCCTGGATCTTTAATTGGAGATGATCAAATTTATAATACTATCGTAACAGCACATGCTTTTATTATAATTT	
	0	TTTTTATAGTTATACCTATTATAATTGGAGGAGTTTGGGAATTGATTAGTTCCCTTAATATTAGGTGCTCCAGATAT	0
	2-1	AGCTTTCCCACGAATAAATAATAATAAGTTTTTGATTATTACCTCCTTCATTAATATTATTAATTTCAAGAAGAATT	152
00	372	GTAGAAAGAGGAGCAGGTACAGGTTGAACAGTTTACCCCCCTTTATCTTCTAATATCGCACATGGGGGAAGATCT	81
па	Õ	GTAGATTTAGCTATTTTTTTTTTTTTTACATTTAGCTGGAATTTCATCAATTTTAGGAGCTGTAAATTTTATTACCACCAT	Ŏ
gae	ND ND	TATTAATATACGACCTTACGGTATAAGATTTGATCAAATACCATTATTTGTTTG	Н
Zy8	ΥC	TTATTACTTTTATCATTACCAGTTTTAGCGGGAGCTATTACTATACTATACAGATCGAAATTTAAATACTTCATT	
	Ζ	TTTTGATCCTGCAGGAGGAGGTGACCCAATTCTTTACCAACATTTATTT	
		AACTTTATATTTTTATTTGGAATCTGATCTGGAATAGTAGGAACTTCTTTAAGATTATTAATTCGAGCAGAATTA	
<i>.</i> .		GGAAATCCTGGATCATTAATTGGTGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTTATTATAATTT	
vie	- 0	TCTTCATAGTTATACCTATTATAATTGGAGGATTTGGAAAACTGATTAGTACCATTAATGTTAGGAGCTCCTGATAT	НQ987598
cm	ZYGM0459 1	AGCTTTCCCACGAATAAATAATAATAAGTTTTTGATTATTACCACCATCATTAATATTATTAATTTCAAGAAGAATC	
ia i		GTAGAAAGAGGAGCTGGTACAGGTTGAACAGTTTATCCCCCATTAGCATCTAACATCGCTCACAGAGGAAGATC	
ıər		AGTTGATTTAGCTATTTTTTTTTTTTTACACTTAGCTGGTATCTCATCAATTTTAGGAGCTGTAAACTTTATTACCACTA	
ygı		TTATTAATATACGACCTTATGGAATAAGATTTGATCAAATACCCCTATTTGTTTG	
Ŋ.		ACTTTTATTACTTTCATTGCCAGTATTAGCTGGTGCTATTACTATACTTTTAACTGATCGAAACTTAAATACTTCAT	
		TTTTTGACCCTGCTGGAGGGGGGGAGATCCAATTCTTTAT	
		AACTTTATATTTTTATTTGGAATCTGATCTGGAATAGTAGGAACTTCTTTAAGATTATTAATTCGAGCAGAATTA	
i	0	GGAAATCCTGGATCATTAATTGGTGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTTATTATAATTT	
ier		TCTTCATAGTTATACCTATTATAATTGGAGGATTTGGAAACTGATTAGTACCATTAATGTTAGGAGCTCCTGATAT	
л <i>т</i> .	8-]	AGCTTTCCCACGAATAAATAATAATAAGTTTTTGATTATTACCACCATCATTAATATTATTAATTTCAAGAAGAATC	87597
a c	45	GTAGAAAGAGGAGCTGGTACAGGTTGAACAGTTTATCCCCCATTAGCATCTAACATCGCTCACAGAGGAAGATC	
Zygaen	40	AGTTGATTTAGCTATTTTTTTTTTTTTTACACTTAGCTGGTATCTCATCAATTTTAGGAGCTGTAAACTTTATTACCACTA	6
	G	TTATTAATATACGACCTTATGGAATAAGATTTGATCAAATACCCCCTATTTGTTTG	Н
	Υ	ACTTTTATTACTTTCATTGCCAGTATTAGCTGGTGCTATTACTATACTTTTAACTGATCGAAACTTAAATACTTCAT	
	N	TTTTTGACCCTGCTGGAGGGGGGGAGATCCAATTCTTTAT	

ıena escalerai	ZYGM0376-10	AACATTATATTTCATATTTGGAATTTGGGCTGGAATAGTAGGAACATCATTAAGATTATTAATTCGAGCAGAATT AGGAAATCCTGGATCCTTAATTGGTGATGATCAAATTTACAATACTATCGTAACAGCTCATGCTTTTATTATAATT TTCTTTATAGTTATACCTATTATAATTGGAGGAGTTTGGAAATTGGACAATTGACTAGTTCCTTTAATATTAGGTGCCCCAGATA TAGCTTTCCCACGAATAAATAATAATATAAGTTTTTGATTATTACCCCCCCTCATTAATATTATTAATTTCAAGAAGAAGAAG TGTAGAAAGAGGAGCAGGTACAGGTTGAACTGTTTATCCCCCCCC	НQ987522
Zy_{B}		TTATTACTTCTATCTTTACCAGTTTTAGCTGGAGCTATTACTATACTATACTTTAACAGATCGAAATTTAAATACTTCATT CTTTGATCCTGCAGGAGGAGGGGGGATCCAATTTTATATCAACATTTATT	
Zygaena formosa	ZYGM0460-10	AACATTATATTTTATATTTGGAATTTGAGCTGGAATAGTAGGAACATCATTAAGATTATTAATTCGAGCAGAATTA GGAAATCCTGGATCTCTAATTGGTGATGATCAAATTTATAATACTATCGTAACAGCACATGCTTTTATTATAATTT TTTTTATAGTTATACCTATTATAATTGGAGGATTTGGAAATTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCAGACAT AGCATTCCCACGAATAAATAACATAAGTTTTTGATTATTGCCTCCCTC	НQ987599
Zygaena haematina	ZYGM0364- 10	TTTGGAATTTGATCTGGAATAGTAGGAACTTCTTTGAGATTATTAATTCGAGCAGAATTAGGAAATCCTGGATCA CTAATTGGTGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTCATTATAATTTTCTTCATAGTTATACC TATTATAATTGGGGGGATTTGGAAATTGATTAGTACCATTAATATTAGGAGCTCCTGACATAGCTTTCCCACGAATA AATAATATAAGTTTTTGATTACTACCACCATCATTAATATTAATTTAATTTCAAGAAGAATCGTAGAAAGAGGAGCT GGCACAGGTTGAACAGTTTACCCCCCCATTAGCATCTAATATTGCTCACGGGGGAAGATCAGTTGATTTAGCTATTT TTTCCTTACACTTAGCTGGTATCTCATCAATATTTAGGAGCTGTAAACTTTATTACCACTATTATTAATATACGACCT TATGGAATAAGATTTGATCAGATACCCCTATTTGTTTGATCTGTAGGTATTACCGCTTTACTTTATTAATATACGACCT ACCAGTATTAGCTGGTGCTATCACTATACTTTTAACTGATCGAAACTTAAATACTTCATTTTTGACCCTGCTGGA GGGGGGGGATCCAATTCTATACTATCAACTTTATTACTATTTGACCCTGCTGGA	НQ987517

aematina		GGATCACTAATTGGTGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTCATTATAATTTTCTTCATAGT	16
		TATACCTATTATAATTGGGGGGATTTGGAAATTGATTAGTACCATTAATATTAGGAGCTCCTGACATAGCTTTCCCA	
	10 3-	CGAATAAATAATATAAGTTTTTGATTACTACCACCATCATTAATATTATTAATTTCAAGAAGAATCGTAGAAAGA	
	36	GGAGCTGGCACAGGTTGAACAGTTTACCCCCCATTAGCATCTAATATTGCTCACGGGGGAAGATCAGTTGATTTA	375
a 1	40	GCTATTTTTTCCTTACACTTAGCTGGTATCTCATCAATTTTAGGAGCTGTAAACTTTATTACCACTATTATTAATAT	362
nən	5	ACGACCTTATGGAATAAGATTTGATCAGATACCCCTATTTGTTTG	H(
ygu	ZΥ	TTTCACTACCAGTATTAGCTGGTGCTATCACTATACTTTTAACTGATCGAAACTTAAATACTTCATTTTTGACCCT	
N		GCTGGAGGGGGGGGGGGCATCCAATTCTATATCAACATCTATTT	
		AACTTTATATTTTTATTTGGAATTTGATCTGGAATAGTAGGAACTTCTTTGAGATTATTAATTCGAGCAGAATTA	
па		GGAAATCCTGGATCACTAATTGGTGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTCATTATAATTT	
ati	10	TCTTCATAGTTATGCCTATTATAATTGGAGGATTTGGAAAATTGATTAGTACCATTAATATTAGGAGCTCCTGACAT	S
тө	2-	AGCTTTCCCACGAATAAATAATAATAAGTTTTTGATTACTACCACCATCATTAATATTATTAATTTCAAGAAGAATC	51
Ча)36	GTAGAAAGAGGAGCTGGCACAGGTTGAACAGTTTACCCCCCATTAGCATCTAATATTGCTCACGGAGGAAGATC	987
ena	M	AGTTGATTTAGCTATTTTTTCCTTACACTTAGCTGGTATCTCATCAATTTTAGGGGGCTGTAAACTTTATTACCACTA	НÓ
gae	$[\mathbf{D}]$	TTATTAATATACGACCTTATGGAATAAGATTTGATCAAATACCCCTATTTGTTTG	
Z	ΥZ	ACTTTTATTACTTTCACTACCAGTATTAGCTGGTGCTATCACTATACTTTTAACTGATCGAAACTTAAATACTTCAT	
		TTTTTGACCCTGCTGGGGGGGGGGGGGGGGGGGGGGGGG	
7		AACTTTATATTTTTATTTGGAATTTGATCTGGAATAGTAGGAACTTCTTTGAGATTATTAATTCGAGCAGAATTA	14
tin		GGAAATCCTGGATCACTAATTGGTGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTCATTATAATTT	
та	AO361- 10	TCTTCATAGTTATGCCTATTATAATTGGAGGATTTGGAAAATTGATTAGTACCATTAATATTAGGAGCTCCTGACAT	
aei		AGCITICCCACGAATAAATATATAAGITITIGATTACTACCACCATCATTAATATTATTAATTICAAGAAGAATC	15
a h			860
nəı	5	TTATTATTATTACCACCTTATCCALACTIACCICGUATCACCICATCAATTTAGGGGGCIGIAAACTITATIACCACIA TTATTAATACCACCTTATCCAATAACATTCATCAAATACCCCCTATTTCATTCATCCTCTACCTATTACCCCCTTT	ОН
ygc	ZY	ACTTTTATTACTATCACTACCAGTATTAGCTGGTGCTATCACTATACTTTTAACTGATCGAAACTTAAAATACCTCAT	
Ŋ.		TTTTTGACCCTGCTGGGGGGGGGGGGGGGGGGGGGGGGG	
~		TTGGTGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTTATTATAATTTTCTTCATAGTTATACCTATT	
inc		ATAATTGGAGGATTTGGAAACTGATTAGTACCATTAATATTAGGAGCTCCTGATATAGCTTTTCCACGAATAAAT	
nai	1 ⁻ 0	AATATAAGTTTTTGATTATTACCACCATCATTAATATTATTAATTTCAAGAAGAATCGTAGAAAGAGGAGCTGGT	18
aer	365 1	ACAGGTTGAACAGTTTATCCCCCATTAGCATCTAATATTGCTCATGGAGGAAGATCAGTTGATTTAGCTATTTTT	75
u h	10	CCTTACACTTAGCCGGTATCTCGTCAATTTTAGGAGCTGTAAACTTTATTACTACTATTATTAATATACGACCTTAT	86
ena	ß	GGAATAAGATTTGATCAAATACCCCTATTTGTTTGATCTGTAGGTATTACTGCTTTACTTTATTACTTTCATTACC	НС
vga	X	AGTATTAGCTGGTGCTATCACTATACTTTTAACTGATCGAAATTTAAATACTTCATTTTTTGATCCTGCTGGAGGA	
Ŋ		GGAGATCCAATTCTCTATCAACATCTATTT	

Zygaena naumanni	ZYGM0378-10	AACATTATATTTTATATTTGGAATTTGAGCTGGAATAGTAGGAACATCATTAAGACTATTAATTCGAGCAGAATT AGGAAATCCCGGATCTTTAATTGGGGGATGATCAAATTTATAATACTATTGTAACAGCACATGCTTTTATTATAATT TTTTTTATAGTTATACCTATTATAATCGGTGGATTTGGAAATTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCAGATAT AGCTTTCCCACGAATAAATAATATAAGTTTTTGATTATTACCCCCCATCATTAATATTATTAATTTCAAGAAGAAGAATT GTAGAAAGAGGAGCGGGCACAGGTTGAACAGTTTACCCACCTCTATCTTCTAATATTGCACATGGGGGGAGAATCT GTAGATTAGCTATTTTTCCTTACATTTAGCTGGAATTCATCATCATCTATTTAGGAGCTGTAAATTTTATTACTACTAT TATTAATATACGACCCTATGGTATAAATTTTGACCAAGGCTGTAAATTTTGCACGAGGTATTACCGCATTA TACTACTTTTATCATTACCAGTTTTAGCAGGAGCTATTACTATACTTTTAACAGATCGAAATTTAAATACCGCATTA	НQ987523
		TTTTGATCCTGCAGGAGGAGGTGATCCAATTCTCTACCAACATTTATTT	
Zygaena olivieri	ZYGM0462-10	AACATTATACTTTATATTTGGAATTTGATCCGGAATAGTAGGAACATCATTAAGATTATTAATTCGAGCAGAATTA GGAAATCCTGGATCTTTAATTGGAGATGATCAAATCTATAGTACTATTGTAACAGCGCATGCCTTTATTATAATTT TTTTTATAGTTATACCTATTATAATTGGAGGAGGATTTGGAAAATTGATTAGTTCCTTTAATATTAGGAGCTCCAGATAT AGCTTTCCCACGAATAAATAATATAAGTTTTTGATTATTGATATCCCCCCTTCATTAATATTATTAATTTCGAGAAGAAGAATT GTAGAAAGAGGAGCAGGTACAGGTTGAACAGTTTATCCCCCCCTATCTTCTAATATTGCACATGGTGGAAGATCC GTAGATTAGCTATTTTTTCCTTACATTTAGCTGGAATCTCATCATCATTTAGGGGGCTGTAAATTTTATTACTACTAT TATTAATATACGACCTTATGGTATAAGTTTTGATCCAAATACCCCTATTTGTTTG	HQ987601
Zygaena olivieri	ZYGM0461- 10	AACATTATACTTTATATTTGGAATTTGATCTGGAATAGTAGGAACATCATTAAGATTATTAATTCGAGCAGAATTA GGAAATCCTGGATCTTTAATTGGAGATGATCAAATCTATAATACTATTGTAACAGCGCATGCCTTTATTATAATTT TTTTTATAGTTATACCTATTATAATTGGAGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCAGATAT AGCTTTCCCACGAATAAATAATATAAGTTTTTGATTATTACCCCCCCTCATTAATATTATTAATTTCGAGAAGAAGAATT GTAGAAAGAGGAGCAGGTACAGGTTGAACAGTTTATCCCCCCCC	НQ987600

na osterodensis	GMO471-10	AACTTTATATTTTATATTTGGAATTTGAGCTGGAATATTAGGAACATCTTTAAGATTATTAATTCGAGCGGAATTA GGTAACCCAGGATCTTTAATCGGAGATGATCAAATTTACAATACTATTGTCACAGCTCATGCTTTCATTATAATTT TTTTTATAGTTATGCCCATTATAATCGGGGGGATTTGGTAATTGATTAGTGCCACTAATATTAGGAGCCCCAGATAT AGCTTTCCCACGTATAAATAATATAAGATTTTGACTATTACCCCCCTCATTAATATTATTAATTTCAAGTAGAATT GTAGAAAGAGGAGCAGGTACAGGTTGAACAGTTTACCCCCTCTTTCATCTAATATTGCCCACGGCGGAAGATCG GTTGACCTAGCAACTTTTTCCCTACATTTAGCTGGTATTCCTCAATCTTGGGAGCTGTGAACTTTATTACCACTAT	HQ987605
Zyga	ZY	CTTCTCTTACCAGTTGCCAGTTTTAGCTGGTGCTATTACCATACTTTTAACAGATCGAAATTTAAATACTTCATT	
		TTTTGACCCTGCTGGAGGGGGTGACCCAATCCTCTACCAACACTTATTT	
Zygaena tamara	ZYGM0360- 10	AGGAACTTCTTTAAGATTATTAATTCGAGCAGAATTAGGAAATCCTGGATCATTAATTGGTGATGATCAAATTTAT AATACTATTGTAACAGCTCATGCTTTTATTATAATTTCTTCATAGTTATAACCTATTATAATTGGAGGAGTTGGAAAA CTGATTAGTACCATTAATGTTAGGAGCTCCTGATATAGCTTTCCCACGAATAAATA	HQ987513
Zygaena tamara	ZYGM0359-10	AACTTTATATTTTTATTTGGAATCTGATCTGGAATAGTAGGAACTTCTTTAAGATTATTAATTCGAGCAGAATTA GGAAATCCTGGATCATTAATTGGTGATGATCAAATTTATAATACTATTGTAACAGCTCATGCTTTTATTATAATTT TCTTCATAGTTATACCTATTATAATTGGAGGAGTTTGGAAACTGATTAGTACCATTAATGTTAGGAGCTCCTGATAT AGCTTTCCCACGAATAAATAATATAAGTTTTTGATTATTACCACCATCATTAATATTATTAATTTCAAGAAGAAGC GTAGAAAGAGGAGCTGGTACAGGTTGAACAGTTTATCCCCCCATTAGCATCTAACATCGCTCACGGAGGAAGATC AGTTGATTTAGCTATTTTTCTTTACACTTAGCTGGTATCTCATCAATTTAGGAGCTGTAAACTTTATTACCACTA TTATTAATATACGACCTTATGGAATAAGATTTGATCAAATACCCCTATTTGTTTG	НQ987512

rocris lora		AACACTTTATTTTATTTTTGGAATTTGATCTGGAATAATTGGAACATCATTAAGTTTATTAATTCGAGCTGAATTA	
		GGAACTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATCGTTACTGCTCATGCTTTTATTATAATTTT	
	6(TTTCATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGACTAGTCCCTTTAATATTAGGAGCTCCTGATATA	_
	8-(GCTTTCCCACGAATAAATAATAAAGTTTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGT	68
op	04	TGAAACAGGAGCAGGAACAGGATGAACTGTTTACCCCCCACTCTCTAATATTGCTCATGGTGGAAGATCTGT	05
nen ulca	40	AGATTTAGCAATTTTTTCCCTCCATTTAGCAGGTATTTCTTCTATCTTAGGAGCAGTTAATTTTATTACAACTATTA	U1
yge che	Ð	TTAATATACGCCCTAATGGTATATCTTTTGATCAAATACCATTATTTGTTTG	5
N.	λZ	ACTTCTTCTTTACCTGTACTTGCAGGAGCAATTACTATACTTTTAACTGATCGAAATTTAAATACATCTTTTT	
		TTGATCCAGCAGGTGGTGGAGATCCAATTCTTATCAACATTTT	
		AACACTTTATTTTATTTTTGGAATTTGATCTGGAATAATTGGAACATCATTAAGTTTATTAATTCGAGCTGAATTA	
S		GGAACTCCAGGATCTTTAATTGGTGATGATGATCAAATTTATAATACTATCGTTACTGCTCATGCTTTATTATAATTTT	GU705682
cri. ra	- 6	TTTCATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGACTAGTCCCTTTAATATTAGGAGCTCCTGATATA	
ilo	000	GCTTTCCCACGAATAAATAATATAAGTTTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGT	
ocl	00	TGAAACAGGAGCAGGAACAGGATGAACTGTTTACCCCCCACTCTCCTCTAATATTGCTCATGGTGGAAGATCTGT	
aer alc	M	AGATTTAGCAATTTTTTCCCTCCATTTAGCAGGTATTTCTTCTATCTTAGGAGCAGTTAATTTTATTACAACTATTA	
ygı chu	YC	TTAATATACGCCCTAATGGTATATCTTTTGATCAAATACCATTATTTGTTTG	
Z	Z	ACTTCTTCTTTTACCTGTACTTGCAGGAGCAATTACTATACTTTTAACTGATCGAAATTTAAATACATCTTTTT	
		TTGATCCAGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATT	
		AACACTTTATTTTATTTTTGGAATTTGATCTGGAATAATTGGAACATCATTAAGTTTATTAATTCGAGCTGAATTA	
S		GGAACTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATCGTTACTGCTCATGCTTTTATTATAATTTT	
cri. ra	60	TTTCATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGACTAGTCCCTTTAATATTAGGAGCTCCTGATATA	0
no)- <i>L</i> -	GCTTTCCCACGAATAAATAATAATAAGTTTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGT	68
10p oci	00	TGAAACAGGAGCAGGAACAGGATGAACTGTTTACCCCCCCC	705
aer. alc	MC	AGATTTAGCAATTTTTTCCCTCCATTTAGCAGGTATTTCTTCTATCTTAGGAGCAGTTAATTTTATTACAACTATTA	D.
yg. ch	5	TTAATATACGCCCTAATGGTATATCTTTTGATCAAATACCATTATTTGTTTG	0
N	ΖX	ACTTCTTCTTTCTTTACCTGTACTTGCAGGAGCAATTACTATACTTTTAACTGATCGAAATTTAAATACATCTTTTT	
		TTGATCCAGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATT	

rocris ei		AACACTTTATTTTATTTTCGGAATTTGATCGGGAATAATTGGAACATCTTTAAGTTTACTAATTCGAACTGAATTA	
		GGAACTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACAGCCCATGCATTTATTATAATTT	
	. 1 0	TTTTTATGGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCCCCTGATATA	928
	1	GCCTTTCCACGAATAAATAATAATAAGTTTTTGATTACTTCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGT	
10h 10h	07	TGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	84
an du	M	AGATTTAGCAATTTTTTCACTTCACTTAGCGGGTATTTCTTCTATTTTAGGAGCAGTTAATTTTATTACAACTATTA	Q5
ygı	YC	TTAATATACGCTCTAATGGTATATCCTTTGATCAAATACCTTTATTTGTTTG	Η
N	Z	TTACTTCTTTCTTTACCAGTTTTAGCTGGAGCAATTACTATACTTTTAACTGATCGAAATTTAAATACATCTTTCTT	
		TGATCCCGCTGGTGGTGGAGACCCAATCCTCTACCAACACTTATTT	
i		AACACTTTATTTTATTTTCGGAATTTGATCAGGAATAATTGGAACATCTTTAAGTTTACTAATTCGAACTGAATTA	
ske		GGAACTCCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACAGCCCATGCATTTATTATAATTT	927
пр	0	TTTTTATGGTTATACCCATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCCCCTGATATA	
ris	4-1	GCCTTTCCACGAATAAATAATAAAGTTTTTGATTACTCCCCCCCTCATTAACTCTTTAATTTCAAGAAGAATTGT	
.00	ZYGM023	TGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	84
ıdı		AGATTTAGCAATTTTTTCACTTCACTTAGCGGGTATTTCTTCTATTTTAGGAGCAGTTAATTTTATTACAACTATTA	Q5
вив		TTAATATACGCTCTAATGGTATATCCTTTGATCAAATACCTTTATTTGTTTG	Η
'ga		TTACTTCTCTTTTACCAGTTTTAGCTGGAGCAATTACTATACTTTTAACCGATCGAAATTTAAATACATCTTTCTT	
Z ₃		TGATCCTGCTGGTGGTGGGGGACCCAATCCTCTACCAACACTTATTT	
kei			7799
lus			
S 0	- 0-		
cri	42		
pro	8	TGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	[4]
Zygaenop	M	AGATTTAGCAATTTTTTCACTTCACTTAGCGGGTATTTCTTCTTTTTAGGAGCAGTTAATTTTTATTACAACTATTA	ΔĮ
	YG	TTAATATACGCTCTAATGGTATATCCTTTGATCAAATACCTTTATTTGTTTG	<u> </u>
	N	TTACTTCTTTCTTTACCAGTTTTAGCTGGAGCAATTACTATACTTTTAACCGATCGAAATTTAAATACATCTTTCTT	
		TGATCCTGCTGGTGGTGGAGACCCAATCCTCTACCAACACTTATTT	

		GATCAGGAATAATTGGAACATCTTTAAGTTTATTAATCCGAACTGAATTAGGAACTGCAGGATCTTTAATTGGTG
orocris ei		ΔΤΓΑΤΑΔΑΤΤΤΑΤΑΔΤΑΓΤΑΤΤΩΤΤΑΓΑΛΟΓΓΙΑΤΑΛΙ ΕΘΑΛΕΙΟΛΑΓΙΑΟΛΑΕΙΟΕΛΟΟΛΙΕΙΤΑΛΙΙΟΟΙΟ
		GGTGGATTTGGA A ATTGATT AGTTCCCTTA AT ATTAGGAGCCCCTGATATAGCCTTTCCACGA AT A A AT A AT
	-09 -09	GTTTTTGATTACTCCCCCCCCCCCTCATTAACTTTTAATTCAAGAAGAATTGTTGAAAACAGGAGCTGGAACAGGATGUG
101 tsk	ŏ.	
an dı	Ž	
vBr	Ŋ	
Ń,	$\overline{\mathbf{Z}}$	TITGATCAAATACCCCTATTTGTTTGAGCTGTAGGAATTACAGCCCTATTATTACTCCTTTCTTT
		TGGAGCAATTACTATACTTTTAACCGATCGAAATCTA
		AACACTTTACTTTATTTTCGGAATTTGATCAGGAATAATTGGAACATCTTTAAGTTTATTAATCCGAACTGAATTA
ske		GGAACTGCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACAGCTCATGCATTTATTATAATTT
du.	ZYGM0043-09	
is		GCCTTTCCACGAATAAATAATAAGTTTTTGATTACTCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGT
201		
pra		
ou		
ae		TTAATATACGITCTAATGGIATATCITTTGATCAAATACCCCTATTTGITTGAGCIGIAGGAATTACAGCCCTATTA
<i>y</i> 8		TTACTCCTTTCTTTACCAGTTTTAGCTGGAGCAATTACTATACTTTTAACCGATCGAAATCTAAATACATCTTTTT
N		TGACCCTGCAGGTGGTGGAGATCCAATCCTCTATCAACACTTATTT
		AACACTTTATTTTATTTTCGGAATTTGATCAGGAATAATTGGAACATCTTTAAGTTTATTAATTCGAACTGAATTA
is		GGAACTCCAGGATCCTTAATTGGTGATGATCAAATTTATAATACTATTGTTACAGCTCATGCATTTATTATAATTT
001	0 0	
pr kei	-040	GCCTTTCCACGAATAAATAATAAAGTTTTTGATTACTCCCCCCCTCATTAACTCTTTAATTTCAAGAAGAATTGT
ou	Õ	
Zygaei di	Ň	
	ΥC	TTAATATACGTTCTAATGGTATATCTTTTGATCAAAATACCCCCTATTTGTTTG
	N	
		ATTACTICITICITIACCAUTITIAUCAUCAUCAATTACAATACTITIAACTUATCUAAATTI

Zygaenoprocris duskei	ZYGM0039-09	AACACTTTATTTATTTTCGGAATTTGATCAGGAATAATTGGAACATCTTTAAGTTTATTAATTCGAACTGAATTA GGAACTCCAGGATCCTTAATTGGTGATGATCAAATTTATAATACTATTGTTACAGCTCATGCATTTATTATAATTT TTTTTATAGTTATACCTATTATAATTGGAGGAGTTTGGAAATTGATTG	GU705777
Zygaenoprocris duskei	ZYGMO037-09	AACACTTTATTTATTTCGGAATTTGATCAGGAATAATTGGAACATCTTTAAGTTTATTAATTCGAACTGAATTA GGAACTCCAGGATCCTTAATTGGTGATGATGATCAAATTTATAATACTATTGTTACAGCTCATGCATTTATTATAATTT TTTTTATAGTTATACCTATTATAATTGGAGGGATTTGGAAAATTGATTG	GU705683
Zygaenoprocris duskei	ZYGM0038 -09	AACACTTTATTTATTTCGGAATTTGATCAGGAATAATTGGAACATCTTTAAGTTTATTAATTCGAGCTGAATTA GGAACTCCAGGATCCTTAATTGGTGATGATGATCAAATTTATAATACTATTGTTACAGCTCATGCATTTATTATAATTT TTTTTATAGTTATACCTATTATAATTGGAGGAGTTTGGAAATTGGATGGTTCCTTTAATATTAGGAGCTCCTGATATA GCCTTTCCACGAATAAATAATATAAGTTTTTGATTACTCCCCCCCC	GU705684

	-(6	AACACTTTATTTTATTTTTTGGAATTTGATCAGGAATAATTGGAACATCATTAAGTTTATTAATTCGAGCTGAATTA	
cris		GGAACTCCAGGATCTTTAATCGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTCATTATAATTTT	
		TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTG	31
orc wi	05(C	GCTTTCCCACGAATAAATAATAATAAGTTTTTGGCTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTG	278
etc	3MO	TTGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCACTCTCCTCTAATATTGCTCATGGTGGAAGATCTG	70;
ae ef		TAGATTTAGCAATTTTTTCCCTCCATTTAGCGGGGTATTTCTTCTATTTTAGGAGCAGTTAATTTTATTACAACTATT	Ŭ.
$y_{\mathcal{B}}$	YC	ATTAATATACGTCCTAATGGTATATCATTTGATCAAATACCATTATTTGTTTG	0
N	Z	ATTACTTCTTTCTTTACCTGTACTAGCAGGAGCAATTACTATACTTTAACAGATCGAAATTTAAATACATCCTTTT	
		TTGATCCTGCAGGTGGTGGAGACCCAATTCTTTATCAACATTTATT	
vi.		AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATCATTAAGTTTATTAATTCGAGCTGAATTA	
to		GGAACTCCAGGATCTTTAATCGGTGATGATCAAATTTATAATACTATTGTTACTGCTCATGCTTTCATTATAATTTT	
efe	ZYGM0049-09	TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTG	6
ris		GCTTTCCCACGAATAAATAATAAAGTTTTTGACTATTACCCCCCTCATTAACTCTTTTAATTTCGAGAAGAATTG	67
.00		TTGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCACTCTCCTCTAATATTGCTCATGGTGGAAGATCTG	705
ıdo		TAGATTTAGCAATTTTTTCCCTCCATTTAGCGGGTATTTCTTCTATTTTAGGAGCAGTTAATTTTATTACAACTATT	LU1
ien.		ATTAATATACGTCCTAATGGTATATCATTTGATCAAATACCATTATTTGTTTG	D
180		ATTACTTCTTTCTTTACCTGTACTAGCAGGAGCAATTACTATACTTTAACAGATCGAAATTTAAATACATCCTTTT	
Ń		TTGATCCTGCAGGTGGTGGAGACCCAATTCTTTATCAACATTTATT	
		AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATCATTAAGTTTATTAATTCGAGCTGAATTA	
edi		GGAACTCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATCGTTACTGCCCATGCTTTCATTATAATTT	
fr	0	TTTTTATGGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCCGATATA	•
cris	6-1	GCTTTTCCACGAATAAATAATAAAGTTTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGT	929
roc	23	TGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCACTCTCCTCTAATATTGCTCATGGAGGAAGATCTGT	84
doa	40	AGATTTAGCAATTTTTTCCCTCCATTTAGCAGGTATTTCTTCTATTTTAGGAGCAGTTAATTTTATTACAACTATTA	Q5
uəı	GN	TTAATATACGCCCTAATGGTATATCATTCGATCAAATACCATTATTTGTTTG	Η
ygı	X	ATTACTTCTTTCTTTACCTGTACTAGCAGGAGCAATTACTATACTTTTAACAGATCGAAATTTAAAATACATCTTTTT	
Ŋ,		TTGACCCTGCAGGTGGTGGAGATCCAATTCTTTATCAACATTT4	
1			

orocris mni	6	AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATCATTAAGTTTATTAATTCGAAGTGAATTA	
		GGAATTCCAGGATCTTTAATTGGAGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTT	
		TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTACCTTTAATATTAGGGGGCCCCCGATATA	8/
	053	GCCTTCCCACGAATAAATAATAATAAGTTTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTG	201
tou	Õ	TTGAAACAGGAGCTGGAACAGGATGAACTGTATACCCCCCCC	705
ae 10f	ND ND	TAGATTTAACAATTTTTTCTCTTCATTTAGCAGGTATTTCTTCTATCTTAGGAGCAGTTAATTTTATTACAACTATT	Ŭ,
778	ΥC	ATTAATATACATCCTAATGGTATATCTTTTGATCAAATACCATTATTTGTTTG	0
	Ζ	ATTACTCCTTTCTTTACCTGTATTAGCAGGAGCAATTACCATACTTTTAACTGATCGAAATTTAAATACATCTTTTT	
		TTGACCCTGCTGGTGGTGGAGATCCAATTCTTTATCAACATTTATT	
		AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATCATTAAGTTTATTAATTCGAAGTGAATTA	
is		GGAATTCCAGGATCTTTAATTGGAGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTT	
ui	6(TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTACCTTTAATATTAGGGGGCCCCCGATATA	LL
nnn	2-(GCCTTCCCACGAATAAATAATAATAAGTTTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTG	20,
jnc mc	05	TTGAAACAGGAGCTGGAACAGGATGAACTGTATACCCCCCCC	GU705
ae hof	10	TAGATTTAACAATTTTTTCTCTTCATTTAGCAGGTATTTCTTCTATCTTAGGAGCAGTTAATTTTATTACAACTATT	
38	G	ATTAATATACATCCTAATGGTATATCTTTTGATCAAATACCATTATTTGTTTG	
	X	ATTACTCCTTTCTTTACCTGTATTAGCAGGAGCAATTACCATACTTTTAACTGATCGAAATTTAAATACATCTTTTT	
	N	TTGACCCTGCTGGTGGTGGAGATCCAATTCTTTATCAACATTTATT	
		AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATCATTAAGTTTATTAATTCGAGCTGAATTA	
is	ZYGM0339- 10	GGAATTCCAGGATCTTTAATTGGAGATGATCAAATTTACAATACTATTGTCACTGCTCATGCTTTTATTATAATTTT	
ocr na		TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTACCTTTAATATTAGGAGCCCCTGATATA	HQ987511
pro sa		GCTTTCCCACGAATAAATAATATAAGTTTTTGATTATTACCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATTGT	
no		TGAAACAGGAGCTGGAACAGGATGAACTGTATACCCCCCCC	
hoi		AGATTTGGCAATTTTTTCTCTTCATTTAGCAGGTATTTCTTCTTTTTAGGAGCAGTTAATTTTTATTACTACTATTAT	
z_{y_8}		TAATATACGCCCTAATGGGATATCTTTCGATCAAATACCATTATTTGTTTG	
		TTACITCITTCITTACCIGIATTAGCGGGAGCAATTACIATACITTTAACIGATCGAAATTTAAATACATCCITTIT	
ıa		AACACITTATTTTATTTTGGAATTIGATCAGGAATAATTGGTACATCATTAAGITTATTAATTCGAACIGAATTA	
im		AGAACCCCAGGATCTTTAATTGGTGATGACCAAATTTATAATACTATTGTTACTGCTCATGCCTTTATTATAATTTT	
ш	10	TTTTATAGTTATGCCTATTATAATTGGTGGATTCGGAAATTGATTAATTCCCCTAATATTAGGGGGCTCCTGATATA	0
rris	4	GCTTTCCCACGAATAAATAATAATAAGTTTCTGATTACTTCCCCCCTCATTAACTCTCTTAATTTCAAGAAGAATTG	749
roc)29	TTGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	987
do	MC	AGATCTGGCAATCTTTTCCCTTCATTTAGCAGGTATTTCTTCTATTTTAGGAGCAATTAATT	ğ
nen	Ð	TTAATATACGACCTAATGGAATATCATTCGATCAAATACCATTATTTAT	Ŧ
Zyga	λZ	ATTACTTCTCTCTTTACCTGTATTAGCGGGAGCTATTACTATACTTTAACTGATCGAAATTTAAATACATCTTTTT	
		TTGATCCAGCAGGTGGTGGAGACCCTATTCTATACCAACATTTATTT	

		AACACTTTATTTTATTTTCGGAATTTGATCAGGAATAGTTGGAACATCTTTAAGTTTATTAATTCGAACTGAATTA	
ygaenoprocris persepolis	ZYGM0032- 09	GGAACTCCAGGATCTTTAATTGGCGACGATCAAATTTATAATACTATTGTTACAGCTCATGCATTTATTATAATTT	GU705690
		TTTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATCCCTTTAATATTAGGAGCCCCAGATAT	
		AGCTTTCCCGCGAATAAATAATATAAGTTTTTGATTACTTCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATT	
		GTCGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCACTCTCCTCTAATATTGCCCATGGTGGAAGATCT	
		GTAGATTTAGCAATTTTTTCCCTTCATTTAGCGGGTATTTCCTCTATTTTAGGGGGCAGTTAACTTTATTACCACTAT	
		TATTAATATACGCCCTAATGGAATATCCTTTGATCAAATACCTTTATTTGTTTG	
Ŋ.		TTATTACTTCTTTCTTTACCGGTATTAGCTGGAGCTATTACTATACTTTTAACTGATCGAAATTTAAATACCTCTTT	
		CTTCGATCCTGCTGGTGGTGGGGGACCCAATCCTTTATCAACATTTATTT	
		AACACTTTATTTTATTTTCGGAATTTGATCAGGAATAGTTGGAACATCTTTAAGTTTATTAATTCGAACTGAATTA	
		GGAACTCCAGGATCTTTAATTGGTGACGATCAAATTTATAATACTATTGTTACAGCTCATGCATTTATTATAATTT	GU705687
ris	GMO033-09	TTTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATCCCTTTAATATTAGGAGCCCCAGATAT	
roc		AGCTTTCCCGCGAATAAATAATATAAGTTTTTGATTACTTCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATT	
obc		GTCGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCACTCTCCTCTAATATTGCCCCATGGTGGAAGATCT	
uen ers		GTAGATTTAGCAATTTTTTCCCTTCATTTAGCGGGTATTTCCTCTATTTTAGGGGGCAGTTAACTTTATTACCACTAT	
ygc pe		TATTAATATACGCCCTAATGGAATATCCTTTGATCAAATACCTTTATTTGTTTG	
Ŋ.	λ	TTATTACTTCTTTCTTTGCCGGTATTAGCCGGAGCTATTACTATACTATACTTTAACGGATCGAAATTTAAATACCTCTTT	
		CTTCGATCCTGCTGGTGGTGGGGGACCCAATCCTTTATCAACATTTATTT	
		A AC ACTTT ATTTT ATTTTCGGA ATTTGATCAGGA AT AGTTGGA AC ATCTTTA AGTTT A ATTCGA ACTGA ATTA	
		GGA ACTCCGGG ATCTTTA ATTGGTGACGATCA A ATTTATA ATACTATGTTACAGCTCATGCATTATTATA ATTT	05688
ris		TTTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATCCCTTTAATAGGGGCCCCCAGATAT	
roc	34-	ΔGCTTTCCCΔCGΔΔTΔΔΔTΔTΔTΔCTTTCGΔTTΔCTTCCCCCCCTCΔTTΔΔCTCTTTTCΔΔTTTCΔΔGΔGΔGΔΔGΔΔTT	
Zygaenopr persepo	ZYGMO03	GTCGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCACTCTCTCT	
		GTAGATTTAGCAATTTTCTCCCTTCATTTAGCGGGTATTTCCTCTATTTTAGGAGCAGTTAACTTATTACTACTACTAT	20
		TATTAATACGTCCTAATGGAATATCTTTTGATCAAATACCTTTATTTGTTTG	Ð
		TATTACTTCTTTTACCAGTATTAGCCGGAGCTATTACTATACTTTAACTGATCGAAATTTAAATACCTCTTTC	
		TTCGATCCTGCTGGTGGTGGGGGCCCAATCCTTTATCAACATTTATT	
			1

ZYGM0035-09	AACACTTTATTTTATTTTCGGAATTTGATCAGGAATAGTTGGAACATCTTTAAGTTTATTAATTCGAACTGAATTA	GU705685
	GGAACTCCAGGATCTTTAATTGGTGACGATCAAATTTATAATACTATTGTTACAGCTCATGCATTTATTATAATTT	
	TTTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATCCCTTTAATATTAGGAGCCCCAGATAT	
	AGCTTTCCCGCGAATAAATAATAAAGTTTTTGATTACTTCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATT	
	GTCGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCACTCTCTAATATTGCCCATGGTGGAAGATCT	
	GTAGATTTAGCAATTTTTTCCCTTCATTTAGCGGGTATTTCCTCTATTTTAGGGGGCAGTTAACTTTATTACCACTAT	
	TATTAATATACGCCCTAATGGAATATCCTTTGATCAAATACCTTTATTTGTTTG	
	TTATTACTTCTTTCTTTACCGGTATTAGCCGGAGCTATTACTATACTATACTGGAACGGATCGAAATTTAAATACCTCTTT	
	CTTCGATCCTGCTGGTGGTGGGGGACCCAATCCTTTATCAACATTTATTT	
	AACACTTTATTTTATTTTCGGAATTTGATCAGGAATAGTTGGAACATCTTTAAGTTTATTAATTCGAACTGAATTA	
	GGAACTCCAGGATCTTTAATTGGTGACGATCAAATTTATAATACTATTGTTACAGCTCATGCATTTATTATAATTT	
<u>, н</u> Ф	TTTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAATCCCTTTAATATTAGGAGCCCCAGATAT	GU705686
ZYGMO036 0	AGCTTTCCCGCGAATAAATAATAAAGTTTTTGATTACTTCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATT	
	GTCGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCACTCTCTAATATTGCCCATGGTGGAAGATCT	
	GTAGATTTAGCAATTTTTTCCCTTCATTTAGCGGGTATTTCCTCTATTTTAGGGGGCAGTTAACTTTATTACCACTAT	
	TATTAATATACGCCCTAATGGAATATCCTTTGATCAAATACCTTTATTTGTTTG	
	TTATTACTTCTTTCTTTACCGGTATTAGCCGGAGCTATTACTATACTTTAACTGATCGAAATTTAAATACCTCTTT	
	CTTCGATCCTGCTGGTGGTGGGGGACCCAATCCTTTATCAACATTTATTT	
ZYGM0296-10	AACACTTTATTTTATCTTTGGAATCTGATCAGGAATAATTGGAACATCTTTAAGTTTATTAATTCGAGCTGAATTA	987492
	GGTACTCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACAGCTCATGCTTTTATTATAATTTT	
	TTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAG	
	CTTTCCCACGAATAAATAATAAAGCTTTTGATTATTACCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATCGTT	
	GAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCACTCTCTTCTAATATCGCTCATGGAGGAAGATCTGTA	
	GATTTAGCAATTTTCTCTCTCTCATTTAGCTGGTATTTCTTCTATCTTAGGAGCAGTTAATTTTATTACAACTATTATT	ğ
	AATATACGACCCAATGGTATATCATTTGATCAAATACCATTATTTGTTTG	H
	TACTCCTTTCTTTACCTGTATTAGCAGGAGCAATTACTATACTTTTAACTGATCGAAATTTAAATACATCTTTTTTT	
	GATCCTGCAGGTGGTGGAGATCCAATTCTTTATCAACATTTATT	
	ZYGMO296-10 ZYGMO036- ZYGMO035-09 09	AACACTTTATTTATTTTCGAATTTGATCAGGAATAGTTGGAACATCTTTAAGTTATATATA

Zygaenoprocris rjabovi	ZYGM0295- 10	AACACTTTATTTATCTTTGGAATCTGATCAGGAATAATTGGAACATCTTTAAGTTTATTAATCCGAGCTGAATTA GGTACTCCTGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTGTTACAGCTCATGCTTTTATTATAATTTT TTTTATAGTTATACCTATTATAATTGGTGGGATTTGGAAATTGATTAGTTCCTTTAATATTAGGAGCTCCTGATATAG CTTTCCCACGAATAAATAATATAAGCTTTTGATTATTACCCCCCCTCATTAACTCTTTTAATTTCAAGAAGAATCGTT GAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCACTCTTCTAATATCGCTCATGGAGGAAGAATCTGTA	987491
		GATTTAGCAATTTTCTCTCTTCATTTAGCTGGTATTTCTTCTATTTTAGGAGCAGTTAATTTTATTACAACTATTATT AATATACGACCCAATGGTATATCATTTGATCAAATACCAATACCATTATTTGTTTG	Юн
Zygaenoprocris taftana	ZYGM0515-12	AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATCCTTAAGTTTATTAATTCGAACTGAATTA GGAACACCAGGATCTTTAATTGGTGATGATGATCAAATTTATAATACTATTGTTACTGCCCATGCATTTATTATAATTT TTTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGATTAGTTCCTTTAATATTGGGAGCTCCTGATATA GCTTTCCCACGAATAAATAATATAAGTTTTTGATTACTTCCCCCCCTCATTAACCCTTCTAATTTCAAGAAGAAGAATTG TTGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCTCTCTCT	MK931181
Zygaenoprocris taftana	ZYGM0031- 09	AACACTTTATTTTATTTTGGAATTTGGATCAGGAATAATTGGAACATCCTTAAGTTTATTAATTCGAACTGAATTA GGAACACCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTATTACTGCCCATGCATTTATTATAATTT TTTTTATAGTTATACCTATTAAATTGGTGGGGTTTGGAAATTGATTAGTTCCTTTAATATTGGGAGCCCCTGATATA GCTTTCCCACGAATAAATAATAAATATAAGTTTTTGATTACTTCCCCCCCTCATTAACCCTTCTAATTTCAAGAAGAAGAATTG TTGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	GU705689

Zygaenoprocris taftana	ZYGM0030-09	AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATCCTTAAGTTTATTAATTCGAACTGAATTA GGAACACCAGGATCTTTAATTGGTGATGATGATCAAATTTATAATACTATTATTACTGCCCATGCATTTATTATAATTT TTTTTATAGTTATACCTATTATAATTGGTGGGGTTTGGAAATTGATTAGTTCCTTTAATATTGGGAGCCCCTGATATA GCTTTCCCACGAATAAATAATAAAGTTTTTGATTACTTCCCCCCCTCATTAACCCTTCTAATTTCAAGAAGAAGAATTG TTGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	GU705692
Zygaenoprocris taftana	ZYGM0029-09	AACACTTTATTTTATTTTGGAATTTGATCAGGAATAATTGGAACATCCTTAAGTTTATTAATTCGAACTGAATTA GGAACACCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTATTACTGCCCATGCATTTATTATAATTT TTTTTATAGTTATACCTATTATAATTGGTGGGGTTTGGAAATTGATTAGTTCCTTTAATATTGGGAGCCCCTGATATA GCTTTCCCACGAATAAATAATAATATAAGTTTTTGATTACTTCCCCCCCTCATTAACCCTTCTAATTTCAAGAAGAAGAATTG TTGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	GU705691
Zygaenoprocris taftana	ZYGM0028- 09	AACACTTTATTTTATTTTGGAATTTGGATCAGGAATAATTGGAACATCCTTAAGTTTATTAATTCGAACTGAATTA GGAACACCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTATTACTGCCCATGCATTTATTATAATTT TTTTTATAGTTATACCTATTAAATTGGTGGGGTTTGGAAATTGATTAGTTCCTTTAATATTGGGAGCCCCTGATATA GCTTTCCCACGAATAAATAATAAATATAAGTTTTTGATTACTTCCCCCCCTCATTAACCCTTCTAATTTCAAGAAGAAGAATTG TTGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	GU705694

oprocris taftana	M0027-09	AACACTTTATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATCCTTAAGTTTATTAATTCGAACTGAATTA	
		GGAACACCAGGATCTTTAATTGGTGATGATCAAATTTATAATACTATTATTACTGCCCATGCATTTATTATAATTT	
		TTTTTATAGTTATACCTATTATAATTGGTGGGTTTGGAAATTGATTAGTTCCTTTAATATTGGGAGCCCCTGATATA	$\tilde{\omega}$
		GCTTTCCCACGAATAAATAATAATAAGTTTTTGATTACTTCCCCCCTCATTAACCCTTCTAATTTCAAGAAGAATTG	69
		TTGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	705
		TAGATTTAGCGATTTTCTCTCTCCATCTAGCAGGTATCTCTTCTATTTTAGGAGCAGTTAATTTTATTACAACTATT	D.
nən	Ð	ATTAATATACGTTCTAATGGAATATCTTTTGATCGAATACCTTTATTTGTTTG	0
vga	Z	ATTACTGCTTTCTTTACCAGTCTTAGCTGGAGCAATTACTATACTTCTAACTGATCGAAATTTAAATACATCTTTCT	
Ŋ,		TTGATCCTGCTGGTGGTGGGGGATCCAATTCTCTATCAACATTTATTT	
		AACACTATATTTTATTTTTGGAATTTGATCAGGAATAATTGGAACATCCTTAAGTTTATTAATTCGAGCTGAATTA	
is		GGAATACCAGGATCTTTAATTGGTGATGATCAAATCTATAACACTATTGTTACCGCTCATGCATTTATTATAATTT	
Zygaenoprocri taftana	40	TTTTTATAGTTATACCTATTATAATTGGTGGATTTGGAAATTGGTTAGTTCCTTTAATATTAGGAGCCCCTGATATA	82
	ZYGM051 ² 1	GCTTTCCCACGAATAAATAATAATAAGTTTTTGATTACTCCCCCCTTCACTAACCCTTTTAATTTCAAGAAGAATTG	118
		TTGAAACAGGAGCTGGAACAGGATGAACTGTTTACCCCCCCC	33
		TAGATTTAACAATTTTTTCCCTCCATCTAGCAGGTATTTCTTCTATTTTAGGAGCAATTAATT	Ϋ́
		ATTAATATACGTCCCGATGGAATATCTTTTGATCAAATACCTCTATTTGTTTG	\geq
		TATTACTGCTTTCTTTACCAGTTTTAGCTGGAGCAATTACTATACTTCTAACTGATCGAAATTTAAATACATCTTTC	
		TTTGATCCTGCCGGTGGTGGAGATCCAATTCTTTATCAACATTTATT	

Приложение В. Дендрограмма, построенная с помощью программного инструментария проекта BOLD (двухпараметрическая модель Кимуры, COI, Длина > 550 п.н.).

249

Jordanita budensis|Female|Slovenia Jordanita budensis|Male|France.Provence-Alpes-Cote d'Azur Jordanita budensis|Male|Serbia Jordanita budensis Male Macedonia - Jordanita budensis|Male|Austria.Lower Austria Jordanita budensis|Male|Italy.Basilicata Jordanita budensis|Female|Macedonia Jordanita budensis|Male|Macedonia Jordanita budensis|Male|Italy.Basilicata Jordanita budensis|Male|Macedonia Jordanita budensis|Male|Macedonia Jordanita budensis|Male|Macedonia Jordanita budensis|Male|Crimea Jordanita budensis|Male|Crimea Jordanita budensis|Male|Mongolia.Tov Jordanita budensis|Male|Crimea Jordanita budensis|Male|Mongolia,Bulgan Jordanita naufocki/Male/Kyrgyzstan Jordanita kurdica Male Iran. Kerman Jordanita paupera|Male|Iran.Semnan Jordanita paupera|Male|Iran.Semnan ordanita paupera|Male|Kazakhstan Jordanita paupera|Male|Kazakhstan Jordanita volgensis|Male|Turkey.Sivas Jordanita volgensis|Male|Turkey.Sivas Jordanita volgensis|Male|Ukraine.Luhansk Jordanita volgensis|Male|Crimea Jordanita volgensis|Male|Crimea Jordanita volgensis|Male|Crimea Jordanita volgensis|Male|Crimea Jordanita volgensis|Male|Crimea Jordanita hector|Male|Turkey.Mersin Jordanita hector|Female|Turkey.Mersin Jordanita volgensis|Male|Russia.Omskaya Oblast Jordanita volgensis|Male|Russia.Omskaya Oblast Jordanita volgensis|Male|Turkey.Sivas Jordanita volgensis|Male|Turkey.Van Jordanita volgensis|Male|Turkey.Van Jordanita paupera|Male|Jordan Jordanita volgensis|Male|Syria Jordanita volgensis|Male|Syria Adscita pligori|Male|Afghanistan.Kabul Adscita pligori Male Afghanistan.Kabul Adscita pligori Female Afghanistan.Kabul Adscita subdolosa|Male|Kyrgyzstan Adscita amaura|Female|Tajikistan Adscita amaura|Male|Tajikistan Adscita amaura/Female/Uzbekistan Adscita amaura|Male|Uzbekistan Adscita subdolosa/Female/Taiikistan Adscita subtristis|Female|Tajikistan Adscita subtristis|Male|Kyrgyzstan Adscita subtristis|Male|Kyrgyzstan Adscita subtristis|Male|Kyrgyzstan Adscita subtristis Female Tajikistan Zygaenoprocris hofmanni|Male|Iran.Semnan Zygaenoprocris hofmanni|Male|Iran.Semnan Zygaenoprocris khorassana|Male|Iran.Khorasan Zygaenoprocris khorassana|Male|Iran.Khorasan Zygaenoprocris khorassana|Male|Iran.Khorasan Zygaenoprocris khorassana|Male|Iran.Khorasan Zygaenoprocris eberti|Male|Afghanistan Zygaenoprocris eberti|Male|Afghanistan Zygaenoprocris eberti|Male|Afghanistan Zygaenoprocris chalcochlora|Male|Afghanistan Zygaenoprocris chalcochlora|Male|Iran. Yazd Zygaenoprocris chalcochlora|Female|Iran. Yazd - Zygaenoprocris chalcochlora|Female|Iran.Kerman Zvgaenoprocris chalcochlora/Male/Iran.Esfahan Zygaenoprocris chalcochlora|Female|Iran.Mazandaran Zygaenoprocris chalcochlora|Male|Afghanistan.Kabul Zygaenoprocris chalcochlora|Male|Afghanistan.Kabul Zygaenoprocris chalcochlora|Female|Afghanistan.Kabul Zygaenoprocris chalcochlora|Male|Afghanistan.Kabul Zygaenoprocris chalcochlora|Male|Afghanistan Zygaenoprocris chalcochlora|Male|Afghanistan Zygaenoprocris chalcochlora|Male|Afghanistan Zygaenoprocris chalcochlora|Male|Afghanistan.Kabul Zygaenoprocris efetovi|Male|Iran.Khorasan Zygaenoprocris efetovi|Male|Iran.Khorasan Zygaenoprocris fredi|Male|Iran.Khorasan Zygaenoprocris rjabovi[Female]Iran.Mazandaran Zygaenoprocris rjabovi[Male]Iran.Mazandaran Zygaenoprocris minna|Female]Turkmenistan.Ashgabat City Zygaenoprocris persepolis|Female|Iran.Kerman Zygaenoprocris persepolis|Male|Iran.Esfahan Zygaenoprocris persepolis|Male|Iran.Esfahan Zygaenoprocris persepolis|Male|Iran.Esfahan Zygaenoprocris persepolis|Male|Iran.Esfahan Zygaenoprocris persepolis|Male|Iran.Fars Zygaenoprocris persepolis|Male|Iran.Yazd Zygaenoprocris persepolis|Male|Iran.Yazd Zygaenoprocris persepolis|Male|Iran.Yazd Zygaenoprocris persepolis/Male/Iran.Yazd Zygaenoprocris persepolis/Male/Iran.Yazd Zygaenoprocris persepolis|Male|Iran.Yazd Zygaenoprocris persepolis|Male|Iran.Lorestan Zygaenoprocris persepolis|Male|Iran.Fars

Hedina louisi|Female|China.Shaanxi Hedina psychina|Female|Japan.Honshu Hedina psychina|Female|Japan.Honshu Hedina psychina|Female|Japan.Honshu Hedina translucida|Female|China.Sichuan Acoloithus n sp. 1|Female|Mexico.Oaxaca — Acoloithus totusniger|Male|Costa Rica.Guanacaste -Monalita faurei|Male|French Guiana - Monalita faurei|Male|French Guiana Acoloithus novaricus Male United States. Florida Acoloithus novaricus|Male|United States.Florida Acoloithus rectarius|Male|United States.Arizona Acoloithus rectarius|Female|United States Arizona Acoloithus rectarius Female United States. Arizona Harrisinopsis robusta|Male|French Guiana Monalita laguerrei |Male|French Guiana Neoprocris aversa|Male|United States.Arizona Neoprocris aversa|Male|United States.Arizona Neoprocris aversa Male United States. Arizona - Neoprocris floridana|Female|United States.Florida Pampa n. sp. 1|Female|Costa Rica.Guanacaste Pampa n. sp. 1|Male|Costa Rica.Guanacaste -Pampa sp.|Female|French Guiana Pampa hermieri|Female|French Guiana Pycnoctena angustula|Female|French Guiana Pycnoctena angustula|Female|French Guiana Theresimima ampellophaga|Female|Crimea Theresimima ampellophaga|Female|Crimea Triprocris cyanea|Female|United States.Colorado Triprocris cyanea Male United States. Arizona Veoalbertia constans|Male|United States.Arizona Triprocris cyanca|Male|United States.Arizona Veoalbertia constans|Male|United States.Arizona Neoalbertia constans|Male|United States,Arizona Neoalbertia constans|Male|United States.Arizona Neoilliberis ignorata|Female|Mexico.Chiapas Neofelderia n. sp. 1|Female|Mexico.Oaxaca Neofelderia sp. 1 [Male]Mexico.Oaxaca
Neofiliberis n. sp. 1 [Male]Mexico.Oaxaca
Neofelderia rata[Male]United States.Arizona Neofelderia rata|Male|United States.Arizona Neoilliberis sp. 2|Male|Mexico.Oaxaca - Neoilliberis sp. 2|Female|Mexico.Oaxaca Neofelderia hoerwertneri/Male/Guatemala.Santa Rosa Neoilliberis fusca|Male|United States.Arizona Neoilliberis fusca|Male|United States.Arizona Neoilliberis fusca|Male|United States.Arizona Neoilliberis mas Female Mexico. Chiapas Neoilliberis mas Male Mexico. Chiapas Neoilliberis sp. 4 Female Mexico. Oaxaca Pyromorpha cuchumatana|Male|Guatemala.Huehuetenango Pyromorpha cuchumatana|Male|Guatemala.Huehuetenango Pyromorpha brueckneriana|Male|Mexico.Chiapas Pyromorpha brueckneriana|Male|Mexico.Chiapas Pyromorpha brueckneri|Male|Guatemala.Chimaltenango Pyromorpha dyari/Male/United States.Arizona Pyromorpha dyari/Male/United States.Arizona Pyromorpha dyari/Male/United States.Arizona Chrysartona sinevi/Male/Myanmar.Sagaing Chrysartona sp.1|Male|Thailand.Nan Chrystartona sp. I[Male][Thailand.Nan Chrystartona sp. I[Male][Thailand.Nan Pollanisus apicalis]Female|Australia.Australian Capital Territory Pollanisus apicalis]Male|Australia Pollanisus apicalis/Male/Australia. Pollanisus apicalis/Male/Australia.South Australia Pollanisus empyrea|Male/Australia.Western Australia Pollanisus subdolosa|Male/Australia.Western Australia Pollanisus subdolosa|Male/Australia.Queensland Pollanisus subdolosa|Male/Australia.Queensland Pollanisus subdolosa|Male/Australia.Queensland Pollanisus sp. 5|Female|Australia.Queensland Pollanisus eungellae|Male|Australia.Queensland Pollanisus incertus|Male|Australia.Queensland Pollanisus commoni|Female|Australia.Queensland Pollanisus commoni/Female/Australia.Queensland Pollanisus commoni/Female/Australia.Queensland Pollanisus commoni/Male/Australia.Queensland Pollanisus commoni|Female|Australia.Queensland Pollanisus commoni Male Australia. Queensland Pollanisus commoni/Female/Australia.Queensland Pollanisus incertus/Male/Australia.Queensland Pollanisus acharon/Female/Australia.Queensland Pollanisus acharon|Male|Australia.Queensland Pollanisus acharon/Female/Australia.Oueensland Pollanisus acharon|Female|Australia.Queensland Polanisus acharon|Female|Australia.Queensland Polanisus acharon|Female|Australia.Queensland Pollanisus eumetopus|Female|Australia.Queensland Follanisus eumetopus|Male|Australia.Queensland ollanisus acharon|Female|Australia.Queensland ollanisus eumetopus|Male|Australia.Queensland Pollanisus eumetopus|Female|Australia.Queensland Pollanisus sp. 6|Male|Australia.Queensland Pollanisus sp. 6|Male|Australia.Queensland Pollanisus sp. 6|Male|Australia.Queensland Pollanisus sp. 6|Male|Australia.Queensland Pollanisus sp. 7|Male|Australia — Pollanisus edwardsi|Male|Australia.New South Wales - Pollanisus contrastus Female Australia. Queensland Pollanisus contrastus|Female|Australia.Queensland

253

2%

2 %

Приложение С. Дендрограмма, построенная с использованием данных

секвенирования митохондриальной ДНК и ядерных генов.

