Федеральное государственное бюджетное научное учреждение Уфимский федеральный исследовательский центр Российской академии наук (УФИЦ РАН) Институт нефтехимии и катализа – обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук (ИНК УФИЦ РАН)

На правах рукописи

Файзуллин Айдар Вильданович

МОЛЕКУЛЯРНЫЕ СИТА АІРО₄-11 И SAPO-11. СИНТЕЗ И КАТАЛИТИЧЕСКИЕ СВОЙСТВА

Направление 04.06.01 – Химические науки Специальность 02.00.15 – Кинетика и катализ

НАУЧНЫЙ ДОКЛАД

Работа выполнена в Институте нефтехимии и катализа – обособленном структурном подразделении Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук

Научный руководитель:	Кутепов Борис Иванович доктор химических наук, профессор
Официальные рецензенты:	Ибрагимов Асхат Габдрахманович доктор химических наук, профессор ИНК УФИЦ РАН
	Майстренко Валерий Николаевич доктор химических наук, профессор БашГУ

Защита научно-квалификационной работы (диссертации) состоится <u>«28» августа 2019 года</u> в <u>10⁰⁰</u> часов на заседании аттестационной комиссии в Институте нефтехимии и катализа – обособленном структурном подразделении Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук по адресу: 450075, г. Уфа, проспект Октября, 141.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В начале 80-х годов XX века сотрудниками фирмы Union Carbide разработаны принципиально новые молекулярные сита – алюмои силикоалюмофосфаты. Среди большого разнообразия алюмофосфатов следует выделить алюмофосфат AlPO₄-11 с одномерной системой 10-членных эллиптических каналов размером 0,40 × 0,65 нм, на основе которого синтезирован силикоалюмофосфат SAPO-11

Благодаря возможности формирования кислотных центров «умеренной» силы и наличию одномерной канальной структуры, указанные материалы находят применение в гетерогенном катализе. Так на основе SAPO-11 разработаны перспективные каталитические системы для изомеризации циклогексаноноксима в капролактам, гидроизомеризации высших н-парафинов, синтеза низших олефинов из метанола, получения 2,6-диметилнафталина и изобутилена.

Однако для совершенствования действующих каталитических систем на основе SAPO-11 и расширения областей их применения все еще не решены две главные проблемы. Первая проблема – отсутствие перспективных для практической реализации воспроизводимых методов синтеза AlPO-11 и SAPO-11 высокой степени кристалличности и фазовой чистоты. Как правило, в большинстве предлагаемых в литературе синтезов, кроме основной фазы AEL наблюдается образование непористого тридимита, кристаболита и других примесных фаз. Другая не менее важная проблема, характерная для всех цеолитных материалов, это диффузионные ограничения, обусловленные микропористой структуры, которые приводят к ускоренной дезактивации катализатора. Для ее решения необходимо создание в алюмофосфатной решетке транспортных мезоропор.

К сожалению, предлагаемые в настоящее время подходы малопригодны для реализации в промышленном масштабе. Они, в основном, предполагают применение трудно доступных порообразующих темплатов. Кроме того, такие подходы не позволяют получать материалы высокой степени кристалличности.

Таким образом, разработка доступных способов синтеза высокодисперсных молекулярных сит AlPO-11 и SAPO-11 высокой степени кристалличности и фазовой чистоты с иерархической пористой структурой являются важной и актуальной задачей для современного гетерогенного катализа.

Цель работы. Разработка доступных способов синтеза высокодисперсных молекулярных сит AlPO-11 и SAPO-11 высокой степени кристалличности и фазовой чистоты с иерархической пористой структурой и изучение их каталитических свойств в изомеризации оксима в капролактам

Для достижения сформулированной цели решались следующие задачи:

- изучение зависимости фазовой чистоты и степени кристалличности алюмофосфата AlPO₄-11 и силикоалюмофосфата SAPO-11 от состава реакционной смеси, природы источника алюминия, кремния и темплата, порядка смешения исходных компонентов, температуры и продолжительности кристаллизации;

- изучение основных стадий кристаллизации при формировании алюмофосфата AlPO₄-11 и силикоалюмофосфата SAPO-11;

- разработка способа синтеза алюмофосфата AlPO₄-11 и силикоалюмофосфата SAPO-11 высокой фазовой чистоты и степени кристалличности;

- выяснение зависимости морфологии кристаллов, кислотных свойств и характеристик пористой структуры алюмофосфата AlPO4-11 и силикоалюмофосфата SAPO-11 от природы источника алюминия, кремния и темплата, порядка смешения исходных компонентов, температуры и продолжительности кристаллизации;

- исследование каталитических свойств синтезированных образцов силикоалюмофосфата SAPO-11 в изомеризации циклогексаноноксима в капролактам и димеризации α-метилстирола.

Научная новизна. В результате изучения кинетики кристаллизации алюмофосфатного геля, приготовленного из фосфорной кислоты и бемита

установлено, что формирование молекулярного сита AlPO₄-11 происходит через следующие стадии:

- выдержка геля при 90 °С (24 ч), которая обеспечивает последующую селективную кристаллизацию AlPO4-11;

 индукционный период продолжительностью ≈1 ч, во время которого происходит формирование промежуточной фазы на основе кристаллического алюмофосфата со слоистой структурой;

- интенсивный рост кристаллов AlPO₄-11 в течение 3—6 ч;

- перекристаллизация AlPO₄-11 в кристобалит.

Разработаны перспективные для практической реализации способы синтеза молекулярных сит AlPO₄-11 и SAPO-11 (AEL) высокой фазовой чистоты и степени кристалличности, близкой к 100 %, основанные на гидротермальной кристаллизации при 200 °C алюмофосфатного или силикоалюмофосфатного геля, приготовленного при 90 °C с использованием в качестве источника алюминия бемита или изопропоксида.

Практическая значимость работы. Разработанный способ приготовления высокодисперсного молекулярного сита SAPO-11 с иерархической пористой структурой позволяет перейти к приготовлению на его основе отечественных катализаторов изомеризации циклогексаноноксима в капролактам, гидроизомеризации высших н-парафинов, синтеза низших олефинов из метанола, получения 2,6-диметилнафталина и изобутилена.

Апробация работы. Основные результаты диссертационной работы были обсуждены международных представлены И на И всероссийских конференциях: VIII Всероссийская цеолитная конференция «Цеолиты и мезопористые материалы: достижения и перспективы» (2018, г.Уфа), XII Международная конференция молодых ученых по нефтехимии (2018, г.Звенигород), 5th International School-Conference on Catalysis for Young Scientists (2018, г.Москва), Наносистемы в материалах и катализе (2017, г.Звенигород), Nanocat Физико-химия наноструктурированных катализаторов (2016, г.Звенигород), II Всероссийская молодежная конференция «Достижения молодых ученых: химические науки» (2016, г.Уфа).

Публикации. По материалам диссертационной работы опубликовано 3 статьи, 12 тезисов докладов на международных и всероссийских конференциях.

Объем и структура диссертации. Диссертация изложена на 102 страницах машинописного текста, включает введение, литературный обзор, экспериментальную часть, обсуждение результатов, выводы и список литературы (86 наименований). Текст содержит 28 рисунков и 19 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность работы, сформулированы цель и задачи исследования, описана научная новизна и практическая значимость полученных результатов.

В первой главе представлен литературный обзор, в котором обобщены сведения о закономерностях синтеза, физико-химических и каталитических свойствах молекулярных сит AlPO₄-11 и SAPO-11. На основе проведенного анализа сформулированы цель и задачи исследования.

Во **второй главе** описаны методики синтеза, исследования физикохимических и каталитических свойств молекулярных сит AlPO₄-11 и SAPO-11.

Химический состав полученных силикоалюмофосфатов анализировали методом рентгенофлуоресцентной спектрометрии на приборе EDX 720/900HS фирмы "Shimadzu". Рентгенофазовый анализ (РФА) высушенных гелей SAPO и непрокаленных образцов SAPO-11 проводили на дифрактометре Bruker D8 Advance в CuK α излучении. Сканирование осуществляли в области углов 20 от 3 до 50-80° с шагом 1 град/мин, время накопления в точке 2 с. Обработку рентгенограмм проводили в программе TOPAS и Eva с привлечением базы данных PDF2. Морфологию и размер кристаллов для силикоалюмофосфатов исследовали методом сканирующей электронной микроскопии (СЭМ) на электронном микроскопе JEOL JSM-6490LV при ускоряющем напряжении 10kV. Удельную поверхность и суммарный объем пор измеряли методом низкотемпературной адсорбции-десорбции азота на сорбтометре Nova 1200е. Расчет удельной поверхности по БЭТ проводили при относительном парциальном давлении P/P₀ = 0.2. Расчет объема микропор проводили методом

t-plot. Кислотные свойства образцов цеолитных катализаторов исследовали методом термопрограммированной десорбции (ТПД) аммиака. Каталитические свойства силикоалюмофсфатных катализаторов изучали в изомеризации циклогексаноноксима и димеризации альфаметилстирола. Ошибка каталитического эксперимента составляла ±5,0%отн.

В **третьей главе** приведены результаты изучения селективной кристаллизации алюмофосфатного молекулярного сита AlPO₄-11.

Известно, что для алюмофосфатных молекулярных сит соотношение атомов Р и Al в кристаллической решетке всегда близко к 1. В таблице 1 приведены результаты элементного анализа для исходных гелей и продуктов кристаллизации. Видно, что независимо от условий приготовления алюмофосфатных гелей, в конечных продуктах кристаллизации сохраняется P/Al ~ 1.

Таблица 1

Химический и фазовый состав исходных алюмофосфатных гелей и кристаллических алюмофосфатов

Образец	Химический	Фазовый состав,	Степень
	состав	%	кристалличности,
			%
$AlPO_4(25)$	Al _{1.00} P _{0.98} O _{3.98}	Ph.DPA(60) +	н/д
		Am.ALPO(20) + BM(20)	
$AlPO_4(90)$	Al _{1.00} P _{0.94} O _{4.01}	Ph.DPA(30) +	н/д
		Am.ALPO(60) + BM(10)	
AlPO ₄ -11(25)	Al _{1.00} P _{1.05} O _{3.98}	AEL(94) + Tridymite(4)	98
		+ BM(1)	
AlPO ₄ -11(90)	Al _{1.00} P _{0.99} O _{3.99}	AEL(100)	100

Условные обозначения: Ph.DPA – фосфат ди-н-пропиламина;

Am.ALPO – аморфный алюмофосфат; BM - бемит ; AEL - алюмофосфат AlPO₄-11; Tridymite - тридимит

На рис. 1а,b приведены рентгенограммы высушенных исходных гелей и продуктов их кристаллизации. Так, в образце геля AlPO₄(25) наблюдаются три фазы: фосфат ди-*н*-пропиламина (60% об.), нерастворенный бемит (20% об.) и аморфный алюмофосфат (20% об.). Выдержка геля при 90 °C (образец AlPO₄(90)) приводит к снижению содержания фосфата ди-*н*-пропиламина до

30% об., бемита до 10% и увеличению содержания аморфного алюмофосфата до 60% об. Полученные результаты объясняются тем, что при 90 °С фосфат ди*н*-пропиламина взаимодействует с нерастворенным бемитом с образованием аморфного алюмофосфата.

На рис. 1с, d приведены рентгенограммы продуктов кристаллизации гелей AlPO₄(25) и AlPO₄(90). Видно, что образец AlPO₄-11(25) состоит из трех фаз,

Условные обозначения: * - фосфат ди-н-пропиламина; о - псевдобемит; ● – тридимит; ■ – нерастворенный источник алюминия

Рис. 1. Рентгенограммы исходных алюмофосфатных гелей и кристаллических алюмофосфатов: (a) – образец AlPO₄(25); (b) – образец AlPO₄(90); (c) – образец AlPO₄-11(25); (d) – образец AlPO₄-11(90)

основной фазы AlPO-11 (AEL) ~ 95% об., непористого тридимита ~ 4% об, непрореагировавшиго бемита ~1% об. В работах также отмечается образование наряду с основной фазой AEL примесей непористого тридимита и

непрореагировавшего бемита при использовании в качестве источника алюминия его гидратированного оксида. Выдержка геля при 90 °C позволяет кристаллизовать фазовочистый AlPO₄-11 (AEL) со степенью кристалличности ~ 100%.

Полученный результат, по-видимому, связан с формированием в геле AlPO₄(90) высокой доли аморфного алюмофосфата, который содержит в себе зародыши кристаллизации будущей фазы AlPO₄-11.

На рис. 2 приведены ВМУ ЯМР спектры ²⁷Аl и ³¹Р для исходных гелей и продуктов кристаллизации.

Рисунок 2 – Спектры ВМУ ЯМР ²⁷Аl и ³¹Р (a,c) – исходные геля, (b,d) – кристаллические алюмофосфаты

Видно, что в спектрах ЯМР ²⁷Al исходных гелей наблюдаются характеристические сигналы при 48, 11 и –9 м.д. Согласно, сигнал при 48 м.д.

относится к тетраэдрически координированным атомам алюминия, входящим в состав кристаллической решетки алюмофосфата. По-видимому, уже на начальной приготовления геля в нем могут формироваться стадии высокодисперсные частицы алюмофосфата. Сигнал при 11 м.д. характерен для октаэдрически координированных атомов алюминия, содержащихся В исходном бемите. Сигнал при -9 м.д. также относится к октаэдрически координированным атомам алюминия, характерным для кислых аморфных алюмофосфатов.

По данным ЯМР ³¹Р в спектрах исходных гелей присутствуют сигналы при 5, -11, -16 и -38 м.д. В работах сигнал при 5 м.д. относят к фосфатам азотсодержащих органических соединений. По-видимому, данный сигнал связан с фосфатом ди-*н*-пропиламина, присутствие которого подтверждается данными РФА исходных гелей. Сигналы при -11 и -16 м.д. относят к тетраэдрически координированным атомам фосфора в кислых алюмофосфатах с различной степенью замещения –ОН групп на атомы алюминия.

Из представленных спектральных данных видно, что выдержка исходного геля (AlPO₄(25)) при 90°С приводит к снижению интенсивности сигналов при 11 м.д. в спектре ²⁷Al и при 5 и –11 м.д. в спектре ³¹P и росту интенсивности сигналов при 48 и –9 м.д. спектре ²⁷Al и –16 и -38 м.д. в спектре ³¹P. Полученные результаты свидетельствуют о более полном растворении источника алюминия благодаря его взаимодействию с ди-*н*-пропиламином, приводящим к формированию аморфного алюмофосфата.

В спектрах ВМУ ЯМР ³¹Р продуктов кристаллизации (образцы AlPO₄-11(25) и AlPO₄-11(90)) наблюдаются одиночные сигналы при –28 м.д., характерные для тетраэдрически координированных атомов фосфора, содержащихся в кристаллической решетке AlPO₄-11. Однако в спектрах ²⁷Al, кроме основных сигналов при 41 м.д., характерных для тетераэдрического алюминия, наблюдаются слабые сигналы при 11 м.д. от атомов алюминия, содержащихся в нерастворенном бемите. Следует отметить, что интенсивность данного сигнала для образца AlPO₄-11(25) выше, чем для AlPO₄-11(90).

Полученные результаты указывают на увеличение степени внедрения атомов Al в кристаллическую решетку алюмофосфата при повышении температуры.

В таблице 2 приведены характеристики пористой структуры кристаллических алюмофосфатов. Более низкие значения указанных характеристик пористой структуры для образца AlPO₄-11(25) обусловлено содержанием в нем непористого тридимита.

Таблица 2

Характеристики пористой структуры кристаллических алюмофосфатов

Образец	V _{H2O} , см ³ /г	V _{C7H16} , см ³ /г	$S_{\rm БЭТ},{\rm M}^2/{\rm G}$	Размер частиц, мкм
AlPO ₄ -11(25)	0.10	0.11	110	1-2
AlPO ₄ -11(90)	0.13	0.14	126	1-2

Условные обозначения: V_{H2O} – объем микропор по парам воды;

 $V_{\rm C7H16}-$ объем микропор по парам гептана; $S_{\rm E9T}-$ удельная поверхность по E9T.

На рис. 3 приведены снимки образцов AlPO₄-11(25) и AlPO₄-11(90) полученные с помощью сканирующий электронной микроскопии. Видно, что морфология обоих образцов представляет собой прямоугольные пластины. Наличие тридимита в образце AlPO₄-11(25) практически не приводит к изменению формы кристаллов, по-видимому, из-за низкого его содержания. Размеры кристаллов в обоих образцах составляют от 1 до 2 мкм.

Рис. 3. Снимки СЭМ кристаллических алюмофосфатов

В четвертой главе приведены результаты изучения основных стадий формирования AlPO₄-11 при кристаллизации алюмофосфатного геля, приготовленного с использованием бемита.

Зависимость фазового состава продуктов кристаллизации от продолжительности синтеза

На рисунке 4 приведены рентгенограммы исходного геля и продуктов кристаллизации, сформировавшихся при различной продолжительности синтеза. Так для образца исходного геля AlPO₄(90) наблюдаются следующие фазы: фосфата ди-н-пропиламина (30% об.), нерастворенного бемита (10% об.), аморфного алюмофосфата (60% об.) и варисцита (10% об.). Видно, что

Рисунок 4 – Данные рентгенофазового анализа образцов алюмофосфатов полученных при различной продолжительности кристаллизации

Условные обозначения: ▲- фосфат ди-н-пропиламина; О – бемит; Δ – варисцит; * промежуточный кристаллический алюмофосфат; ■ - кристаболит последующая его кристаллизация (образец AlPO₄-11-1) при 200°С через 1 ч приводит к формированию промежуточного кристаллического алюмофосфата AlPO₄ (PDF 00-201-0795). По данным РФА данный материал обладает ромбической сингонией с усредненным значением OKP~ 10 нм. Через 3 ч кристаллизации основной фазой уже является AlPO₄-11 с небольшим количеством не- прореагировавшего бемита (образец AlPO₄-11-3). Следует отметить, что кристаллизация в течение 24 ч приводит к полному растворению непрореагировавшего бемита и формированию AlPO₄-11 со степенью кристалличности ~ 100% (образец AlPO₄-11-24). Дальнейшее увеличение продолжительности кристаллизации свыше 24 ч приводит к появлению новой фазы кристаллического алюмофосфатата со структурой кристобалита (образец AlPO₄-11-48), через 72 ч наблюдается полная перекристаллизация AlPO₄-11 в кристобалит (образец AlPO₄-11-72).

Более детальную информацию о химической природе образующихся алюмофосфатов в начальный период кристаллизации можно получить с помощью ВМУ ЯМР спектроскопии на ядрах ²⁷Al и ³¹P. На рисунке 5 приведены ВМУ ЯМР спектры ²⁷Al и ³¹P для исходного геля и продуктов, полученных при различных продолжительностях кристаллизации.

Рисунок 5 - Данные ВМУ ЯМР спектроскопии на ядрах: ²⁷Al (A) и ³¹Р (B) для образцов алюмофосфатов полученных при различной продолжительности кристаллизации

Видно, что в спектрах ЯМР ²⁷Al (Рис.2А) исходного геля наблюдаются характеристические сигналы при 48 м.д., 12 м.д. и –9 м.д. В работах [33-36] сигнал при 48 м.д. относят к тетраэдрически координированным атомам алюминия, входящих в состав частиц золя алюмофосфата. Сигнал при 12 м.д. характерен для октаэдрически координированных атомов алюминия, содержащихся в нерастворенном бемите. Сигнал при - 9 м.д. относится к октаэдрически координированным атомам алюминия, входящим в состав непористых алюмофосфатов. Кристаллизация геля AlPO₄(90) в течение 1 ч приводит к значительному снижению сигнала при 12 м.д., и усилению сигнала при - 9 м.д. Полученные результаты объясняются взаимодействием непрореагировавшего ранее бемита с фосфорной кислотой и формированием промежуточного кристаллического алюмофосфата, что хорошо согласуется с данными РФА (рисунок 1). Через 3 ч кристаллизации наблюдается значительное снижение доли сигнала при - 9 м.д. и появление нового при 42 м.д., который характерен для тетраэдрического алюминия в кристаллической решетке AlPO₄-11. Кристаллизация в течение 24 ч приводит к полному исчезновению сигнала при - 9 м.д. и усилению сигнала при 42 м.д.

По данным ВМУ ЯМР ³¹Р в спектрах исходных гелей присутствуют сигналы при 38 м.д., 27 м.д., 5 м.д., -8 м.д. и -15 м.д. В работах сигнал при 5 м.д. относят к фосфатам азотсодержащих органических соединений. По-видимому, данный сигнал связан с фосфатом ди-н-пропиламина, присутствие которого подтверждается данными РФА исходного геля (Рисунок 4, образец AlPO₄-11-1). Сигналы при -8 м.д. и -15 м.д. относят к тетраэдрически координированным атомам фосфора в алюмофосфатах с различной степенью замещения -OH групп на атомы алюминия. Сигнал при 27 м.д. и 38 м.д. относят к тетраэдрически координированным координированным атомам Р в кристаллической структуре цеолита.

Из представленных спектральных данных видно, что в исходном геле AlPO₄(90) наблюдаются сигналы при 5 м.д., 8 м.д. и интенсивный сигнал при -15 м.д. Они свидетельствуют о нахождении большей части атомов Р в виде алюмофосфатов с различной долей связей P-O-Al. Такое утверждение хорошо согласуется с данными РФА и ЯМР ²⁷Al. Через 1 час кристаллизации в спектре наблюдается основной сигнал при -15 м.д. Он указывает на формирование фазы промежуточного кристаллического алюмофосфата (Рисунок 4, образец AlPO₄-11-1). Через 3 часа кристаллизации в спектре появляется интенсивный сигнал при 27 м.д., который обусловлен наличием тетраэдрически кординированных атомов Р в решетке AlPO₄-11. Увеличение продолжительности кристаллизации до 24 ч приводит к появлению единственного сигнала при 27 м.д., свидетельствующего о высокой степени кристалличности полученного материала.

Зависимость пористой структуры продуктов кристаллизации от продолжительности синтеза

На таблице 3 приведены характеристики пористой структуры для образцов алюмофосфатов, приготовленных при различной продолжительности кристаллизации. Видно, что промежуточный кристаллический алюмофосфат

(образец AlPO₄-11-1) образующийся через 1 ч представляет собой пористый Таблица 3

Образец	V _{C7H16} ,	V_{Σ} , cm^3/Γ	$S_{\text{БЭТ}}, \text{M}^2/\Gamma$	*Размер частиц,
	см ³ /г			МКМ
AlPO ₄ -11-1	0.30	0.45	240	3-5
AlPO ₄ -11-3	0.17	0.15	132	1-2
AlPO ₄ -11-12	0.14	0.16	112	1-2
AlPO ₄ -11-24	0.14	0.16	110	1-2
AlPO ₄ -11-48	0.03	0.09	60	50
AlPO ₄ -11-72	0.00	0.02	10	50

Характеристики пористой структуры кристаллических алюмофосфатов

Условные обозначения: V_Σ – суммарный объем микропор; V_{C7H16} – объем микропор по парам гептана; S_{БЭТ} – удельная поверхность по БЭТ. * - по данным СЭМ

материал обладающий суммарным объемом пор $V_{\Sigma} = 0.45 \text{ см}^3/\text{г}$ и удельной поверхностью по БЭТ 240 м²/г. На рисунке 6 приведена изотерма адсорбциидесорбции и распределение пор по размеру для данного образца. Видно, что данный материал представляет собой мезо-макропористую систему с широким распределением пор по размеру от 2 до 300 нм. Через 3 ч кристаллизации (образец AlPO₄-11-3) наблюдается снижение значений суммарного объема пор до 0.19 см³/г и удельной поверхности до 132 м²/г. Увеличение продолжительности кристаллизации до 24 ч (образец AlPO₄-11-24) приводит к формированию AlPO₄-11 высокой степени кристалличности с объемом пор по гептану $V_{C7H16} = 0.14 \text{ см}^3/\Gamma$, суммарным объемом пор $V_{\Sigma} = 0.16$ и удельной поверхностью S_{BET}~120 м²/г. Проведение кристаллизации более 48 ч (образец AlPO₄-11-48) приводит к дальнейшему снижению суммарного объема пор до $V_{\Sigma} = 0.09 \text{ см}^3/\Gamma$, удельной поверхности до S_{BET}~60 м²/г.

Рисунок 6 – Изотерма адсорбции-десорбции азота (А) и распределение пор по размеру (В) для образца промежуточного кристаллического алюмофосфата (AlPO₄-11-1)

Из изложенного выше следует, что промежуточный кристаллический алюмофосфат (образец AlPO₄-11-1), который образуется в начальный период кристаллизации, характеризуется развитой мезо- макропористой пористой структурой. Последующее превращение указанного алюмофосфатата в AlPO₄-11 приводит к снижению удельной поверхности и объемов микро- и мезопор. Перекристаллизация AlPO₄-11 в кристобалит приводит к дальнейшему снижению объема пор и удельной поверхности.

Зависимость морфологии продуктов кристаллизации от продолжительности синтеза

На рисунке 7 приведены снимки, полученные с помощью сканирующей электронной микроскопии, образцов алюмофосфатов, приготовленных при различной продолжительности кристализации. Видно, что образец AlPO₄-11-1 состоит из тонких слоистых кристаллов толщиной в 10-20 нм, что хорошо

согласуется со значением ОКР~10 нм. По данным СЭМ размер пор указанного алюмофосфата составляют от 100 до 300 нм . Следует отметить, что в рентгенограмме образца (AlPO₄-11-1) в области от 3 до 7 ° 20 не наблюдаются сигналы характерные для слоистых материалов из-за больших межплоскостных расстояний. Согласно данным РФА и ВМУ ЯМР ²⁷Al-³¹P, указанный образец представляет собой кристаллический алюмофосфат. Через 3 ч кристаллизации (образец AlPO₄-11-3), по данным РФА и ВМУ ЯМР ²⁷Al-³¹P, преобладающей фазой становится AlPO₄-11 (90%) с морфологией кристаллов в виде тонких пластин с размером 1-2 мкм. При достижении максимальной степени кристалличности через 12 ч (образец AlPO₄-11-3) морфология кристаллов не изменяется, сохраняя форму в виде тонких прямоугольных пластин.

Рисунок 7 - Изображения СЭМ для образцов алюмофосфатов, синтезированных при различной продолжительности кристаллизации

Как было отмечено выше, при кристаллизации в течение 48 ч AlPO₄-11 превращается в кристобалит. Для образца AlPO₄-11-48 наблюдаются крупные кристаллы 30-40 мкм в виде усеченных октаэдров, а также наличие небольшого количества оставшихся частей кристаллов AlPO₄-11.

По данным РФА проведение кристаллизации в течение 72 ч приводит перекристаллизации AlPO₄-11 в кристобалит, примерно на 70%.

Кристаллизация AlPO₄-11 из алюмофосфатного геля с использованием бемита

На основании полученных результатов можно выделить следующие стадии формирования AlPO₄-11 из алюмофосфатного геля, приготовленного с использованием бемита (рисунок 8). На первой стадии (I) при 90°C(24ч)

Рисунок 8 - Стадийная схема формирования AlPO₄-11 из алюмофосфатного геля, приготовленного с использованием бемита и фосфорной кислоты

происходит взаимодействие фосфата ди-н-пропиламина с нерастворенным бемитом с формированием аморфного алюмофосфатного геля и варисцита, которое обеспечивает последующую селективную кристаллизацию в AlPO₄-11. На второй стадии (II) алюмофосфатный гель превращается в кристаллический алюмофосфат со слоистой структурой. Продолжительность этой стадии при 200°C составляет ~ 1 ч, в течение которого происходит формирование

зародышей. На третьей стадии (III) происходит интенсивный рост кристаллов AlPO₄-11 в течение 3-6 ч. Одновременно происходит практически полное превращение слоистого алюмофосфата В $AlPO_4-11$, И растворение непрореагировавшего бемита и аморфной фазы. После 6 часов кристаллизации содержание AlPO₄-11 достигает 90%. При повышении продолжительности кристаллизации с 6 до 24 ч (IV стадия) содержание AlPO₄-11 достигает ~ 100%, литературе принято называть "старение данную стадию В системы". Дальнейший рост продолжительности синтеза (стадия V) до 72 ч приводит к перекристаллизации AlPO₄-11 в кристобалит (рисунок 8).

Кислотные свойства силикоалюмофосфатных молекулярных сит SAPO-n сильно зависят от содержания кремния. В таблице 4 приведены результаты элементного анализа для исходных гелей и продуктов кристаллизации. Видно, что в исходных гелях содержание кремния выше чем, в кристаллических силикоалюмофосфатах. Полученные результаты, объясняются тем, что часть кремния не внедряется в алюмофосфатную решетку при кристаллизации и остается после кристаллизации в маточном растворе.

Таблица 4 – Химический и фазовый состав для исходных силикоалюмофосфатных гелей и продуктов кристаллизации на их основе

Ofmanau	Химический	Фарар ия й адатар	Степень	
Ооразец	состав Фазовый состав	кристалличности, %		
SAPO(25)	$Al_{1.00}P_{0.99}Si_{0.15}$	Ph.DPA + PB	-	
SAPO(90)	Al _{1.00} P _{0.98} Si _{0.15}	Ph.DPA + Am.SAPO	-	
		+ PB		
SAPO-11(25)	Al _{1.00} P _{0.90} Si _{0.12}	SAPO-11 + Tridymite	~92	
SAPO-11(90)	Al _{1.00} P _{0.91} Si _{0.11}	SAPO-11	~98	

Условные обозначения: Ph.DPA – фосфат ди-*н*-пропиламина; Am.SAPO – аморфный силикоалюмофосфат; PB - псевдобемит ; Tridymite - тридимит

Для алюмофосфатных AlPO₄-n и силикоалюмофосфатных SAPO-n молекулярных сит свойства конечного материала определяются и условиями приготовления исходных алюмофосфатных и силикоалюмофосфатных гелей.

На рисунке 9а, в приведены рентгенограммы силикоалюмофосфатных гелей. Видно, что образец SAPO(25), приготовленный с выдержкой при 25 °С, состоит двух основных фаз фосфата ди-н-пропиламина и нерастворенного псевдобемита, кроме того наблюдается незначительное количество аморфной фазы. Полученные результаты объясняются тем, что на стадии смешения фосфора источников алюминия, И кремния основное взаимодействие происходит между амином и фосфорной кислотой с образованием фосфата дин-пропиламина. Введение стадии выдержки геля при 90 °С приводит к увеличению доли аморфной фазы (образец (SAPO(90)), в результате частичного взаимодействия фосфата ди-н-пропиламина и псевдобемита.

На рис. 9с,в приведены рентгенограммы продуктов кристаллизации гелей SAPO-11(25) и SAPO-11(90). Видно, что образец SAPO-11(25) состоит из двух

Рисунок 9 – Рентгенограммы исходных силикоалюмофосфатных гелей и кристаллических силикоалюмофосфатов: (a) - AlPO₄(25); (b) – AlPO₄(90); (c) – AlPO₄-11(25); (d) – AlPO₄-11(90)

фаз, основной фазы AlPO-11 (AEL) ~ 93% и непористого тридимита ~ 7% об. Выдержка геля при 90 °C позволяет кристаллизовать SAPO-11 (AEL) высокой фазовой чистоты со степенью кристалличности ~ 98%. Эти результаты очень близки к результатам, полученными нами ранее для алюмофосфата AlPO₄-11. В ней было показано, что преобладание аморфной фазы в исходном геле позволяет селективно кристаллизовать AlPO₄-11 высокой фазовой чистоты и степени кристалличности. Таким образом, видно, что выдержка исходного силикоалюмофосфатного геля при 90°C позволяет приготовить SAPO-11 высокой фазовой чистоты и степени кристалного геля при 90°C позволяет приготовить SAPO-11

В табл. 5 приведены характеристики пористой структуры кристаллических силикоалюмофосфатов. Видно, что образец SAPO-11(25) по сравнению с

Таблица 5 - Характеристики пористой структуры кристаллических силикоалюмофосфатов

Образец	V_{C7H16} cm ³ /r	V_{N2} cm ³ / Γ	$S_{\Gamma OT} M^2 / \Gamma$	*Размер
oopusod		, N2, e M / 1	~b)1, m /1	частиц, мкм
AlPO ₄ -11(25)	0.09	0.06	112	10-12
AlPO ₄ -11(90)	0.11	0.08	145	10-12

Условные обозначения: V_{C7H16} – объем микропор по парам гептана; V_{C7H16} – объем микропор по азоту; $S_{БЭТ}$ – удельная поверхность по БЭТ; * - размер частиц определен по данным SEM

образцом SAPO-11(90) характеризуется меньшими значениями объема микропор по парам гептана и N₂, удельной поверхностью по БЭТ. Более низкие значения указанных характеристик пористой структуры в образце SAPO-11(25) объясняется наличием в нем непористого тридимита.

На рисунке 10 приведены снимки для образцов кристаллических силикоалюмофосфатов полученные с помощью сканирующий электронной микроскопии. Видно, что для обоих образцов наблюдаются кристаллы с псевдосферической морфологией размер которых составляет от 10 до 12 мкм.

Рисунок 10 – Снимки СЭМ для образцов кристаллических силикоалюмофосфатов. А – SAPO-11(25); В – SAPO-11(90).

Следует отметить, что указанные кристаллы представляют собой агрегаты, состоящие из более мелких первичных кристаллов размером ~ 0.5 - 1 мкм. Наличие тридимита в образце SAPO-11(25) практически не приводит к изменению формы кристаллов, по-видимому, из-за низкого его содержания.

На рисунке 11 приведены ИК-спектры в области колебаний ОН-групп и спектры адсорбированного пиридина для образца SAPO-11(90). В области колебания ОН-групп спектр исходного образца содержит полосы при 3744, 3677, 3627 и 3533 см⁻¹. Полоса при 3744 см⁻¹ относится к силанольным группам (SiOH), полоса при 3677 см⁻¹ - к РОН группам, полосы 3627 и 3533 см⁻¹ соответствуют мостиковым ОН-группам. В спектрах адсорбированного пиридина наблюдаются полосы поглощения (п.п.) при 1545 и 1455 см⁻¹, которые относятся к пиридину, адсорбированному на Бренстедовских кислотных центрах (БКЦ) и Льюисовских кислотных центрах (ЛКЦ), соответственно. Появление полосы поглощения при 1490 см⁻¹ объясняется вкладом обоих типов центров. Аналогичные полосы поглощения наблюдаются и для образца SAPO-11(25).

Рисунок 11 – ИК спектры ОН групп и адсорбированного пиридина для образца SAPO-11(90)

В таблице 6 приведены результаты расчета концентрации кислотных центров. Из приведенных результатов видно, что для образца SAPO-11(90) концентрация обоих типов центров выше, чем для образца SAPO-11(25) несмотря на близкое содержание кремния. Полученные результаты объясняются наличием в образце SAPO-11(25) непористой фазы тридимита, которая не участвует в формирование кислотных центров. Полученные данные хорошо согласуются с результатами ТПД NH₃ (таблица 6). Видно, что для образца SAPO-11(90) также наблюдается и большая суммарная концентрация кислотных центров по сравнению с образцом, содержащим непористую фазу.

Таблица 6 – Кислотные свойства образцов кристаллических силикоалюмофосфатов

Образец	БКЦ, мкмоль/г	ЛКЦ, мкмоль/г	ΣNH ₃ , мкмоль/г
SAPO-11(25)	54	22	301
SAPO-11(90)	60	24	326

Условные обозначения: БКЦ – Концентрация Бренстедовских кислотных центров; ЛКЦ – Концентрация Льисовских кислотных центров; ΣNH₃ – Суммарная концентрация кислотных центров по данным TПД-NH₃

Главной особенностью силикоалюмофосфатного молекулярного сита SAPO-11, как уже отмечалось ранее, является наличие «умеренных» по силе кислотных центров и одномерной канальной структуры, которое оказывает специфическое вляние на каталитические свойства материала.

Олигомеризация α-метилстирола является практически важным процессом. Линейные димеры α-метилстирола используются в качестве регуляторов роста полимерных цепей, пластификаторов полимеров и каучуков, диэлектрических жидкостей. На основе гидрированных линейных димеров и тримеров α-метилстирола синтезированы уникальные синтетические смазочные материалы. В присутствии цеолитсодержащих катализаторов олигомеризация α-метилстирола протекает с образованием линейных (I, II) и циклического (III) димера, а также тримеров (Тр) (Схема 1).

Схема 1

В таблице 7 приведены результаты олигомеризации α-метилстирола при 90°С. Видно, что для образцов силикоалюмофосфата SAPO-11 продуктами

Таблица 7 – Олигомеризация α-метилстирола в присутствии кристаллических силикоалюмофосфатов

Образец	Х _{а-МС} , %	S _I , %	S _{II} , %	S _{III} , %	S _{Tp} , %
SAPO-11(25)	65	14	57	24	5
SAPO-11(90)	90	9	52	34	5

Условные обозначения: X_{a-MC} – Конверсия а-метилстирола; S_I – Селективность по линейному димеру I; S_I - Селективность по линейному димеру II; S_{III} - Селективность по циклическому димеру II; S_{Tp} - Селективность по тримерам

реакции являются димеры α-метилстирола линейной (I, II) и циклической (III) структуры, а также наблюдается образование тримеров (Тр). Среди димеров основными являются линейные, по-видимому, благодаря наличию кислотных

центров «умеренной» силы и одномерной канальной пористой структуры, которая ограничивает образование циклического димера и тримеров. На образце SAPO-11(90) достигается большая конверсия по сравнению с SAPO-11(90), благодаря большей концентрации кислотных центров и большей внешней поверхности.

выводы

1. Впервые установлено влияние реакционной способности источника алюминия на фазовый и химический состав исходных алюмофосфатных и силикоалюмофосфатных гелей. Показано, что при использовании на стадии приготовления гелей в качестве источника алюминия его гидратированных оксидов, в них формируются фазы фосфата ди-н-пропиламина и аморфного алюмофосфата силикоалюмофосфата, или доля которых зависит OT температуры выдержки. Показано, что введение стадии выдержки исходных алюмофосфатных и силикоалюмофосфатных гелей позволяет получить AlPO-11 и SAPO-11 высокой фазовой чистоты и степени кристалличности близкой к 100%.

2. Изучены основные стадии кристаллизация алюмофосфатного AlPO-11 и силикоалюмофосфатного молекулярного сита SAPO-11. Впервые показано, что при использовании в качестве источника алюминия его гидратированных оксидов кристаллизация алюмофосфатного AlPO-11 И силикоалюмофосфатного молекулярного сита SAPO-11 протекает через формирование промежуточных кристаллических алюмофосфатов И силикоалюмофосфатов, представляющих собой тонкие пластины. При использовании качестве алюминия в источника его изопропоксида кристаллизация проходит через формирование аморфного материала со структурой близкой к ксерогелю.

3. Впервые показана связь между пористой структурой промежуточных алюмофосфатов и силикоалюмофосфатов и морфологией и пористой структурой алюмофосфатного AlPO-11 и силикоалюмофосфатного молекулярного сита SAPO-11. Показано, что увеличение удельной поверхности

и содержания темплата способствует снижению первичного размера кристаллов AlPO₄-11 и SAPO-11 и формированию межкристаллических мезо- и макропор

4. Показано, что природа используемого источника алюминия сильно влияет на морфологию и характеристики пористой структуры синтезированных кристаллов AlPO₄-11 и SAPO-11. Кристаллы алюмофосфата AlPO₄-11 и SAPO-11, приготовленные с использованием гидратированных оксидов алюминия, могут представлять собой прямоугольные или кубические пластины или вытянутые призмы размером от 1 до 5 мкм. Образцы AlPO4-11 и SAPO-11, полученные на основе изопропоксида алюминия, имеют псевдосферическую морфологию кристаллов размером ~ 10 мкм, состоящих из нанокристаллов размером ~ 50-200 нм, и микро-мезопористой структурой.

5. Впервые разработан новый способ получения AlPO₄-11 и SAPO-11 с микро-мезопористой структурой. Способ основан на получении золь-гель методом промежуточного аморфного алюмофосфата или силикоалюмофосфата с развитой микро-мезопористой структурой, что позволяет при дальнейшей кристаллизации формировать псевдосферические кристаллы, состаящие из сростков нанокристаллов. Способ позволяет синтезировать материалы с SEЭT = 250 - 280 м2/г, Vмикро= 0.06 см3/г и Vмезо= 0.10 - 0.12 см3/г

6. Показана высокая активность и селективность силикоалюмофосфата SAPO-11 с микро-мезопористой структурой в изомеризации циклогексаноноксима в капролактам и димеризации α-метилстирола в линейные димеры.

Список публикаций по теме работы

1. Аглиуллин М.Р., Хайруллина З.Р., Файзуллин А.В., Петров А.И., Бадретдинова А.А., Талзи В.П., Кутепов Б.И. Селективная кристаллизация алюмофосфатного молекулярного сита со структурой AEL. Катализ в промышленности. 2018;18(5):6-11. <u>https://doi.org/10.18412/1816-0387-2018-5-6-11</u>

2. Аглиуллин М.Р., Хайруллина З.Р., Файзуллин А.В., Петров А.И., Бадретдинова А.А., Талзи В.П., Кутепов Б.И. Основные стадии формирования AlPO4-11 при кристаллизации алюмофосфатного геля, приготовленного с использованием бемита. Катализ в промышленности. 2018;18(6):6-13. https://doi.org/10.18412/1816-0387-2018-6-6-13

3. MR Agliullin, ZR Khairullina, AV Faizullin, BI Kutepov Crystallization of AlPO₄-11 Aluminophosphate from Various Aluminum Sources. Petroleum Chemistry 2019, 59 (3), 349-353

4. Аглиуллин М.Р., Хайруллина З.Р., Файзуллин А.В., Петров А.И., Бадретдинова А.А., Кутепов Б.И. Влияние кислотности силикоалюмофосфата SAPO-11 на его каталитические свойства в реакции метилирования нафталина метанолом. Материалы IV Всероссийской молодежной конференции "Достижения молодых ученых: химические науки", г. Уфа, стр. 12-13, 2018.

5. Аглиуллин М.Р., Хайруллина З.Р., Файзуллин А.В., Петров А.И., Бадретдинова А.А., Кутепов Б.И. Влияние кислотности силикоалюмофосфата SAPO-11 на его каталитические свойства в реакции метилирования толуола метанолом. Материалы IV Всероссийской молодежной конференции "Достижения молодых ученых: химические науки", г. Уфа, стр. 45-46, 2018.

6. Аглиуллин М.Р., Хайруллина З.Р., Файзуллин А.В., Петров А.И., Бадретдинова А.А., Кутепов Б.И Селективная кристаллизация силикоалюмофосфата SAPO-11. Материалы IV Всероссийской молодежной конференции "Достижения молодых ученых: химические науки", г. Уфа, стр. 64-65, 2018.

7. Agliullin M.R., Khayrullina Z.R., Badretdinova A.A., Faizullin A.V., Akhmetov A.F., Kutepov B.I. Selective Crystallization of Silicoaluminophosphate SAPO-11. 5th International School-Conference on Catalysis for Young Scientists « Catalyst Design: From Molecular to Industrial Level », Novosibirsk, p. 132, 2018.

8. Аглиуллин М.Р., Хайруллина З.Р., Файзуллин А.В., Петров А.И., Бадретдинова А.А., Кутепов Б.И. Зависимость фазовой чистоты и степени кристалличности алюмофосфатов и силикоалюмофосфатов со структурой AEL

от свойств исходных гелей. Материалы VIII Всероссийской цеолитной конференции, г. Уфа, стр.64-65, 2018.

9. Аглиуллин М.Р., Хайруллина З.Р., Файзуллин А.В., Петров А.И., Бадретдинова А.А., Кутепов Б.И. Влияние природы источника алюминия на кинетику кристаллизации алюмофосфата AlPO₄-11. Материалы VIII Всероссийской цеолитной конференции, г. Уфа, стр.205-206, 2018.

10. Аглиуллин М.Р., Хайруллина З.Р., Файзуллин А.В., Петров А.И., Бадретдинова А.А. Синтез п-ксилола алкилированием толуола метанолом на силикоалюмофосфате SAPO-11. XII международная конференция молодых ученых по нефтехимии, г. Звенигород, стр. 509-510, 2018.

11.Аглиуллин М.Р., Хайруллина З.Р., Файзуллин А.В., Файзуллин Э.А., Аллагузина А.Х, Ахметов А.Ф., Кутепов Б.И. Силикоалюмофосфатные молекулярные сита SAPO-11, SAPO-31, SAPO-41 – перспективные катализаторы изодепарафинизации дизельных топлив на их основе. Российская нефтепереработка и нефтехимия – проблемы и перспективы, Уфа, стр. 19-20, 2018.

12. Аглиуллин М.Р., Хайруллина З.Р., Файзуллин А.В., Файзуллин Э.А., Аллагузина А.Х, Ахметов А.Ф., Кутепов Б.И. Изомеризация циклогексаноноксима в капролактам на цеолитах со структурой AEL. Российская нефтепереработка и нефтехимия – проблемы и перспективы, Уфа, стр. 96-97, 2018.