На правах рукописи

Aunt

БИКМУХАМЕТОВ КАМИЛЬ ШАМИЛОВИЧ

МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ПРОИЗВОДНЫХ 1,2,4,5,7-ТЕТРАОКСАЗОКАНОВ и ТЕТРАОКСАСПИРОДОДЕКАН ДИАМИНОВ

1.4.4. Физическая химия

Автореферат

диссертации на соискание ученой степени кандидата химических наук

Уфа – 2022

Работа выполнена в Федеральном государственном бюджетном научном учреждении Уфимском федеральном исследовательском центре Российской академии наук (в лаборатории структурной химии Института нефтехимии и катализа – обособленного структурного подразделения Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук (ИНК УФИЦ РАН))

Научный руководитель:

Тулябаев Артур Радисович канлилат химических наук научный с

кандидат химических наук, научный сотрудник лаборатории структурной химии Института нефтехимии и катализа – обособленного структурного подразделения Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук

Официальные Багрянская Ирина Юрьевна

оппоненты:

доктор химических наук, ведущий научный сотрудник Центра спектральных исследований Федерального государственного бюджетного учреждения науки Новосибирского института органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук

Вакулин Иван Валентинович

доктор химических наук, профессор кафедры органической и биоорганической химии Федерального государственного бюджетного образовательного учреждения высшего образования «Башкирский государственный университет»

Ведущая организация: Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук», г. Казань

Защита диссертации состоится 1 июня 2022 года в 14 час 00 минут на заседании диссертационного совета 24.1.218.02 на базе Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук по адресу: 450054, Республика Башкортостан, г. Уфа, проспект Октября, 69 (УфИХ УФИЦ РАН, зал заседаний). Тел./факс: (347)2356066. Е-mail: dissovetioh@gmail.com.

С диссертацией и авторефератом диссертации можно ознакомиться в научной библиотеке Уфимского федерального исследовательского центра Российской академии наук и на официальном сайте Уфимского федерального исследовательского центра Российской академии наук (ufaras.ru) по адресу:

http://ufaras.ru/wp-content/uploads/2022/02/2022_1_BikmukhametovKSh_disser.pdf

Автореферат разослан _____ 2022. г.

Ученый секретарь диссертационного совета, кандидат химических наук

Graced -

Цыпышева И.П.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В настоящее время интенсивное развитие химии циклических органических пероксидов в значительной степени обусловлено их использованием в качестве моделей и объектов при исследовании многих фундаментальных проблем химии. Многие достижения в этой области связаны с применением физико-химических методов при установлении молекулярного и кристаллического строения циклических органических пероксидов, поскольку практически все полезные свойства этих соединений в большей степени зависят от пространственного строения молекул.

Кристаллографическая база структурных (CSD,данных Release 2020.0) содержит данные о более чем 2 миллионах соединений из соединения с пероксидной группой представлены 1465 которых структурами. Незначительное количество обусловлено нестабильностью молекул, что создает сложности при их исследовании. Среди указанного пероксидов лишь несколько примеров числа имеется семи-И восьмичленных циклических пероксидов: 3-третбутил-9-(йодометил)-9метил-7,8,11,12-тетраоксаспиро(5.6)додекан, 1,2,6,7-тетраоксаспиро[7.11]нонадекан-3-он, 1,2,6,7-тетраоксаспиро[7.11]нонадекан, 1-метил-4-фенил-2,3,5,6-тетраоксаконил гидропероксид. Для вышеуказанных соединений была исследована кристаллическая структура И обнаружена противомалярийная активность. В этой связи исследование структуры новых типов стабильных семи и восьмичленных циклических пероксидов является актуальным для физической химии. Необходимо отметить, что в литературе не обнаружены исследования кристаллических структур тетраоксепанов и тетраоксаканов с атомом азота В цикле. что свидетельствует о научной новизне таких работ.

В лаборатории гетероатомных соединений Института нефтехимии и катализа УФИЦ РАН впервые были получены 1,2,4,5,7-тетраоксазоканы и тетраоксаспирододекан диамины.

В литературе вплоть до последнего времени среди перекисных соединений в кристаллическом состоянии (CSD, Release 2020.0) не обнаружено систематических исследований ИХ молекулярного И кристаллического строения. В настоящей работе предпринята попытка установления закономерностей пространственного строения производных тетраоксазоканов и тетраоксаспирододекан диаминов и проявления стереоэлектронных взаимодействий в кристаллическом состоянии, что является актуальной задачей для физической химии О- и N-содержащих гетероатомных соединений, а также является основой для понимания реакционной способности перекисных соединений.

Целью работы является установление структуры, анализ влияния стереоэлектронных эффектов на конформацию и молекулярную структуру, изучение межмолекулярных взаимодействий в кристаллах ряда производных 1,2,4,5,7-тетраоксазоканов и тетраоксаспирододекан диаминов на монокристаллах методом рентгеноструктурного анализа, комбинированного с квантово-химическими расчетами и анализом электронной структуры в рамках теории Бейдера «Атомы в молекулах».

Для достижения поставленной цели необходимо решение следующих задач:

1. выполнить структурный и конформационный анализ замещенных 1,2,4,5,7-тетраоксазоканов и тетраоксаспирододекан диаминов методом рентгеноструктурного анализа монокристаллов;

2. провести анализ стереоэлектронных взаимодействий в тетраоксановых гетероциклах в тетраоксазоканах и тетраоксаспирододекан диаминах;

3. изучить кристаллическую упаковку и межмолекулярные взаимодействия ряда производных тетраоксазоканов и тетраоксаспирододекан диаминов.

<u>Научная новизна.</u> Впервые проведен систематический анализ молекулярного и кристаллического строения тринадцати новых производных тетраоксазоканов и четырех тетраоксаспирододекан диаминов.

С помощью метода натуральных связевых орбиталей (NBO) для N-C-O и O-C-O фрагментов в структурах исследуемых соединений обнаружена двойная перекрестная гиперконъюгация, выраженная во взаимодействии неподеленной пары атома азота (кислорода) с сигма разрыхляющей (σ^*) орбиталью С-O связи и взаимодействии неподеленной электронной пары атома кислорода с σ^* - орбиталью С-N (C-O) связи. Для O-O-C фрагментов установлено взаимодействие неподеленной электронной пары атома кислорода с σ^* -орбиталью С-O связи.

Установлено, что энергия взаимодействия $n_0 \rightarrow \sigma^*_{C-N}$ в производных больше тетраоксаспирододекан тетраоксазокана чем В диаминах вследствие максимального взаимодействия неподеленной электронной пары атома кислорода с о*-орбиталью C-N связи, достигаемого в результате антиперипланарной ориентации неподеленной электронной кислорода и σ^* -орбитали С–N связи В структурах пары атома тетраоксазокана, в отличие от тетраоксаспирододекан производных диаминов, где неподеленная электронная пара атома кислорода и σ^* орбиталь С-N связи находятся в гош-положении.

Выявлено, что производные тетраоксазоканов в кристаллическом состоянии принимают три типа конформаций пероксидного цикла:

тетраоксепановое кольцо принимает конформацию твист-кресло во всех соединениях независимо от типа галогена и его положения на бензольных фрагментах.

Выявлено, что преимущественно в кристаллическом состоянии реализуется конформер, соответствующий глобальному минимуму на поверхности потенциальной энергии.

Найдена взаимосвязь между амплитудой складчатости цикла, то есть его конформацией и образующимися внутримолекулярными С–Н...О, С-Н...N и Н...Н взаимодействиями. Установлено влияние межмолекулярных взаимодействий на длины связей в тетраоксазокановом цикле.

Теоретическая и практическая ценность работы Установленные закономерности пространственного строения соединений ряда новых производных тетраоксазоканов и тетраоксаспирододекан диаминов, а обнаруженные изученные также И В ЭТОМ соединений ряду стереоэлектронные эффекты будут способствовать выявлению взаимосвязи «структура-активность» при разработке новых препаратов для медицины.

Методология И методы исследования. Молекулярная И структура исследованных соединений установлена кристаллическая рентгеноструктурного монокристаллов. Сбор методом анализа дифракционных данных осуществлен на дифрактометре Agilent Xcalibur (Gemini, Eos) (графитовый монохроматор, МоКа-излучение, длина волны $\lambda = 0.71073$ Å, ω -сканирование, максимальный угол съемки $2\theta_{max} = 62^{\circ}$). Сбор и обработка результатов выполнены с помощью программы CrysAlis^{Pro} Oxford Diffraction Ltd. Структуры расшифрованы прямым методом по программе SHELXT и уточнены полноматричным методом наименьших квадратов по программе SHELXL В анизотропном приближении для неводородных атомов. Все атомы водорода соединений 1-17, связанные с атомами углерода, были помещены в вычисленные в соответствии со стереохимическими критериями положения (c ограничениями по расстоянию $CH_{apom} = 0.93$ Å, $CH_2 = 0.97$ Å и CH = 0.98 Å с $U_{iso}(H) = 1.2Ueq$) и уточнены по схеме наездника. Атомы водорода, связанные с атомами азота в структурах 14-17, локализованы из разностного ряда электронной плотности (по карте Фурье) и уточнены изотропно.

Расчет энергии межмолекулярных взаимодействий осуществлен с помощью программы Pixel и AIMAll.

Положения, выносимые на защиту.

а) пространственное строение 1,2,4,5,7-тетраоксазоканов и тетраоксаспирододекан диаминов в кристаллах;

б) конформации тетраоксазоканового цикла в кристаллическом и газовом состоянии;

в) стереоэлектронные взаимодействия в тетраоксазоканах и тетраоксаспирододекан диаминах;

г) невалентные взаимодействия и кристаллическая структура 1,2,4,5,7-тетраоксазоканов и тетраоксаспирододекан диаминов.

Апробация работы. Материалы работы представлены на ХХ Молодежной Школе-конференции по органической химии «Пчелка» (Казань, 2017), IX Национальной кристаллохимической конференции (Суздаль, 2018), XII Всероссийской научной интернет-конференции «Интеграция науки и высшего образования в области био- и органической химии и биотехнологии» (Уфа, 2018), III Всероссийской молодежной конференции «Проблемы достижения химии кислород-И И азотсодержащих биологически активных соединений» (Уфа, 2019) и Ш Всероссийской научной конференции «Методы исследования состава и структуры функциональных материалов» (Новосибирск, 2020).

Личный вклад автора заключается в изучении и обобщении литературы по теме диссертации, участии в выборе темы, постановке исследований, полученных задач И плана анализе данных И публикаций формулировании выводов, подготовке ПО теме диссертационной работы. Автором выполнено рентгеноструктурное исследование монокристаллов, обработка и интерпретация полученных ланных.

<u>Достоверность результатов</u> диссертационного исследования подтверждается надежными экспериментальными данными, полученными на сертифицированном монокристальном рентгеновском дифрактометре. Научные положения и выводы, сформулированные в диссертации, подкреплены убедительными фактическими данными, представленными в приведенных таблицах рисунках. Интерпретация полученных И результатов проведена с использованием современных методов обработки информации, расчетами квантово-химическими В ТОМ числе (B3LYP/6-31G(d,p))и программами обработки рентгеноструктурных данных Pixel и AIMAll. Результаты исследований депонированы в КБСД.

Публикации. По материалам работы опубликовано 4 статьи в международных журналах, индексируемых Web of Science и SCOPUS, а также рекомендованных ВАК РФ, и 7 тезисов докладов на российских и международных конференциях.

<u>Объем и структура диссертации.</u> Диссертация изложена на 138 страницах текста компьютерного набора (формат A4), состоит из введения, литературного обзора на тему «Молекулярная и кристаллическая структура органических циклических пероксидов, их биологическая активность», экспериментальной части, обсуждения результатов, заключения, выводов и 5 приложений. Работа содержит 16 таблиц, 33 рисунка. Список цитируемой литературы содержит 183 библиографические ссылки.

Благодарности. Автор выражает глубокую благодарность к.х.н. Мещеряковой Е.С. за помощь при обучении и проведении экспериментов на монокристальном дифрактометре, а также участие при обсуждении результатов исследований, старшему научному сотруднику лаборатории гетероатомных соединений к.х.н., Махмудияровой Н.Н и сотрудникам ее группы за предоставленные для исследования образцы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснованы актуальность, сформулирована цель и задача диссертационной работы, представлена научная новизна проведенных исследований, их теоретическая и практическая значимость.

Первая глава диссертации содержит обзор литературных данных по кристаллохимическим исследованиям циклических органических пероксидов. В обзоре обобщены структурные исследования конформаций циклов и геометрических параметров пероксидной связи, а также рассмотрены физико-химические свойства и биологическая активность циклических пероксидов. Так, для циклических пероксидов характерны в основном те же конформации, что и для циклоалканов. Например, для диоксетанов характерны две конформации – плоская и складчатая, озонидов – полукресло, искаженный конверт и конверт, триоксанов – кресло, твист-ванна, твист-кресло и ванна и т.д. Длина пероксидной связи в большинстве соединений варьирует в пределах от 1.45 до 1.49 Å и практически не коррелирует с размером пероксидного цикла, тогда как длины С-О связей варьируют в широких пределах от 1.392 до 1.513 Å. Глава завершается заключением, подчеркивающим актуальность структурных исследований семи-И восьмичленных шиклических пероксидов, что является важнейшей задачей физической химии.

Вторая глава представляет собой экспериментальную часть, где собраны данные об использованном оборудовании, применяемых методах физико-химических программах исследования И характеристик тетраоксазоканов тетраоксаспирододекан Основные И диаминов. кристаллографические характеристики исследуемых соединений приведены в таблице 1.

Третья глава содержит обсуждение экспериментальных результатов.

1 Структурные особенности производных 1,2,4,5,7-тетраоксазоканов

Молекулярная структура. С целью установления факторов, влияющих на конформацию тетраоксазоканового цикла, изучен ряд производных 1,2,4,5,7-тетраоксазоканов **1-13** (рисунок 1).

Установлено, что N-арильный заместитель в структурах **1-8** и **10-13** занимает псевдоаксиальное положение относительно «эффективной» плоскости тетраоксазоканового цикла (рисунок 2). Сумма валентных углов при атоме азота составляет от 354.32 до 357.94°.

Восьмичленный пероксидный цикл принимает несколько типов конформаций: *твист-ванна-кресло* в соединениях с адамантановыми и циклоалкановыми заместителями (**1-8**), *кресло-кресло* и *ванна-кресло* – в структурах со спироментоновыми заместителями (**10-13**), в зависимости от природы заместителя при атоме азота. Следует отметить, что в структуре **9** наблюдается разупорядоченность тетраоксазоканового цикла, реализующаяся в виде сосуществования двух изомеров (*кресло-кресло* и *твист-ванна-кресло*), в которых тетраоксазокановые циклы имеют общие O1, O2, C3, N4, C5 и C8 атомы. Подобных азапероксидных циклов в Кембриджской базе данных не обнаружено (*CSD*, Release 2020.0).

Для количественной оценки тетраоксазокановых и тетраоксепановых циклов, имеющих одинаковую конформацию, была рассчитана амплитуда Кремера-Попла), складчатости цикла (метод которая отображает отклонение атомов цикла от его средней плоскости. Амплитуды складчатости гетероциклов 1-4 изменяются в пределах от 1.191 до 1.198 Å. В соединении **5** конформация пероксидного кольца сохраняется прежней (твист-ванна-кресло), но при этом амплитуда складчатости меньше и равна 1.154(2) Å. Несмотря на то, что в спироциклических тетраоксазоканах 6, 7 и 8 также реализуется конформация твист-ваннакресло, амплитуда складчатости для них составляет 1.183(4), 1.214(2) и 1.2173(18) Å соответственно. В кристаллах 9 реализуются два изомера, тетраоксазокановый цикл одного из которых (кресло-кресло конформер) имеет амплитуду складчатости 0.945(3) Å, а второй (*твист-ванна-кресло* конформер) – 1.137(4) Å. Амплитуда складчатости тетраоксазоканового цикла в конформации кресло-кресло (структуры 10-12) лежит в узком диапазоне от 0.885 до 0.895 Å, тогда как в конформации ванна-кресло (13) равна 1.277(3) Å.

Соединение №	a, Å	b, Å	c, Å	α, °	β, °	γ, °	V , Å ³	Простр. группа	Z	Z	d _{выч} , г/см ³	$\frac{R_{gt}/N_{ref}}{(I \ge 2\sigma(I))}$
1	12.735(3)	6.5866(9)	18.883(3)	90	90	90	1583.9(5)	Pna2 ₁	4	1	1.331	0.0490/2359
2	20.1904(17)	6.6711(4)	12.9057(9)	90	106.432(8)	90	1667.3(2)	$P2_1/c$	4	1	1.320	0.0972/3809
3	12.6307(9)	6.6410(5)	19.1592(14)	90	90	90	1607.1(2)	Pna2 ₁	4	1	1.386	0.0399/3765
4	20.184(4)	6.6789(7)	12.7848(16)	90	104.567(16)	90	1668.1(4)	$P2_1/c$	4	1	1.401	0.0916/3891
5	12.4037(10)	14.5530(17)	9.9903(8)	90	103.023(8)	90	1757.0(3)	$P2_1/c$	4	1	1.313	0.0766/4041
6	12.4485(6)	10.2927(6)	21.8055(10)	90	90	90	2793.9(2)	Pbca	8	1	1.347	0.0939/3246
7	5.7993(5)	25.037(3)	10.1500(11)	90	100.329(11)	90	1449.9(3)	Cc	4	1	1.362	0.0372/2662
8	5.6520(4)	26.493(3)	10.4717(10)	90	100.108(8)	90	1543.7(2)	$P2_1/n$	4	1	1.340	0.0482/3560
9	6.3428(5)	10.3466(13)	19.0468(15)	78.754(9)	82.207(6)	77.034(8)	1189.2(2)	P-1	4	2	1.381	0.0975/5453
10	12.8989(17)	5.8609(5)	13.5007(19)	90	116.417(17)	90	914.1(2)	P21	2	1	1.233	0.0653/3445
11	11.5582(8)	6.0006(3)	27.226(2)	90	101.111(7)	90	1852.9(2)	P21	4	2	1.276	0.0583/6850
12	12.146(2)	6.0004(7)	14.022(3)	90	112.03(2)	90	947.3(3)	P21	2	1	1.248	0.0675/3613
13	6.3859(8)	8.1389(8)	16.238(3)	90	99.013(13)	90	833.53(19)	P21	2	1	1.301	0.0859/3831
14	10.550(3)	9.4988(15)	20.359(3)	90	99.44(2)	90	2012.7(8)	$P2_1/n$	4	1	1.404	0.0856/4094
15	18.9061(6)	11.4711(4)	8.7831(3)	90	99.134(3)	90	1880.66(11)	$P2_1/c$	4	1	1.386	0.0547/4395
16	12.9687(13)	10.0294(8)	14.5182(15)	90	100.068(10)	90	1859.3(3)	$P2_1/n$	4	1	1.402	0.0825/4313
17	10.6640(6)	9.4362(6)	20.7558(11)	90	97.997(5)	90	2068.3(2)	$P2_1/n$	4	1	1.651	0.0750/4798

Таблица 1 – Кристаллографические данные соединений 1–17

Рисунок 1 – Структурные формулы соединений 1-17

Рисунок 2 – Молекулярная структура спироадамантан 1-5, спироциклоалкан 6-9 и спироментон 10-13 тетраоксазоканов. 9' и 9'' – конформеры в кристалле 9. Атомы представлены эллипсоидами тепловых колебаний (*p* = 30 %)

Анализ топологических параметров КТ(3,-1) С-О связей показал корреляцию длин связей с величиной электронной плотности и ее лапласиана. Отличительной особенностью С-N связей по сравнению с О-О и С-О является сравнительно большие по модулю значения электронной плотности и ее лапласиана.

Стереоэлектронные эффекты. Причину различий в длинах связей тетраоксазоканового проанализировали цикла С точки зрения структурах стереоэлектронных эффектов. В $n_N \rightarrow \sigma^*_{C-O}$ 1-13 стереоэлектронные эффекты проявляются на двух N-C-O участках и не зависят от типа конформации тетраоксазоканового цикла по сравнению с семичленными дитиазепанами (рисунок 3).

Для соединений с симметричными ванна-кресло (13) и кресло-кресло (10-12) конформациями разница в энергиях $n_0 \rightarrow \sigma^*_{C-N}$ взаимодействий на участках N4–C3–O2 и N4–C5–O6 незначительна и составляет от 0.33 до 3.72 кДж/моль. В случае тетраоксазокановых циклов с несимметричным строением (*твист-ванна-кресло*) энергии взаимодействия существенно отличаются.

На участке О1-С8-О7 неподеленные электронные пары атомов кислорода вовлекаются во взаимодействия с орбиталями соседних С8-О7

10

и C8–O1 связей, энергии которых лежат в диапазоне 47-70 кДж/моль. Кроме того, для O–O–C участков выявлены слабые взаимодействия $n_{07} \rightarrow \sigma^*_{06-C5}$ и $n_{06} \rightarrow \sigma^*_{07-C8}$, $n_{01} \rightarrow \sigma^*_{02-C3}$ и $n_{02} \rightarrow \sigma^*_{C1-08}$.

Рисунок 3 – Схема стереоэлектронных взаимодействий п→σ* в структуре 2. Значения приведены в кДж/моль

Таким образом, в ряду исследуемых соединений выявлены стереоэлектронные эффекты, которые проявляются на О–С–О, двух N–С–О, и четырех О–О–С участках независимо от типа конформации.

Конформационный анализ. С целью установить возможные конформации тетраоксазоканового цикла, изучено конформационное поведение молекул 1-13 с применением квантово-химических расчетов в рамках метода B3LYP/6-31G(d,p). Выявлен ряд возможных конформаций за счет изменения торсионных углов N–C–O–O, O–C–N–C, O–O–C–O и С–O–C пероксидного гетероцикла. Переходные состояния уточнены по наличию одной из мнимых частот в соответствующем гессиане (рисунок 4).

Главному минимуму на поверхности потенциальной энергии (ППЭ) в соединениях 1-4, 6-12 соответствует реализуемая в кристаллическом состоянии конформация, в отличие от соединений 5 и 13. Энергетический барьер между конформациями *твист-ванна-кресло* и *кресло-кресло* в 5 составил 2.05 кДж/моль. Для соединения 13 энергетический барьер между *ванна-кресло* и *кресло-кресло* конформерами значительно больше и составляет 6.78 кДж/моль, что может быть обусловлено природой заместителя.

Таким образом, выявлено, что в кристаллах соединений 1-4, 6-8 реализуется конформация твист-ванна-кресло, в 10-12 – кресло-кресло которые соответствуют глобальному минимуму на ППЭ. В кристаллах 9 одновременно реализуются две конформации твист-ванна-кресло и глобального значению кресло-кресло, минимума соответствует a конформация твист-ванна-кресло. Для соединений 5 и 13 согласно конформационному анализу наиболее энергетически выгодная конформация кресло-кресло, тогда как в кристаллическом состоянии наблюдается твист-ванна-кресло (5) и ванна-кресло (13).

Внутримолекулярные взаимодействия.

Показано, что ориентация арильного заместителя в структурах 1-4 создает благоприятные условия для образования внутримолекулярных водородных С–Н...О связей и коротких Н...Н взаимодействий (рисунок 5).

Рисунок 5 – Внутримолекулярные взаимодействия в структурах 2, 5-7, 9, 10, 13

Так, в структурах **1-4** С–Н...О связь формируется между атомом водорода арильного фрагмента и атомом кислорода тетраоксазоканового цикла. Кроме того, между протонами арильного фрагмента и водородами метиленовых групп тетраксазокана формируются Н...Н взаимодействия.

Метоксифенильный фрагмент в силу стерических причин имеет большой угол поворота относительно средней плоскости тетраоксазокана 5, что приводит к образованию других внутримолекулярных связей. В структуре 5 образуются две С-Н...О водородные связи между атомами Н19 и О1, а также между атомом кислорода метоксигруппы О24 и Интересно водородом H5B. отметить, ЧТО в структуре 6 также наблюдается образование H3B...H15 коротких И H5B...H19 взаимодействий между ароматическим заместителем и метиленовыми группами, как и в случае соединений 1-4. Замечено, что амплитуды складчатости восьмичленных циклов молекул 1-4 и 6 также схожи, как и образующихся внутримолекулярных взаимодействий. типы Обнаруженная схожесть амплитуд складчатости И образующихся внутримолекулярных взаимодействиях характерна для соединений 7-8.

В соединениях 10-12 для которых реализуется конформация *креслокресло*, формируются аналогичные внутримолекулярные взаимодействия между атомом кислорода Об тетраоксазоканового кольца и атомами водорода фенильного (H23) и ментонового (H10) фрагментов, а также между метильным атомом водорода H16C и атомом кислорода О7 тетраоксазоканового цикла (рисунок 5). Отличительной особенностью структуры 13 от 10-12 является формирование C16–H16C...O1, H5B...H22 взаимодействий. По типу образуемых внутримолекулярных взаимодействий ментоновые производные можно разделить на две группы: 10-12 и 13, в пределах которых амплитуды складчатости близки по значению.

Таким образом, выявлена взаимосвязь между амплитудой складчатости цикла и внутримолекулярными взаимодействиями.

Кристаллическая структура. Мы предположили, что на конформацию тетраоксазоканового цикла соединений **1-13** могут также влиять межмолекулярные взаимодействия.

Независимая часть элементарной ячейки кристаллов соединений 1-8, 10, 12, 13 включает в себя одну молекулу, в отличие от кристаллов 9 и 11, где наблюдаются две молекулы. Все кристаллы рассматриваемой группы соединений относятся к низшим сингониям: триклинной (9), моноклинной (2, 4, 5, 7, 8, 10-13) и ромбической (1, 3 и 6). В кристаллах между молекулами преимущественно формируются С–Н...О водородные связи и короткие Н...Н взаимодействия, а также в зависимости от природы заместителя образуются С–Н...Х (X = F, Cl и N) и О–Н...О водородные связи и С–Н... π контакты. Молекулы 1-4, 6 и 7 формируют в кристаллах

2D мотивы за счет водородных связей типа C–H…O, **5** – 3D мотив, **8**, **10**-**13** – 1D мотивы, тогда как **9** – 0D мотив за счет O–H…O взаимодействий.

Кристаллы соединений 1 и 3 изоструктурны. В паре соединений 1 и 3 двумерный мотив формируется за счет прочных С–Н...О водородных связей между атомами кислорода тетраоксазоканового цикла и атомами водорода адамантанового и фенильного фрагментов. Наиболее прочными С–Н...О связями в кристаллах 1 и 3 являются взаимодействия между атомом кислорода тетраоксазоканового цикла и водородом метиленового фрагмента.

Bo соединений второй паре 2 И 4, кристаллы которых изоструктурны, так же как и для 1 и 3, формируются 2D мотивы, но за счет С–Н…О взаимодействий между атомами кислорода тетраоксазоканового цикла и атомами водорода адамантанового И метиленового фрагментов.

особенностью структуры 5 Отличительной является наличие орто-положении фенильного фрагмента, метоксильной группы В кислородный атом которой наряду кислорода С атомами тетраоксазоканового цикла посредством образования С-Н...О связей участвует в формировании 3D супрамолекулярного мотива в кристалле.

Таким образом, для рассматриваемой группы соединений со спироадамантановым заместителем кристаллическая упаковка стабилизируется за счет С–Н...О межмолекулярных взаимодействий. При этом стоит отметить, что кристаллы 1 и 3, 2 и 4 имеют аналогичные мотивы. Из общей массы рассматриваемых структур можно выделить соединение 5, супрамолекулярный мотив которого отличается от остальных из-за наличия метоксильной группы.

Молекулы соединений 6 и 7 формируют 2D мотив в кристаллах за счет слабых С–Н...О водородных связей, образующихся между атомами кислорода тетраоксазоканового цикла и атомами водорода метиленового и фенильного фрагментов. Кислородный атом O1 участвует в образовании С–Н...О водородных связей, за счет которых молекулы соединения 6 формируют зигзагообразную цепочку (вдоль оси b), а молекулы 7 – стопки (вдоль оси a).

Кристаллическая упаковка соединения **8** формируется за счет C5-H5A...O1 и C9–H9A...O7 водородных связей, образующих 1D мотив, в котором молекулы укладываются в стопки вдоль оси *а*.

Молекулы 9 формируют циклический димер (0D мотив) за счет O-H...O взаимодействий. Также в кристалле образуются слабые C–H...O водородные связи: C14–H14B...O16, C3–H3B...O1′ и C3–H3B...O2′. Следует отметить, что бифуркатные связи имеют схожую геометрию (do1′...H3B = 2.65(3) Å, do2′...H3B = 2.66(3) Å, \angle C3–H3B...O1′ = 149.2°, \angle C3–H3B...O1′ = 128.9°). В соединениях **10-12** формируется 1D мотив за счет С–Н...О водородных связей. Интересно отметить, что только для соединения **10** формируется мотив за счет С–Н...О (С5–Н5А...О6 и С3–НЗА...О6) бифуркатных водородных связей. В кристаллах **11** и **12** за счет бифуркатных С–Н...О водородных связей образуются спиралевидные (зигзагообразные) цепи. Этот мотив, в отличие от соединения **10**, образуется между метиленовым атомом водорода НЗА и атомами кислорода O1 и O2 тетраоксазоканового кольца.

В кристалле 13 формируется зигзагообразная цепочка из молекул, связанных между собой за счет С-Н... N взаимодействий. Значения топологических параметров критических точек составляют $\rho(r) = 0.0115 \text{ e/au}^3$ и $\nabla^2 \rho(r) = 0.0348 \text{ e/au}^5$, что указывает на сильное между атомами водорода взаимодействие И азота. Ортогонально зигзагообразным цепям образуются стопки из молекул, связанных между собой С-Н...О водородными связями.

Таким образом, в кристаллах **1-8**, **10-12** молекулы стабилизированы преимущественно за счет С–Н...О водородных связей, тогда как в **9** и **13** кристаллообразующими являются О–Н...О и С–Н...N межмолекулярные взаимодействия.

2 Структурные особенности производных тетраоксаспирододекан диаминов

С целью определения конформации и межмолекулярных взаимодействий, возникающих в структурах пероксидов с атомами азота, не включенными в пероксидный цикл, был проведен анализ четырех новых структур тетраоксаспирододекан диаминов (рисунок 6).

Молекулярная структура. Установлено, что торсионный угол N20–C10–C9–N13 между *N*-арильными заместителями составляет соответственно -73.0(3), -79.4(2), и -68.8(4) и -75.07(6)° для соединений 14, 15, 16 и 17, что указывает на *гош*-конформацию относительно связи C9–C10. Наибольший угол характерен для структуры 15 с *орто*-фторарильными заместителями при атоме азота, поскольку это приводит к минимальному стерическому напряжению между ними. Таким образом, можно сделать вывод, что природа и положение атомов галогенов в бензольных фрагментах слабо влияет на геометрические параметры исследованных молекул 14-17.

В литературе найдены системы, содержащие аналогичный семичленный тетраоксановый цикл, который в кристаллическом состоянии может принимать конформации *кресло* (ref. code QAQFAP) и *твист-кресло* (ref. code QONLOU). С помощью рентгеноструктурного анализа установлено, что в соединениях **14-17** тетраоксепановое кольцо

принимает конформацию *твист-кресло* (рисунок 6). Амплитуда складчатости тетраоксепановых циклов лежит в узком диапазоне от 0.970(3) до 1.0072(14) Å, что говорит о близости конформаций при их сравнении по методу Кремера-Попла.

Рисунок 6 – Молекулярные структуры соединений и внутримолекулярные взаимодействия в структурах **14-17**. Атомы представлены эллипсоидами тепловых колебаний (*p*=30%)

В исследуемых соединениях длины С-О связей принимают значения в достаточно широком диапазоне (1.423–1.463 Å), что соответствует значениям из КБСД. Длины О-О связей принимают меньшие значения по сравнению с литературными данными. Длины С– Коледуемых структурах 14-17 также немного меньше известных в литературе среднестатистических значений (1.469 Å). Во всех молекулах атомы азота имеют плоскую конформацию (сумма углов при атоме азота ~360°), что является следствием сопряжения между π-системой ароматического заместителя и неподеленной электронной парой атома азота. Таким наблюдаемое несоответствие длин С-О и образом, C–N связей литературным значениям, а также уплощение атома азота является стереоэлектронных эффектов проявлением В структурах 14-17.

Топологический анализ распределения электронной плотности показал, что наибольшая электронная плотность и ее лапласиан в критических точках КТ(3,-1) характерны для С–N связей, что свидетельствует об их высокой прочности.

Стереоэлектронные эффекты. Для подтверждения наличия стереоэлектронных эффектов были построены проекции Ньюмена и проведен анализ с помощью метода натуральных связевых орбиталей (рисунок 7).

Рисунок 7 – Схемы стереоэлектронных взаимодействий п→σ* в структуре для соединения 14. Значения приведены в кДж/моль

На участке О7-С1-О12 наблюдается взаимодействие неподеленной пары атома кислорода О7 с сигма разрыхляющей орбиталью С1-О12 связи, а также в обратном направлении. Энергии взаимодействий n₀₇→σ*_{C1-O12} и n₀₁₂→σ*_{C1-O7} незначительно отличаются и изменяются в 42.26-45.19 кДж/моль. Взаимодействия пределах $n_N \rightarrow \sigma^*_{C-O}$ характеризуются 71.59 большими значениями энергии (от ЛО 86.48 кДж/моль). Следует отметить, что энергия взаимодействия атома азота N13 с антисвязывающей о*-орбиталью С9-О8 связи в структуре 16 среди n_N→σ*_{C-O} взаимодействий, всех наибольшая что велет К значительному укорочению N13-C9 связи (1.382(5) Å). Отличительной особенностью взаимодействий на N-C-O участке для тетраоксепанов 14-17 в отличие от тетраоксазоканов 1-13, является наличие очень слабых n₀→σ*_{C-N} и относительно сильных n₀→σ*_{C-C} взаимодействий. Меньшие значения энергии данных взаимодействий объясняются анти-ориентацией неподеленной электронной пары атома кислорода с С-С и С-Н связями, и гош расположением относительно С-N связи.

Таким образом, в ряду исследуемых соединений выявлены стереоэлектронные эффекты, которые проявляются на О-С-О, двух N-С-О, двух О-С-С и четырех О-О-С участках.

Внутримолекулярные взаимодействия. Ориентация арильных заместителей в исследованных структурах создает благоприятные условия для образования С–Н...О и Н...Н внутримолекулярных взаимодействий (рисунок 6).

Так, в структуре 14 между протонами арильного фрагмента (Н19 и Н22) и атомами водорода тетраоксепанового кольца (Н9 и Н10) формируются Н...Н взаимодействия, расстояние между атомами водорода которых составляет 2.209 и 2.235 Å соответственно. В структуре 15 в дополнение к Н9...Н22 короткому контакту образуется С19-Н19...О8 внутримолекулярнуая СВЯЗЬ. Для соединения 16 установлено формирование С22-Н22...О11 водородной связи, а также Н9...Н19 и Н10...Н22 коротких контактов. В структуре 17 аналогично 14 образуются Н9...Н19 и Н10...Н22 взаимодействия, расстояние между водородными атомами которых незначительно отличается от вышеуказанных контактов и равна 2.215 и 2.240 Å соответственно.

Таким образом, установлено, что образующиеся внутримолекулярные взаимодействия схожи, как и амплитуды складчатости тетраоксепанового цикла.

Кристаллическая структура. Для проверки влияния межмолекулярных взаимодействий на конформацию тетраоксепанового кольца был проведен их комплексный анализ.

Независимая часть элементарной ячейки соединений 14-17 включает в себя одну молекулу. Все кристаллы рассматриваемой группы соединений относятся к моноклинной сингонии. В кристаллах между молекулами преимущественно формируются N–H…O, C–H…O и C–H…N водородные связи и короткие H…H взаимодействия, а также в зависимости от природы заместителя образуются C–H…X и N–H…X (X = F, Cl и Br) и C–H… π контакты. Молекулы 14-17 формируют в кристаллах 2D мотивы за счет N-H…O и C–H…O водородных связей.

Молекулы соединения 14 формируют в кристалле зигзагообразные цепи вдоль оси *b* за счет прочных N13–H13...O12 и C–H...O (C15-H15...O12, C23–H23...O8) водородных связей. Бифуркатный атом кислорода O12 кроме N13–H13...O12 взаимодействия также формирует C15–H15...O12 связь, которая является самой слабой в мотиве, и ее длина составляет 2.63(2) Å. Кроме того, в мотиве также формируются C–H...O взаимодействия между протоном H23 фенильного фрагмента и атомом кислорода O8 энергия взаимодействия которого больше на 16.5 %, чем для C15–H15...O12. В кристаллах **15** за счет сильных N13–H13...O7 и N20–H20...O12 водородных связей, формируются цепи вдоль оси *с*. Интересно отметить, что атомы кислорода O7 и O12 образуют бифуркатные межмолекулярные взаимодействия, при этом O...H расстояния в C–H...O связях в отличие от N–H...O больше суммы ван-дер-Ваальсовых радиусов.

Кристаллическая упаковка соединений 16 и 17, также как и для 14, формирует зигзагообразные цепочки за счет N–H…O и C–H…O водородных связей, которые образуют 2D мотив. Наиболее прочная N13-H13...O12 связь среди рассматриваемых структур в 17 (E = 14.31 кДж/моль), тогда как наименьшее значение энергии связи характерно для 16 (E = 11.97 кДж/моль).

ЗАКЛЮЧЕНИЕ

В рамках данной диссертационной работы исследована кристаллическая молекулярная структура тринадцати спиро-И тетраоксазоканов. Установлено что в молекулах спироадамантановых и конформация азапероксидов реализуется спироциклоалкановых восьмичленных гетероциклов твист-ванна-кресло, a для спироментоновых – кресло-кресло и ванна-кресло. Анализ натуральных орбиталей В рамках теоретического приближения молекулярных B3LYP/6-31G(d,p) позволил обнаружить и количественно оценить стереоэлектронные взаимодействия $n_0 \rightarrow \sigma^*_{C-0}$, $n_0 \rightarrow \sigma^*_{C-N}$, $n_N \rightarrow \sigma^*_{C-0}$ и n₀→σ*_{0-C} на участках N-C-O, O-C-O и O-O-C. Показано, что энергия $n_N \rightarrow \sigma^*_{C-O}$ (66.15-94.60 кДж/моль) взаимодействий больше, чем для (10.13-54.10 кДж/моль). Взаимодействие $n_0 \rightarrow \sigma^*_{C-N}$ неподеленной электронной пары атома кислорода с антисвязывающей σ*-орбиталью С-О связи имеют значительно большую энергию по сравнению с $n_0 \rightarrow \sigma^*_{O-C}$. Проведен конформационный анализ и сравнение конформаций, реализуемых в кристаллах и в газовой фазе и показано, что в некоторых кристаллах реализуется конформация восьмичленного гетероцикла не совпадающая С глобальным минимумом ИЗ квантово-химических расчетов. Выполнена количественная оценка амплитуд складчатости циклов по методу Кремера-Попла. Выявлено, что полученные значения формируемых внутримолекулярных взаимосвязаны с типами взаимодействий. Анализ кристаллической упаковки и межмолекулярных взаимодействий позволил выявить, что в кристаллах 1-8, 10-12 молекулы стабилизированы преимущественно за счет внутримолекулярных С-Н...О водородных связей, тогда как в кристаллах 9 и 13 стабилизация конформаций осуществляется также и за счет сильных О-Н...О и С-Н...N межмолекулярных взаимодействий.

С определения конформаций целью И межмолекулярных взаимодействий, реализующихся В кристаллах пероксидов С проведен анализ четырех новых экзоциклическими атомами азота, структур тетраоксаспирододекан диаминов. Для всех этих структур характерна конформация твист-кресло. С помощью метода натуральных связевых орбиталей обнаружены стереоэлектронные взаимодействия на N-C-O, O-C-O, O-O-C и O-C-C участках. Установлено, что энергии n₀→σ*_{C-N} взаимодействий в тетраоксаспирододекан диаминах меньше, чем в тетраоксазоканах, а также выявлено наличие взаимодействия неподеленной электронной пары атома кислорода с о*-разрыхляющей орбиталью С-С связи с относительно большими значениями энергий взаимодействия. Так же как и для тетраоксазоканов, установлена взаимосвязь между амплитудой складчатости цикла и образующимися внутримолекулярными взаимодействиями. Ha основе анализа взаимодействий межмолекулярных выявлено, что кристаллах В преимущественно образуются N–H…O и C–H…O водородные связи.

Установленные особенности пространственного строения новых производных тетраоксазоканов и тетраоксаспирододекан диаминов будут способствовать поиску и целенаправленной разработке новых фармакологически перспективных соединений для медицины, обладающих потенциальной противомалярийной и противоопухолевой активностью.

выводы

1. Впервые установлено пространственное строение тринадцати новых производных тетраоксазоканов и четырех новых производных тетраоксаспирододекан диаминов кристаллическом состоянии. В Установлено, что тетраоксазокановый цикл в производных спироадамантан И спиро-циклоалкан тетраоксазоканов принимает твист-ванна-кресло, тогда галогенфенильных конформацию как В производных 1-изопропил-4-метил-тетраокса-азаспиро тридеканов а в 1-изопропил-4-метил- метилизооксазол-тетраоксакресло-кресло, азаспиро тридекане – ванна-кресло. Установлено ЧТО конформация тетраоксепанового цикла в тетраоксаспирододекан диаминах – твисткресло, не зависит от типа галогена и его положения в бензольных кольцах аминогрупп;

2. Выявлены стереоэлектронные взаимодействия на участках N-C-O, O-C-O и O-O-C ($n_0 \rightarrow \sigma^*_{C-O}$, $n_0 \rightarrow \sigma^*_{C-N}$, $n_N \rightarrow \sigma^*_{C-O}$ и $n_0 \rightarrow \sigma^*_{O-C}$), возникающие в тетраоксазокановом цикле рассмотренных соединений и установлено, что для всех исследованных соединений проявления стереоэлектронных эффектов наблюдаются на двух N-C-O участках независимо от конформации восьмичленных циклов. При этом энергия взаимодействия $n_0 \rightarrow \sigma^*_{C-N}$ в тетраоксазоканах больше по сравнению с тетраоксаспирододекан диаминами, вследствие эффективного перекрытия неподеленной электронной пары атома кислорода и C–N связи, достигаемого благодаря их *анти*-ориентации в тераоксазоканах, тогда как в тетраоксаспирододекан диаминах неподеленная электронная пара атома кислорода и C–N связь находятся в *гош* положении;

3. Методами компьютерного моделирования конформационных превращений с применением квантово-химических расчетов в рамках метода B3LYP/6-31G(d,p) установлено, что рассчитанные энергетически наиболее выгодные конформеры для фенил-, р-толил-, 4-фторфенил-, 4-хлорфенил-спироадамантан тетраоксазокана, 4-фторфенилтетраоксаазаспиро-циклогексана, -циклогептана и -циклооктана (твистванна-кресло) 4-фторфенил-, 4-хлорфенил-3-хлорфенил-И тетраоксаазаспиротридекана (кресло-кресло) соответствуют конформациям. наблюдаемым кристаллах. В кристаллах В тетраоксаазаспиротридекан уксусной кислоты одновременно реализуются конформации твист-ванна-кресло две и кресло-кресло, при ЭТОМ значению глобального минимума соответствует конформация твистванна-кресло. Найдено, что реализуемая в кристаллах конформация цикла 2-метоксифенил-спироадамантан тетраоксазокана (твист-ванна-кресло) и 4-метилизоксазол-тетраоксаазаспиротридекана (ванна-кресло) отличается от теоретически рассчитанной конформации кресло-кресло 3a счет влияния межмолекулярных взаимодействий.

4. Установлена определяющая роль слабых С-Н...О внутримолекулярных водородных связей и Н–Н взаимодействий на амплитуду складчатости оксазоканового и оксепанового циклов, которые фиксируют положения атомов кислорода относительно фенильных, адамантановых, циклоалкановых и ментоновых заместителей.

Основное содержание диссертации изложено в следующих публикациях:

1. Tyumkina, T.V. Synthesis, Molecular Structure, Conformation and Biological Activity of Ad-substituted N-Aryl-tetraoxaspiroalkanes / T.V. Tyumkina, N.N. Makhmudiyarova, G.M. Kiyamutdinova, E.S. Meshcheryakova, **K.Sh. Bikmukhametov**, M.F. Abdullin, L.M. Khalilov, A.G. Ibragimov, U.M. Dzhemilev // Tetrahedron. – 2018. – V. 74. – P. 1749-1758.

2. Tulyabaev, A.R. What is responsible for conformational diversity in singlecrystal tetraoxazaspiroalkanes? X-Ray, DFT, and AIM approaches / A.R. Tulyabaev, **K.Sh. Bikmukhametov**, E.S. Mescheryakova, N.N. Makhmudiyarova, R.Sh. Rakhimov, L.M. Khalilov // Crystal Engineering Communication. – 2018. – V. 20. – P. 3207-3217.

3. Khalilov, L.M. How the oxazole fragment influences the conformation of the tetraoxazocane ring in a cyclohexanespiro-3'-(1,2,4,5,7-tetraoxazocane): single crystal X-ray and theoretical study / L.M. Khalilov, E.S. Mescheryakova, Makhmudiyarova, K.Sh. Bikmukhametov, N.N. K.R. Shangaraev, A.R. Tulyabaev // Acta Crystallographica C. – 2019. – V. C75. – P. 1439-1447. 4. Khalilov, L.M. Twist-chair conformation of the tetra-oxepane ring remains tetraoxaspirododecane unchanged in diamines / L.M. Khalilov. E.S. Mescheryakova, K.Sh. **Bikmukhametov**, N.N. Makhmudiyarova, K.R. Shangaraev, A.R. Tulyabaev // Acta Crystallographica C. - 2020. -V. C76. – P. 276-286.

5. Бикмухаметов К.Ш. Влияние природы атома галогена в бензольном кольце на супрамолекулярные мотивы и энергию межмолекулярных связей спиро [адамантан-2,2'-[1,3,4,8,6]тетраоксазокана] / К.Ш. Бикмухаметов, Е.С. Мещерякова, А.Р. Тулябаев, Л.М. Халилов, Н.Н. Махмудиярова // ХХ Молодежная школа-конференция по органической химии: сб. тезисов докладов. Казань, 2017. – С. 102.

6. Бикмухаметов К.Ш. Молекулярная структура и стереоэлектронные эффекты в классе новых перспективных противомалярийных пероксидов / К.Ш. Бикмухаметов, Е.С. Мещерякова, А.Р. Тулябаев, Л.М. Халилов, Н.Н. Махмудиярова // IX Национальная кристаллохимическая конференция: сб. тезисов докладов. Суздаль, 2018. – С. 117.

7. Бикмухаметов К.Ш. Особенности кристаллического строения гомологического ряда новых спиро- тетраоксазокановых производных / К.Ш. Бикмухаметов, Е.С. Мещерякова, А.Р. Тулябаев, Л.С. Королева, Н.Н. Махмудиярова, Л.М. Халилов // XII Всероссийская научная интернет-конференция «Интеграция науки и высшего образования в области био- и органической химии и биотехнологии»: сб. тезисов докладов. Уфа, 2018. – С. 9-10.

8. Бикмухаметов К.Ш. Влияние природы заместителя на молекулярную и кристаллическую структуры производных 4-метил-1-(пропан-2-ил)-7,8,12,13-тетраокса-10-азаспиро[5.7]тридекана / К.Ш. Бикмухаметов, Е.С. Мещерякова, А.Р. Тулябаев, Н.Н. Махмудиярова, Л.М. Халилов // Ш Всероссийская молодежная конференция «Проблемы и достижения химии кислород- и азотсодержащих биологически активных соединений»: сб. тезисов докладов. Уфа, 2018. – С. 114-115.

9. Бикмухаметов К.Ш. Кристаллическое строение 11-(2-фторфенил)-2,3,5,6-тетраокса-11-аза-спиро[бицикло[5.3.1]ундекан-4,1'-циклогексана] / К.Ш. Бикмухаметов, Е.С. Мещерякова, А.Р. Тулябаев, Л.М. Халилов, Н.Н. Махмудиярова // XIII Всероссийская научная интернет-конференция «Интеграция науки и высшего образования в области био- и органической химии и биотехнологии»: сб. тезисов докладов. Уфа, 2019. – С. 24.

10. Бикмухаметов К.Ш. Кристаллическое строение 1,4-диспиро[адамантан-2,3'-[1,2,4,5,7]тетраоксазокан]-7'-ил)бутана /

К.Ш. Бикмухаметов, Е.С. Мещерякова, А.Р. Тулябаев, Л.С. Королева, Н.Н. Махмудиярова, Л.М. Халилов // XIII Всероссийская научная интернет-конференция «Интеграция науки и высшего образования в области био- и органической химии и биотехнологии»: сб. тезисов докладов. Уфа, 2019. – С. 25.

11. Мещерякова Е.С. Рентгеноструктурный анализ и квантово-химические расчеты в исследовании особенностей молекулярной и кристаллической структуры ряда производных тетраоксазокана / Е.С. Мещерякова, **К.Ш. Бикмухаметов**, А.Р. Тулябаев, Н.Н. Махмудиярова, Л.М. Халилов // Ш Всероссийская научная конференция «Методы исследования состава и структуры функциональных материалов»: сб. тезисов докладов. Новосибирск, 2020. – С. 414-415