Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное научное учреждение Уфимский федеральный исследовательский центр Российской академии наук (УФИЦ РАН)

Уфимский Институт химии – обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук (УфИХ УФИЦ РАН)

На правах рукописи

НАЗАРОВ ИВАН СЕРГЕЕВИЧ

ПРОИЗВОДНЫЕ ГИДРАЗИНА И ГИДРОКСИЛАМИНА В ПРЕВРАЩЕНИЯХ ПЕРОКСИДНЫХ ПРОДУКТОВ ОЗОНОЛИЗА АЛКЕНОВ

02.00.03 - Органическая химия

Диссертация на соискание ученой степени кандидата химических наук

> Научный руководитель: доктор химических наук, профессор Ишмуратов Г.Ю.

Уфа – 2019

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ
ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР. ПРЕВРАЩЕНИЯ
ПЕРОКСИДНЫХ ПРОДУКТОВ ОЗОНОЛИЗА АЛКЕНОВ
1.1. Реакции «расщепления» пероксидных продуктов озонолиза
1.2. Превращения пероксидных продуктов озонолиза под действием
восстановителей
1.3. <i>N</i> -содержащие соединения в превращениях пероксидных продуктов
озонолиза
ГЛАВА 2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
2.1. Синтез практически важных ациклических α,ω-бифункциональных
соединений из олеиновой и 10-ундеценовой кислот и их производных с
использованием гидрохлоридов семикарбазида и гидроксиламина
2.1.1. Превращения пероксидных продуктов озонолиза олеиновой кислоты
под действием гидрохлоридов семикарбазида и гидроксиламина
2.1.2. Однореакторный озонолитический синтез ациклических α,ω-
бифункциональных соединений из метилового эфира 10-ундеценовой
кислоты и 10-ундецен-1-ола
2.2. Превращения пероксидных продуктов озонолиза циклооктена под
действием гидрохлоридов семикарбазида и гидроксиламина
2.3. Превращения пероксидных продуктов озонолиза (-)-α-пинена при
действии солянокислого и сернокислого гидразинов
2.4. Разработка однореакторного метода синтеза соединений с C=N-
группой
2.4.1. Превращения пероксидных продуктов озонолиза алкенов при
действии тозилгидразида
2.4.2. Однореакторный синтез фенилгидразонов из алкенов
2.4.3. Гидроксиламин в превращениях пероксидных продуктов озонолиза
алкенов

ГЛАВА 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	79
3.1.1. Превращения пероксидных продуктов озонолиза олеиновой кислоты	
под действием гидрохлоридов семикарбазида и гидроксиламина	80
3.1.2. Однореакторный озонолитический синтез ациклических α,ω-	
бифункциональных соединений из метилового эфира 10-ундеценовой	
кислоты и 10-ундецен-1-ола	84
3.2. Превращения пероксидных продуктов озонолиза циклооктена под	
действием гидрохлоридов семикарбазида и гидроксиламина	89
3.3. Превращения пероксидных продуктов озонолиза (-)-α-пинена при	
действии солянокислого и сернокислого гидразинов	94
3.4.1. Превращения пероксидных продуктов озонолиза алкенов при	
действии тозилгидразида	97
3.4.2. Однореакторный синтез фенилгидразонов из алкенов	104
3.4.3. Гидроксиламин в превращениях пероксидных продуктов озонолиза	
алкенов	108
ЗАКЛЮЧЕНИЕ	113
ВЫВОДЫ	114
СПИСОК СОКРАЩЕНИЙ	116
СПИСОК ЛИТЕРАТУРЫ	117

ВВЕДЕНИЕ

Актуальность Актуальность темы. создания доступных методов получения *N*-функционализированных соединений обусловлена, прежде всего, их высокой биологической активностью и возможностью использования как в медицине, так и в органической и аналитической химии. Разнообразны аспекты применения соединений с гидразонной группировкой: в синтезах различных классов органических соединений, особенно азотсодержащих гетероциклов (пиразолов, индолов, пиранохинолинов); для выделения и идентификации карбонильных соединений; некоторые из них являются аналитическими реагентами на катионы металлов. Ценным свойством соединений гидразонного ряда является их высокая физиологическая активность – среди них найдены гербициды, инсектициды, нематоциды, фунгициды, ратициды и регуляторы роста растений. Им принадлежит выдающаяся роль в химиотерапии туберкулеза. Традиционным способом получения соединений с C=N связями (замещенных гидразонов, карбазонов или оксимов) является конденсация карбонильных соединений (альдегидов либо кетонов) с соответствующим гидразином либо гидроксиламином. Для получения карбонильных соединений применяют различные окислительные методы, часто с использованием дорогостоящих и токсичных реагентов. Одним из эффективных и экологичных окислительных методов, широко применяемых как в промышленности, так и в органическом озонолитическое расщепление. Реакция синтезе, является озонолиза и последующие превращения образующихся пероксидных соединений достаточно хорошо изучены, а такие восстановители как Me₂S, PPh₃, NaBH₄ стали традиционными и наиболее активно применяются в превращениях алкеновых субстратов в карбонильные соединения и спирты. Однако актуальным является применение *N*-содержащих соединений, как непосредственно при озонировании, так и в последующих трансформациях образующихся пероксидов, а также исследования по применению озона для прямого превращения алкенов в C=Nпромежуточных карбонильных содержащие соединения без выделения соединений.

Диссертационная работа выполнена в соответствии с планом научноисследовательских работ УфИХ РАН по темам: «Направленный синтез полных синтетических аналогов эндо- и экзо-гормонов насекомых» (регистрационный № 0120.0500678) и «Дизайн и направленный синтез органических молекул с заданными свойствами» (регистрационный № 0120.0801447) [проект «Хемо-, регио- и стереоселективные трансформации производных монотерпенов, моносахаридов и липидов в направленном синтезе»].

Степень разработанности темы. В настоящее время озонолиз олефинов является хорошо изученным процессом. Существенное влияние на конечные продукты оказывают превращения пероксидных продуктов озонолиза, зависящие ОТ условий проведения реакции (растворитель, температура), а также применяемых реагентов. При озонировании олефинов достигается степень окисления, промежуточная между альдегидом или кетоном и карбоновой кислотой, а превращения озонидов и других пероксидных продуктов разделяют на два типа: протекающие без изменения достигнутой степени окисления (реакции «расщепления») с ee изменением (реакции окисления И И восстановления).

Превращения пероксидных продуктов действием озонолиза под окислителей или восстановителей широко используются как в препаративном органическом синтезе, так и в промышленной технологии. Для разрушения пероксидных продуктов озонолиза чаще применяются восстановители, например, диметилсульфид, трифенилфосфин и боргидрид натрия. В последние годы особое внимание уделяется применению азотсодержащих органических реагентов (тетрацианэтилен, пиридин, аммиак, третичные амины, амино-*N*-оксиды, производные гидроксиламина и гидразина), а использование в качестве субстратов легкодоступных природных соединений несомненно, актуально и востребовано.

Цель работы. Расширение ассортимента и выявление особенностей субстратов и азотсодержащих органических восстанавливающих реагентов –

производных гидразина и гидроксиламина – в озонолитических превращениях алкенов.

В соответствии с целью работы поставлены следующие задачи:

0-Nозонолитический синтез практически важных И функционализированных соединений из доступного сырья природного и синтетического происхождения (олеиновая кислота, (–)-α-пинен, метиловый эфир ундециленовой кислоты, 10-ундецен-1-ол, циклооктен) с использованием гидрохлоридов гидроксиламина и семикарбазида, солянокислого и сернокислого гидразинов в протонодонорных и апротонных растворителях;

• разработка новых озонолитических однореакторных методик прямого превращения алкенов в соединения, содержащие C=N- группы (фенил- и тозилгидразоны, кето- и альдоксимы) с использованием в качестве восстанавливающих реагентов пероксидных продуктов озонолиза производных гидразина (фенилгидразин, тозилгидразид) и гидроксиламина без выделения промежуточных карбонильных соединений;

Научная новизна. Предложен однореакторный озонолитический способ превращения терминальбных алкеновых субстратов в соответствующие нортозилгидразоны с использованием тозилгидразида аналоговые на стадии восстановления промежуточно образующихся в спиртовых растворителях пероксидов. Установлено, что при обработке продуктов озонолиза тозилгидразидом тризамещенных алкенов В зависимости OT природы циклоолефина и растворителя возможно образование α,ω-дитозилгидразонов либо соответствующих α, ω -тозилгидразонокислот; разработан метод превращения Δ^3 карена, (-)- α -пинена и (S)-лимонена в соответствующие α , ω -дитозилгидразоны с использованием тозилгидразида на стадии восстановления образующихся пероксидных продуктов в метаноле. Разработаны препаративные однореакторные методы превращения алкенов в соответствующие моно- и диоксимы или фенилгидразоны, базирующиеся на последовательных реакциях озонолиза и восстановления промежуточно образующихся пероксидных продуктов смесями

(1:2) гидрохлорида гидроксиламина либо солянокислого фенилгидразина с ацетатом натрия.

Теоретическая значимость. Разработана общая схема получения C=Nсодержащих соединений из олефинов, представляющая собой однореакторную последовательность превращений: окисление алкена озоном → восстановление до карбонильного соединения производным гидразина/гидроксиламина избытком конденсация карбонильного соединения производного С гидразина/гидроксиламина целевого гидразона/оксима, выделение \rightarrow исключающая стадию получения и выделения карбонильного соединения, что имеет важное значение в синтетической и органической химии

Практическая значимость. Исходя из олеиновой кислоты и производных 10-ундеценовой кислоты (ее метилового эфира и 10-ундеценола) разработаны препаративные синтезы ряда ациклических α, ω -бифункциональных соединений, находящих широкое применение в медицине, парфюмерии и косметологии, технике и химической промышленности и являющихся ценными блок-синтонами в направленном органическом синтезе, в том числе и низкомолекулярных биорегуляторов насекомых.

Методология и методы исследования. Научную основу методологии составляет системный подход, включающий создание однореакторных методов прямого озонолитического превращения алкенов разного строения и степени замещенности в соответствующие гидразоны оксимы без И выделения промежуточных карбонильных производных с привлечением современного оборудования: исследовательского аналитического ИК-спектроскопии, И спектрометрии ЯМР ¹Н и ¹³С, хроматомасс-спектрометрии, ГЖХ, тонкослойной хроматографии и др.

Положения, выносимые на защиту.

• превращения пероксидных продуктов озонолиза алкенов различного строения и степени замещенности под действием производных гидразина (гидрохлорид семикарбазида, фенилгидразин, тозилгидразид, солянокислый и

сернокислый гидразины), гидроксиламина и его гидрохлорида в протонных и апротонных растворителях, в том числе в присутствии воды;

 препаративные синтезы практически полезных ациклических О- и Nсодержащих α,ω-бифункциональных соединений исходя из доступных олеиновой и ундециленовой кислот.

Личный вклад автора состоит в поиске, анализе и обобщении научной литературы по теме диссертации; проведении синтетических экспериментов, разработке методик, выделении и подготовке полученных соединений к физикохимическим методам анализа и испытаниям; обработке и обсуждении полученных данных; представлении результатов работы на конференциях; подготовке материалов к публикации в научных журналах. Все данные и результаты, представленные в диссертации, принадлежат автору и получены им лично.

Степень достоверности и апробация работы. Достоверность научных положений и выводов основана на значительном объеме экспериментальных данных, полученных применением современного испытательного с И аналитического оборудования И статистической обработке полученных Материалы работы 10-ой Всероссийской результатов. представлены на конференции «Химия и медицина» с Молодежной научной школой (Уфа-Абзаково, 2015), на Всероссийской молодежной конференции «Достижения молодых ученых: химические науки» с Молодежной научной школой (Уфа, 2015), на Научно-практической конференции «Достижения и перспективы развития фитохимии» (Караганда, 2015), на 9-ой и 10-ой Всероссийских научных интернетконференциях «Интеграция науки и высшего образования в области био- и органической химии и биотехнологии» (Уфа, 2015, 2016), на 3-ей Всероссийской научно-практической конференции «Новые материалы, химические технологии и реагенты для промышленности, медицины и сельского хозяйства на основе 2015). 19-ой нефтехимического И возобновляемого сырья» (Уфа, на Всероссийской конференции молодых ученых-химиков (Нижний Новгород, 2016), на 20-м Менделеевском съезде по общей и прикладной химии (Екатеринбург,

2016), на 9-ой Международной школе-конференции для студентов, аспирантов и молодых ученых «Фундаментальная математика и ее приложения в естествознании» (Уфа, 2016), на Всероссийской молодежной конференции «Проблемы и достижения химии кислород- и азотсодержащих биологически активных соединений» (Уфа, 2016), на 3-ей Всероссийской молодежной конференции «Достижения молодых ученых: химические науки» (Уфа, 2017).

Публикации. По материалам диссертации опубликовано 11 статей в журналах, рекомендованных ВАК РФ, в том числе 7 статей из списков международного цитирования Web of Science и Scopus, тезисы 15 докладов на Международных и Всероссийских конференциях.

Структура и объем диссертации. Диссертационная работа состоит из введения, обзора литературы на тему «Превращения пероксидных продуктов озонолиза алкенов», обсуждения результатов, экспериментальной части, заключения, выводов и списка цитируемой литературы (193 наименования). Объем работы составляет 139 страниц машинописного текста, в том числе 11 таблиц и 94 схемы.

Благодарности. Автор выражает искреннюю благодарность кандидату химических наук Мясоедовой Юлии Викторовне и кандидату химических наук Гарифуллиной Лилии Рашидовне за помощь при выполнении данной работы.

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР

ПРЕВРАЩЕНИЯ ПЕРОКСИДНЫХ ПРОДУКТОВ ОЗОНОЛИЗА АЛКЕНОВ

В настоящее время озонолиз олефинов является хорошо изученным которого приводился обзорных статьях [1-3]. процессом, механизм В Существенное влияние на конечные продукты оказывают превращения пероксидных продуктов озонолиза, зависящие от условий проведения реакции (растворитель, температура), а также применяемых реагентов [1,3,4]. При озонировании олефинов достигается степень окисления, промежуточная между альдегидом или кетоном и карбоновой кислотой, а превращения озонидов и других пероксидных продуктов разделяют на два типа: протекающие без изменения достигнутой степени окисления (реакции «расщепления») и с ее изменением (реакции окисления и восстановления) [1].

1.1. Реакции «расщепления» пероксидных продуктов озонолиза

Обычными продуктами расщепления озонидов являются, соответственно, карбонильные соединения и карбоновые кислоты, а направление распада пероксидных соединений существенно зависит от природы растворителя и температуры озонирования. Так, озонолиз вербенона **1** в хлористом метилене и ацетонитриле при разных температурах приводит к (1R,3S)-ацетил-2,2диметилциклобутанкарбоновой кислоте **2** в качестве основного продукта (схема 1.1) [5].

Схема 1.1

Данные по стехиометрии полной конверсии вербенона **1** в реакции с озоном при разных температурах приведены в таблице 1.1

Таблица 1.1 – Стехиометрия полной конверсии вербенона в реакции с озоном в CH₂Cl₂ и MeCN при разных температурах

N⁰	T, °C	Растворитель	Израсходованный О ₃ , ммоль	Выход 2 , %
1	-60	CH ₂ Cl ₂	1.1 – 1.3	70
2	-40	MeCN	1.1 – 1.3	83
2		CH_2Cl_2	1.1 – 1.3	71
3	0	MeCN	1.5 – 1.7	57

Анализ ЯМР ¹Н и ¹³С спектров пероксидных продуктов озонолиза, проведенного при -60°С в CD_2Cl_2 , свидетельствует о том, что реакция, вероятно, протекает через стадию формирования карбонилоксидов **3а,6**, которые далее превращаются в димерные пероксиды **4а,6** (схема 1.2).

Схема 1.2

Повышение температуры приводит к перегруппировке соединений **4а,б** (при -40°C наполовину, а при 0°C – полностью) в смешанный ангидрид **6**,

который, в соответствии со спектральными данными, образуется из обоих пероксидов. Перегруппировка пероксида **46**, возможно, проходит через димер **5** (схема 1.3).

Схема 1.3

В соответствии с полученными результатами, формирование димерных пероксидов происходит только при пониженных температурах. Озонолиз в апротонных растворителях при -20°C протекает, вероятно, по-другому. Альдегидные группы соединений 7 и 8, образующихся из цвиттер-ионов **За,б**, окисляются озоном с образованием единственного продукта – кетокислоты **2** (схема 1.4).

Схема 1.4

Озонолиз алкенов в смеси воды и органических растворителей является быстрым, удобным и эффективным однореакторным способом синтеза альдегидов и кетонов, исключающим стадию восстановления образующихся пероксидов [6]. Предполагается, что добавление воды к карбонилоксидам

приводит к *гем*-гидропероксиспиртам, которые для большинства субстратов разлагаются с выделением альдегида или кетона и H_2O_2 , что подтверждается фиксированием выделения стехиометрических количеств H_2O_2 по отношению к исходному алкену (схема 1.5).

Разработанный метод был проверен на серии субстратов (таблица 1.2). Показано, что в зависимости от исходного алкена альдегиды/кетоны получаются с выходами от средних до количественных [6].

$$\mathbf{X} = \mathbf{CH}_2 \qquad \mathbf{X} = \mathbf{O}$$

Таблица 1.2 – Выходы альдегидов/кетонов в реакции озонолиза алкенов в смеси воды и органических растворителей

N⁰	Исходное соединение	Продукт	Выход, %
1	Aco	Aco	72
2			75
3	Ph Ph	Ph Ph	54
4	0		100
5 6	$R = OAc$ H $R = NO_2$	$R = OAc$ H $R = NO_2$	81 100

Разработанный способ был применен авторами [7] в синтезе амбраксана (ambrox[®]) **14**. Окислительное расщепление смеси изомеров **9** и **10** озоном в ацетоне, содержащем 5% воды, при -78°С дало смесь соединений **11а**, **6** и **12** в соотношении 3:1, которое при выдерживании при комнатной температуре менялось. В течение 14 дней кетоны **11а** и **116** полностью трансформировались в кристаллический лактон **13**, который далее использовали в синтезе целевого амбраксана **14** (схема 1.6).

Схема 1.6

Обработкой хлористым водородом в метаноле пероксиды количественно превращают в метиловые эфиры соответствующих карбоновых кислот [3]. Авторами [8] было обнаружено, что в условиях частичного озонолиза (S)-(-)лимонена 15 в смеси циклогексан-метанол при 2-4°С образуются озониды 16а, б в виде смеси (2:3) диастереомеров, дальнейшая обработка которых метанольным раствором хлороводорода приводит к циклизации промежуточных продуктов и (4:1)соединений, образованию смеси двух основной ИЗ которых идентифицирован как сложный эфир 17, а минорный – как соответствующий альдегид 18 [9]. Замена MeOH на *i*-PrOH приводит к тем же озонидам 16а,6, однако при обработке HCl в *i*-PrOH с выходом 50% образуется изопропиловый эфир 19 [10] (схема 1.7).

Схема 1.7

Озонированием алкенов в смеси метанола, хлористого метилена и гидроксида натрия получают соответствующие эфиры без сложные обработки дополнительной промежуточно образующихся пероксидных продуктов [11]. Такой подход был использован для получения метиловых эфиров бензил- 21 и фенокси- 24 -уксусных кислот из бензил- 20 и фенил- 23 -аллиловых эфиров [12]. Установлено, что низкотемпературный (-65°С) озонолиз субстратов 20 и 23 в присутствии NaOH приводит с высоким выходом к эфирам 21 и 24, соответственно. Побочными продуктами являются соответствующие алкоксиуксусные альдегиды 22 и 25 (схема 1.8).

Озонированием МОМ-эфира 26 в МеОН при -78°С в присутствии NaOH получают соответствующий сложный эфир 27, что является одной из ключевых

стадий стереоселективного синтеза природного стириллактона лейокарпина (leiocarpin) С **28** (схема 1.9) [13].

Схема 1.9

Гипохлориты эффективно дегидратируют гидропероксиацетали, давая соответствующие сложные эфиры [14]. Реакция, которая может быть проведена со стехиометрическим количеством Ca(OCl)₂ или при катализе *трет*-бутилгипохлоритом, включает, по-видимому, гетеролитическое расщепление первичного хлоропероксида **31**. Данные реагенты могут быть применены в озонолизе алкенов, что позволяет осуществлять удобный однореакторный синтез сложных эфиров (схема 1.10).

1.2. Превращения пероксидных продуктов озонолиза под действием восстановителей

Превращения пероксидных продуктов озонолиза под действием окислителей или восстановителей широко используются как в препаративном органическом синтезе, так и в промышленной технологии [15]. В последние годы разрушения пероксидных продуктов озонолиза чаще применяются для восстановители.

Одним из наиболее часто используемых для получения карбонильных соединений восстановителем является диметилсульфид (схема 1.11) [3].

Схема 1.11

Взаимодействие пероксидов с диметилсульфидом хорошо изучено, применение этого реагента в реакциях «озонолиза – восстановления» показано на большом количестве примеров, поэтому данный реагент широко используется в направленном органическом синтезе в тех случаях, когда из алкенов нужно получить карбонильные производные [16-28].

Представлен новый стереоселективный подход к замещенным 2-оксо-1,3пропандиолам с *анти*-конфигурацией из аддуктов Морита-Бэйлис-Хиллмана (МБХ) [29]. В данной стратегии замещенные 2-оксо-1,3-пропандиолы получают озонолизом ацетатов **36-38**, полученных из соответствующих аллильных диолов **33-35**, при -72°C в метаноле в течение 15 мин. Последующее восстановление диметилсульфидом приводит к 2-оксо-1,3-пропандиолам **39-41** (схема 1.12) с выходами от 80 до 91% (таблица 1.3).

Схема 1.12

Таблица 1.3 – Выходы аллильных ацетатов 36-38 и 2-оксо-1,3-пропандиолов 39-41

N⁰	R	Ацилирование, %*	Озонолиз, %*
1	Н	36, 85	39 , 91
2	OMe	37, 90	40 , 80
3	NO ₂	38, 90	41 , 82

* выход на выделенный и очищенный продукт.

Ациклические 43 и циклические 42 1,4-диены, полученные в результате Со-1,4-гидровинилирования катализируемого алкенов с 1.3-диенами И Coкатализируемой реакция Дильса-Альдера алкинов с 1,3-диенами, превращают в дикарбонильные соединениия 44 озонолизом с дальнейшим восстановлением диметилсульфидом. В этом случае не проходит изменения заместителей R^1 и R^2 в отличие от приготовления 1,3-дикарбонильных соединений последовательными реакциями восстановления по Бёрчу ароматических соединений и озонолизавосстановления полученных 1,4-диенов [30, 31]. При обычном озонировании озоном в смеси с кислородом могут окисляться некоторые ароматические субстраты, например, легко окисляющиеся на воздухе производные 1,4циклогексадиена. Вот почему авторы [30] абсорбировали озон на крупном силикагеле при низкой температуре, его десорбцию проводили повышением температуры и пропусканием азота. Для того чтобы охарактеризовать 1,3-

дикарбонильные производные **44**, они были превращены в соответствующие фенилпиразолы **45** реакцией с фенилгидразином (схема 1.13).

Схема 1.13

Озонолиз с последующим восстановлением успешно может применяться также для получения альдегидсодержащих поликарбонатов – потенциальных платформ для трансформаций в соединения с различными видами активности [32]. Так, альдегид-замещенный поли(5-метил-5-оксоэтилоксикарбонил-1,3диоксан-2-он) (РМОС), полученный *in situ* озонолизом аллил-функционального полимерного предшественника (РМАС) с последующей обработкой Me₂S, функционализировали гидрофобным (*O*-бензилгидроксиламин) и гидрофильным (*O*-(карбоксиметил)гидроксиламин) реагентами в присутствии ацетата натрия. Полученный полимер **46** растворим в большинстве органических растворителей, в то время как соединение **47** – только в воде и метаноле (схема 1.14).

Схема 1.14

В зависимости от используемого растворителя озонолиз ангидрида 48 проходит по-разному [33, 34]. Окисление озоном субстрата 48 в смеси CH₂Cl₂-MeOH приводит к эпоксиду 49 и гидрокси-бис-лактону 50, а в CH₂Cl₂ – к трем продуктам: эпоксиду 49, бис-лактону 51, и, неожиданно, к хлоро-бис-лактону 52, производному гидрокси-бис-лактона 50. Структура лактонов 51 и 52 была доказана с помощью РСА [34]. Низкая реакционная способность наблюдалась качестве растворителя метилциклогексана. также при использовании В Применение EtOH привело к полиоксигенированным соединениям: эпоксиду 49 в качестве основного продукта, ранее описанным бис-лактонам 50 и 51, а также кетону 53, образующемуся в результате перегруппировки эпоксида 49 (схема 1.15).

Схема 1.15

В современной химии также актуально применение диметилсульфида при восстановлении продуктов озонолиза полициклических субстратов, например, стероидной природы. Так, авторами [35] впервые реализован синтез природного фитоэкдистероида сидистерона (sidisterone) **56**, включающий восстановительный озонолиз *экзо*-циклической двойной связи дигидрофуранового производного **54**, приводящий к целевому γ-лактону **55** с хорошим выходом (схема 1.16). При этом продуктов окисления *эндо*-циклических двойных связей не наблюдалось.

Схема 1.16

В случае использования диметилсульфида для восстановления пероксидных продуктов озонолиза стерически затрудненных двойных связей возможно образование не только кетонов и альдегидов [36]. Так, озонолиз кислоты **57** в CH₂Cl₂-MeOH при -60°C с последующим действием Me₂S приводит к сложной смеси продуктов окисления, из которой хроматографически выделен в качестве основного продукта 9α,11α-эпоксид **58** с выходом 34% (схема 1.17) [37].

Схема 1.17

Несмотря на то, что Me_2S является наиболее широко применяемым реагентом для восстановления промежуточно образующихся пероксидов, он имеет недостатки: сильно летуч и имеет неприятный запах. В 1982 г. Suck Dev и др. [38] предложили в качестве восстанавливающего агента тиомочевину – удобный и менее пахнущий реагент. Авторами [39] показано, что озонолиз непредельного кетона **59** приводит обычно к озониду **60** в виде смеси диастереомеров с выходом 86%, восстановление которого *in situ* тиомочевиной дает дикарбонильное соединение **61** с выходом 70% (схема 1.18).

Схема 1.18

Другим эффективным восстановителем пероксидных продуктов озонолиза до карбонильных соединений является трифенилфосфин. Следует отметить, что восстановление PPh₃ проходит, в отличие от Me₂S, быстро и практически без образования аномальных продуктов [3], поэтому он широко используется в направленных синтезах [40-53].

Так, PPh₃ был применен авторами [54] при восстановлении продуктов озонолиза метиленовых производных **62а-д** в синтезе поликарбонильных соединений **63а-д** (таблица 1.4).

Таблица 1.4 – Выходы поликарбонильныхсоединений **63а-**д при обработке PPh₃ пероксидных продуктов озонолиза метиленовых субстратов **62а-**д

N⁰	Исходное соединение	Продукт	Выход, %
1	62a Me	63a	91
2	$Me \underbrace{\downarrow}_{O} O \underbrace{\downarrow}_{O} Me \\ 626$	$Me \downarrow 0 \downarrow 0 \downarrow 0 \downarrow 0 Me$ 636	97
3	62B	63B	86
4	Me Me Me O Me O Me	Me 63Γ	75
5	Сі	63д	69

Условия реакции: 1. О₃, CH₂Cl₂, -78°C; 2. PPh₃ (2.0 экв).

Для термически неустойчивых формилуксусных эфиров использование стандартной методики восстановления (1.5 экв. PPh₃, перемешивание 16 ч, метод А) не является оптимальным, так как предполагает очистку перегонкой,

приводящую к снижению выходов, особенно у соединений с высокой температурой кипения. Для исключения стадии очистки был применен трифенилфосфин, нанесенный на твердую подложку (полистирол-связанный PPh₃ (PS-PPh₂)), легко удаляемый обычным фильтрованием. Были подобраны оптимальные условия восстановления (2 экв. PS-PPh₂, перемешивание 24 ч, метод Б), приводящие к полной конверсии в альдегиды **65а-е** (схема 1.19), в том числе в формилуксусный амид **65е**, без разложения продуктов реакции (таблица 1.5) [55].

Схема 1.19

Таблица 1.5 – Условия реакции восстановления пероксидов полистиролсвязанным PPh₂ и выходы альдегидов **65а-е**

	D	Venera recordior reling	Выход (%),	Выход (%),
ОПЫТ	К	условия восстановления	метод А	метод Б
a	MeO	Метод Б: 2.0 экв. PS-PPh ₂ , -60°С→ком. Темп., 24 ч	-	90
б	EtO	Метод А: 1.5 экв. PPh ₃ , -60°C→ ком темп., 16 ч, или метод Б	65	95
В	<i>i</i> -PrO	Методы А или Б	63	Колич.
Г	<i>t</i> -BuO	Методы А или Б	46	Колич.
Д	BnO	Методы А или Б	24	Колич.
e	<i>i</i> -PrNH	Метод Б	-	Колич.

Для демонстрации синтетических возможностей разработанного метода был получен тиазолидин **68**, являющийся интермедиатом для 6-незамещенного β-

лактама **69** – пенама, как представителя β-лактамного семейства антибиотиков. Ди-*трет*-бутилгидромуконовый эфир **66** превратили в альдегид с использованием метода Б, отфильтровали и реакцией с метиловым эфиром пенициламина **67** перевели с высокими выходом и стереоселективностью в триазол **68**, из которого пенам **69** легко получают селективным снятием *трет*бутиловой защиты с последующей лактамизацией (схема 1.20) [55].

Схема 1.20

Полистирол-связанный PPh₃ был применен также в синтезе лактама **70** (схема 1.21) [56].

Схема 1.21

Одним из стандартных и широко применямых методов получения спиртов является восстановительное расщепление пероксидных продуктов озонолиза алкенов комплексными гидридами щелочных металлов, например, боргидридом натрия [57-60].

Озонолитическое расщепление винилиденовой группы замещенного циклопентана **71** в присутствии в качестве индикатора Судан III с последующим селективным восстановлением NaBH₄ в EtOH привели к диолу **72**, выделенному в виде смеси (3.4:1) диастереомеров (схема 1.22) [61].

Схема 1.22

Одной из стадий синтеза сферических полиолов является озонолиз спиросоединения **73** при -60°C в присутствии Судан III. После обработки этанольным раствором NaBH₄ было получено 1,3-диоксановое производное пентаола **74** с количественным выходом, переведенное в целевое соединение **75** снятием защиты (схема 1.23) [62].

Озонирование ацетонида **76** с последующим восстановлением NaBH₄ дало диол **77** с выходом 33%, который затем гидролизовали в монозамещенный пентаол **78** с 90% выходом. Снятием бензильной защиты с пятой гидроксильной группы гидрогенолизом на Pd-катализаторе получен *цис,цис,цис,цис,цис,цис*,1,2,3,4,5-пентакис(гидроксиметил)циклопентан **79** с 90% выходом (схема 1.24) [63].

Схема 1.24

Восстановительная обработка избытком $NaBH_4$ пероксидных продуктов озонолиза ангидрида **48** в CH_2Cl_2 при -60°C дает, в качестве основных продуктов дигидроксилактон **80** и лактон **81** (схема 1.25) [33].

Обработка в аналогичных условиях диэфира **82** не привела, как предполагалось, к диолу, но были получены лактоны **83** и **84** с общим выходом 10% (схема 1.26) [63].

Механизм образования лактонов **83** и **84** авторы [63] объясняют по аналогии с восстановлением NaBH₄ продуктов озонолиза других напряженных молекул. В соответствии с механизмом Криге, после первоначального присоединения молекулы O₃ образуется примозононид **85**, который затем превращается в альдегидокарбонилоксид **86**. Последний подвергается внутримолекулярному 1,3-диполярному присоединению, как по альдегидной, так и сложноэфирной группам, давая соответственно озониды **87a** и **876**, восстановление которых NaBH₄ дает промежуточный диальдегид **88**. Затем боргидрид натрия реагирует с одной из альдегидных групп с образованием на первой стадии алкоголята натрия **89**. Последний может атаковать как сложноэфирную группу, приводя к образованию лактонных фрагментов соединения **83**, так и альдегидную, образуя продукт **84** (схема 1.27).

Схема 1.27

Показано, что при озонировании ацетонида **90** при -60°C в CH_2Cl_2 в присутствии пиридина реагировала только двойная связь норборненового фрагмента, и после обработки этанольным раствором NaBH₄ был получен диол **91** с выходом 60%. Озонированием **90** при той же температуре без пиридина после обработки NaBH₄ был получен тетразамещенный циклопентанон **92** (схема 1.28) [64].

Схема 1.28

Описан новый метод синтеза тетрагидрофурановых колец, включающий озонолиз диенов, содержащих свободные гидроксильные группы в γ -положении. При изучении процесса озонирования сопряженных двойных связей в диене **93** реагент дозировали с небольшим избытком при разных температурах [65]. При - 70°С основным продуктом после боргидридного восстановления стал диол **95** – продукт расщепления C¹²-C¹³ двойной связи. Озонирование при 0°С привело к соединению **94**, содержащему на 2 углеродных атома меньше, чем в исходном диене, из-за разрыва связи C13-C14 (схема 1.29).

Схема 1.29

Формирование спирта 94 авторы [65] объясняют через карбонилоксид Криге 97, стабилизация которого ведет к перераспределению частичного положительного заряда на атоме C12 соединения 98, а внутримолекулярная атака НО-группы затем приводит к соответствующему гетероциклу 99. Так как стабильность образующегося винилового гидропероксида крайне мала, он перегруппировывается в альдегид 100 (возможно, через напряженный четырехчленный циклический пероксид), который далее восстанавливается NaBH₄ до спирта 94 (схема 1.30).

Схема 1.30

Озонолиз эндо-цикилических двойных связей в конденсированных системах с последующей обработкой промежуточных пероксидов NaBH₄ предлагается авторами [66] как один из методов синтеза среднециклических лактонов. Так, из триметилкеталя **101** был получен стабильный замещенный деканолид **102** в виде смеси (2:1) двух диастеромеров (схема 1.31).

Схема 1.31

Из неорганических восстановителей пероксидных продуктов озонолиза олефинов до карбонильных соединений часто применяют цинковую пыль в уксусной кислоте [3, 4, 67], но иногда пероксиды оказываются достаточно устойчивыми к ее действию. Так, восстановительная обработка промежуточного озонида 104 (продукта озонолиза бис-диоксолана 103), приводящая к альдегиду 105, затруднена. При использовании оказалась стандартных методик PPh₃, Me₂S) целевой альдегид не был получен с восстановления (Zn. удовлетворительными выходами, кроме того, часто наблюдалась эпимеризация атома углерода при ацетамидной группе. Тем не менее, условия обработки были оптимизированы: озонид 104 восстановили за 24 ч количественно без образования побочных продуктов и эпимеризации смесью мелкодисперсного Zn и Ме₂S (1.32) [68].

Схема 1.32

Применив Zn в условиях реакции Клемменсена (схема 1.33), авторами [69] впервые было выполнено однореакторное восстановительное расщепление *экзо*олефинов последовательными реакциями озонолиза и восстановления по Клемменсену, результаты которого приведены в таблице 1.6. Например, в случае соединения **106** был достигнут выход 72%, в отличие от ранее описанного 3хстадийного синтеза, приводящего к целевому лактаму **107** с общим выходом 49% [70].

Схема 1.33

Таблица 1.6 – Выходы продуктов последовательных реакций озонолиза *экзо*олефинов и последующего восстановления по Клемменсену

₽	Алкен	Продукт	Растворитель, время	Выход, %
1			<i>i</i> -PrOH/CH ₂ Cl ₂ 0.5 ч	87
2	HO HO HO	HO	MeOH/ CH ₂ Cl ₂ 1 ч	75
3			<i>i</i> -PrOH/CH ₂ Cl ₂ 0.75 ч	72
4		~~~~~	MeOH/ CH ₂ Cl ₂ 1 ч	86

Для демонстрации эффективности предложенного метода авторами [71] было показано, что полученный из олефина **106** стандартным способом с использованием Me₂S кетон **108** достаточно сложно дезоксигенируется (схема 1.34): обработка такими системами как тиоацеталь – никель Ренея, NH₂NHTs – NaBH₄, NH₂NHTs – NaBH₃CN снижает выходы или разрушает продукты (таблица 1.7). В связи с этим, разработанный однореакторный метод «озонолиз –

восстановление по Клеменсену» является более эффективным для применения в направленном синтез природных соединений.

Схема 1.34

Таблица 1.7 – Условия и результаты последовательных реакций озонолиза и восстановления по Клеменсену

N⁰	Условия	Выход 107 [*] , %
1	1. HSCH ₂ CH ₂ SH, TiCl ₄ , -15 ^o C; 2. Ni Ренея, EtOH, Δ	35
2	1. NH ₂ NHTs, MeOH, Δ ; 2. NaBH ₄ , MeOH, Δ	разложение продукта
3	1. NH ₂ NHTs, MeOH, Δ ; 2. NaBH ₃ CN, TsOH, THF, Δ	60
Δ	Активированный $7n$ HCl EtaO 0° C	80, низкая
-		воспроизводимость
5	Zn, TMSCl-H ₂ O (5:2), THF, 5° C	86

Общий выход выделенного продукта

Под действием солей металлов пероксиды могут быть фрагментированы по С-С связи: применялись обработка гексагидратом хлорида железа, нитратом железа, нагревание в присутствии Cu(OAc)₂·H₂O, смесью солей железа и меди [3,4]. Так, (*R*)-(+)-6-метилциклогекс-2-ен-1-он **111** был получен озонированием (2R,5R)-(+)-*транс*-дигидрокарвона **109** в метаноле при -30°C, приводящим к метоксигидропероксиду **110**, с последующим восстановлением при комнатной температуре смесью моногидрата ацетата меди (II) и гептагидрата сульфата железа (II) [72] (схема 1.35). Наличие кето-заместителя, по-видимому, направляет разложение предполагаемого промежуточного медного соединения с образованием α,β -ненасыщенного кетона **111** [73].

При изучении разложения пероксидных продуктов озонолиза (+)- β - **112** и (+)- α - **116** пиненов в метаноле солями Fe (III) было установлено, что при обработке FeCl₃·6H₂O как при кипячении, так и при комнатной температуре из β -пинена **112** получается нопинон **113**, но в смеси с *пара*-изопропилфенолом **114** либо хлоркетоном **115**. При использовании Fe(NO₃)₃·9H₂O терпен **112** количественно превращается в нопинон **113** (схема 1.36) [74].

Разложение пероксидных продуктов озонолиза (+)-α-пинена **116** под действием FeCl₃·6H₂O при комнатной температуре либо нагревании приводит к смеси ацеталя **117** и сложного эфира **118** в соотношении 5:3 (схема 1.37) [74].

В 2012 г. авторы [75] предложили использование нового реагента – дитионита натрия, позволяющего быстро превращать алкены в соответствующие функционализированные производные с высокими выходами и без необходимости дополнительной хроматографической очистки. Реакция проходит за 60-260 мин с использованием от 1 до 1.8 экв. Na₂S₂O₄ (схема 1.38).

1.3. *N*-содержащие соединения в превращениях пероксидных продуктов озонолиза

Применение азотсодержащих органических соединений в реакциях «озонолиза-восстановления» представлено тетрацианэтиленом, пиридином,

аммиаком, третичными аминами, амино-*N*-оксидами, производными гидроксиламина и гидразина [3].

Карбонильные соединения получаются в одну стадию при озонировании в присутствии пиридина либо третичных алифатических аминов. Практический интерес представляет «неперекисный» восстановительный озонолиз, осуществляемый в присутствии соединений – акцепторов пероксидного кислорода. Одним из наиболее популярных в современном органическом синтезе вариантов является озонолиз в присутствии пиридина [3].

«Неперекисный» озонолиз смеси (2:1) Δ^{24} - и Δ^{25} - изомеров **119** в CH₂Cl₂ в присутствии Ру приводит к альдегиду **120** и кетону **121**, которые были выделены после колоночной хроматографии на силикагеле с выходами 60 и 30%, соответственно [76]. Окисление озоном полученного альдегида **120** в пиридине с последующей обработкой реакционной смеси раствором диазометана в Et₂O привело к метиловому эфиру 20-гидрокси-25,26,27-тринорэкдизон-23-карбоновой кислоты **122** (схема 1.39).

Схема 1.39

Авторами [77] исследованы озонолитические превращения (R)-4-ментен-3она **123** в CH₂Cl₂ или МеОН и их смеси в присутствии Ру и Et₃N. Показано, что проведение озонолиза енона **123** в CH₂Cl₂ с добавкой Ру приводит с выходом 76%
к дикетокислоте **124**. При замене CH_2Cl_2 на MeOH и сохранении остальных параметров с выходом 84% получен монометиловый эфир (*3R*)-метилглутаровой кислоты **125**. Применение в качестве растворителя в реакции озонолиза смеси (1:1) CH_2Cl_2 и MeOH снизило выход эфирокислоты **125** до 63%. При этом в качестве минорных продуктов были зарегистрированы дикетокислота **124**, кетоэфир **126** и альдегидоэфир **127** (схема 1.40).

Аналогичные результаты были получены при замене Ру на Et₃N (схема 1.41) [77].

123
$$\xrightarrow{O_{3}, Et_{3}N (1 \ 3 \kappa B.), 0^{\circ}C} MeOH/CH_{2}Cl_{2} (1:1)}$$
125 (65%) + 124 (5%) + 126 (6%) + 127 (4%)
125 : 124 : 126 : 127 = 19.2 : 2.3 : 1.0 : 1.2
Cxema 1.41

Образование дикетокислоты 124 из пероксида 128 авторы [77] объясняют следующими вероятными превращениями: на первой стадии пиридин выступает

как восстановитель карбонилоксида **128** до альдегидодикетона **129**, на второй – образует комплекс с озоном. Этот комплекс, в свою очередь, является известным эффективным окислителем альдегидов до соответствующих кислот (схема 1.42) [78].

Схема 1.42

Альдегидоэфир **127** и монометиловый эфир (3*R*)-метилглутаровой кислоты **125** образуются по следующей вероятной схеме, при этом на первой стадии пиридин (или триэтиламин), по-видимому, катализируют превращение гидропероксида **130** в ангидрид **131** (схема 1.43).

Образование кетоэфира **126** обусловлено, по-видимому, возможностью метанолиза промежуточного ацилкатиона **133** – продукта перегруппировки стерически напряженного молозонида **132** (схема 1.44).

Схема 1.44

Авторами [79] предлагается однореакторный метод превращения алкенов в амины последовательными реакциями озонолиза И восстановительного аминирования (схема 1.45). Озонирование алкенов осуществляют в смеси МеОН- CH_2Cl_2 , обрабатывают далее реакционную массу последовательно триацетоксиборгидридом натрия (3 экв) и амином (1-2 экв) (метод А) либо смесью NaBH(OAc)₃ и амина (метод Б) (таблица 1.8).

Схема 1.45

Таблица 1.8 – Условия и результаты однореакторного метода превращения алкенов в амины последовательными реакциями озонолиза и восстановительного аминирования

Алкен	Реагент	Метод (выход, %)	Продукт
BnO(H ₂ C) ₃	морфолин	A (64)	H BnO(H ₂ C) ₃ H
AcO(H ₂ C) ₈	морфолин	B (66)	H AcO(H ₂ C) ₈ H
	Ph(CH ₂) ₂ NH ₂	A (72) B (62)	N Ph
Å	Ph(CH ₂) ₂ NH ₂	A (65) B (65)	Ph N

Подобную процедуру авторы [79] применили для синтеза гидразонов, гидразинов и диазенов (схема 1.46). Озонолиз **134** с последующей обработкой образующегося гидропероксиацеталя фенилгидразином и триацетоксиборгидридом натрия приводят к фенилгидразону **135**, добавление

NaBH₃CN к которому дает фенилгидразид **136**, быстро окисляющийся на воздухе до диазена **137** с выходом 57%.

Схема 1.46

Озонолизом 2,3-*бис-эндо*-диолов **138-140** в CH₂Cl₂ при -78°C с последующей добавкой аминов синтезированы ацетальные производные – азаклетки **141-147** с высокими выходами (60-75%) (схема 1.47) [80].

Схема 1.47

Механизм 1,3-диполярное циклоприсоединение реакции включает молекулы озона к двойной связи в 138, приводящее к примозониду 148. Разрушение 1,2,3-триоксолана 148 дает карбонилоксид 149, который в результате внутримолекулярного нуклеофильного присоединения НО-группы К карбонилоксидной и альдегидной превращается в лактологидропероксид 150. Протонирование НО- либо НОО-групп соединения 150 с последующим отщеплением H₂O или H₂O₂ приводит к оксониевым ионам 151a и 1516. Нуклеофильное присоединение молекулы амина к оксониевым ионам 151а,6 с последующей дегидратацией ведет к аза-клеткам 141-145, вероятно, через интермедиаты 152а, б и 152в, г (схема 1.48).

Схема 1.48

Использование солянокислого гидроксиламина для превращения пероксидных продуктов озонолиза олефинов первоначально было ограничено лишь несколькими примерами, причем все реакции были выполнены в MeOH, и в зависимости от природы субстратов было отмечено образование альдегидов **153а,6** [81], альдоксима **154** [82,83] и сложного эфира **155** [84] (схема 1.49).

Схема 1.49

Впоследствии было исследовано применение гидрохлорида гидроксиламина как восстановителя пероксидных продуктов озонолиза алкенов различного строения и происхождения в изопропиловом спирте [85], смеси AcOH-CH₂Cl₂ [86], тетрагидрофуране [87]. Кроме того изучалось влияние добавки воды в качестве сорастворителя [88,89]. При этом также были получены производные, содержащие сложноэфирную, функционализированные нитрильную и кето- группы. Причем нитрильные производные 157 и 159 впервые были зафиксированы при озонолизе циклооктена 156 и касторового масла 158 в метаноле (схема 1.50) [90].

Схема 1.50

При использовании гидрохлорида гидроксиламина как восстановителя пероксидных продуктов озонолиза олефинов в изопропаноле были отмечены пониженные скорости превращений альдегид—альдоксим — нитрил—сложный эфир и переэтерификации триглицеридной группы касторового масла **158** в сравнении с таковыми в метаноле: после колоночной хроматографии выделены изопропиловый эфир (*R*)-3-гидроксинонановой кислоты **160**, нитрилоэфир **161** и триглицерид **162** (схема 1.51) [85].

$$158 \quad \frac{1. \text{ O}_{3}/i\text{-PrOH, 0^{\circ}C}}{2. \text{ NH}_{2}\text{OH} \cdot \text{HCl}} \quad 3 \text{ CH}_{3}(\text{CH}_{2})_{5} \qquad OH \qquad OH \qquad H_{2}\text{CO}_{2}\text{Pr}^{i} + 3 \text{ NC}(\text{CH}_{2})_{7}\text{CO}_{2}\text{Pr}^{i} + HC - OC(\text{CH}_{2})_{7}\text{CO}_{2}\text{Pr}^{i} \\ 0 \qquad HC - OC(\text{CH}_{2})_{7}\text{CO}_{2}\text{Pr}^{i} \\ 0 \qquad HC - OC(\text{CH}_{2})_{7}\text{CO}_{2}\text{Pr}^{i} \\ 0 \qquad H_{2}\text{C} - OC(\text{CH}_{2})_{7}\text{CO}_{2}\text{Pr}^{i} \\ 160 \quad (71\%) \qquad 161 \quad (42\%) \qquad H_{2}\text{C} - OC(\text{CH}_{2})_{7}\text{CO}_{2}\text{Pr}^{i} \\ 162 \quad (37\%) \qquad 162 \quad (37\%)$$

 \sim

Предложен препаративный однореакторный метод получения хиральных циклопропан-(циклобутан)-содержащих строительных блоков для природных биологически активных веществ: метиловых **165**, **167** и изопропиловых **164**, **166** кетоксимоэфиров с *транс*-конфигурацией двойных связей оксимных групп обработкой пероксидов гидрохлоридом гидроксиламина в метаноле [91] или изопропаноле [85], соответственно (схема 1.52).

Описано применение арилпроизводных гидразина В качестве восстановителей пероксидных продуктов озонолиза алкенов [92]. Так, 2,4динитрофенилгидразин, а также солянокислый фенилгидразин оказались эффективными, но неселективными реагентами. Озонолиз 1-нонена 168 и 2,4-динитрофенилгидразином последующая обработка привели К смеси полуацеталя 169 и 2,4-динитрофенилгидразона 170. При использовании солянокислого фенилгидразина для превращения пероксидных продуктов озонолиза олефина 168 получена смесь эфира 171, диметилацеталя 172 и фенилгидразона 173 (схема 1.53).

Схема 1.53

При использовании солянокислого тиосемикарбазида для восстановления пероксидных продуктов озонолиза 1-нонена **168** с выходом 41% получен кристаллический тиосемикарбазон **174** (схема 1.54) [92].

168
$$\frac{1. \text{ O}_{3}, \text{ MeOH, 0^{\circ}C};}{2. \text{ NH}_{2}\text{NHC}(S)\text{NH}_{2} \cdot \text{HCl}, 0 - 20^{\circ}\text{C}} \xrightarrow{\text{CH}_{3}(\text{CH}_{2})_{6} - \text{CH} = \text{NNHCNH}_{2}}{174} \xrightarrow{\text{II}}{\text{S}} \xrightarrow{\text{II}}{174} \xrightarrow{\text{II}}{\text{S}}$$

Применение тиосемикарбазида для пероксидных продуктов оказалось затруднительным, в большинстве случаев наблюдалось сильное осмоление

реакционных масс и низкие выходы целевых продуктов. Более широкое применение нашел его *О*-содержащий аналог – семикарбазид.

На примере монотерпеновых субстратов **116** и **163** показана возможность получения циклопропан- и циклобутансодержащих кетокарбоксильных производных: метиловых **118**, **177** и изопропиловых эфиров **175**, **178**, карбоновых кислот **176**, **179** при проведении озонолиза и последующей обработки солянокислым семикарбазидом в MeOH [91], Pr^{*i*}OH [85], и смеси AcOH-CH₂Cl₂ [86], соответственно (схема 1.55).

Схема 1.55

Разработаны эффективные синтезы биологически активной (3*R*)гидроксинонановой кислоты **181** (микрокомпонента плазмы крови человека [93]) и ее сложноэфирных производных **180** и **160** на основе хемоселективных озонолитических превращений касторового масла **158** в спиртовых растворителях и уксусной кислоте с использованием на стадии восстановления пероксидных продуктов солянокислого семикарабазида (схема 1.56) [94].

Схема 1.56

Использование солянокислого семикарбазида для превращения пероксидного продукта озонолиза ментенона **123** в смеси (1:1) CH₂Cl₂-MeOH дало с высоким выходом ацеталеэфир **182** (схема 1.57) [77] – ключевой синтон в синтезе целого ряда низкомолекулярных биорегуляторов насекомых (половых феромонов малого и большого мучных хрущаков, красной калифорнийской щитовки и т.д.) [95].

Схема 1.57

Низкотемпературный озонолиз простых **183а-г** или сложных **183д,е** аллиловых эфиров в среде AcOH/CH₂Cl₂ с последующей обработкой гидрохлоридом семикарбазида позволяет получать алкоксиуксусные кислоты с хорошими выходами без выделения промежуточных пероксидов (схема 1.58) [96].

$$R=0 \xrightarrow{1. O_{3,}CH_{2}Cl_{2}/AcOH} R=0 \xrightarrow{CO_{2}H} R=0 \xrightarrow{CO_{2}H} R=0 \xrightarrow{CHO} CHO$$
183a-e 184a-e 185a,6,r
Cxema 1.58

Отмечается, что селективность восстановления образующегося на первой стадии ацетоксигидропероксида зависит как от температуры проведения процесса, так и природы субстрата. Понижение температуры благоприятствует протеканию кислотного гидролиза и образованию карбоновой кислоты. При более высоких температурах (-45°C или -20°C) озонолиз эфиров **183а-е** протекает менее селективно: помимо кислот были выделены соответствующие альдегиды **185а,6,г**, причем для аллилбензоата **183**г образование альдегида **185**г является предпочтительным (таблица 1.9).

Таблица 1.9 – Выходы продуктов озонолиза простых **183а-г** и сложных **183д, е** аллиловых эфиров в среде AcOH/CH₂Cl₂ с последующей обработкой гидрохлоридом семикарбазида

N⁰	Субстрат	R	T,°C	Продукт 184 (выход [*] ,%)	Продукт 185 (выход [*] ,%)
1	183a	Ph	-70	184a (70)	-
2	183a	Ph	-45	184a (54)	185a (15)
3	1836	Bn	-45	1846 (45)	1856 (40)
4	183в	All	-70	184 в (40)	-
5	183г		-20**	184 г (27)	185 г(67)
6	183д		-70	184д (27)	-
7	183e		-30**	184e (30)	_

*Выход выделенного продукта.

** Температура озонолиза определялась растворимостью субстрата.

Наблюдаемое снижение селективности озонолиза при повышении температуры авторы связывают с механизмом восстановления пероксидов [96]. При озонировании олефинов в среде AcOH/CH₂Cl₂ промежуточным соединением, чаще всего, является ацетоксигидропероксид **186** [97], для которого возможны либо расщепление до карбоновой кислоты в результате кислотного гидролиза (путь 1), либо восстановление под действием солянокислого семикарбазида до соответствующего альдегида (путь 2) (схема 1.59). При -70°С, вероятно, преимущественно протекает кислотный гидролиз, а при более высокой температуре (-45°С или -20°С) процессы расщепления и восстановления проходят параллельно, что приводит к смеси продуктов. Преобладание альдегида либо карбоновой кислоты связано, видимо, со строением субстратов.

Схема 1.59

Таким образом, озонолиз является современным и перспективным методом функционализации алкенов различной природы и степени замещенности, причем его синтетический потенциал неисчерпаем, особенно на стадии превращения промежуточных пероксидов. При этом в последние годы особое внимание уделяется применению азотсодержащих органических реагентов (пиридин, третичные амины, производные гидразина и гидроксиламина и другие) для превращения пероксидных продуктов озонолиза алкенов. Поэтому расширение ассортимента алкеновых субстратов и азотсодержащих органических восстановителей в трансформациях пероксидных продуктов, несомненно, актуально и востребовано.

На основе обзора литературы опубликована обзорная статья [98].

ГЛАВА 2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

2.1. Синтез практически важных ациклических α,ω-бифункциональных соединений из олеиновой и ундеценовой кислот и их производных с использованием гидрохлоридов семикарбазида и гидроксиламина

Непредельные карбоновые кислоты и их производные благодаря наличию двойной связи имеют большой синтетический потенциал и используются в различных направленных органических синтезах. Особое значение имеют кислоты – компоненты растительных источников, как возобновляемые природные ресурсы. Так, олеиновая (9Z-октадеценовая) кислота **1** входит в состав почти всех природных жиров и масел. Одним из главных её источников являются оливковое (~80%), а также подсолнечное (39%) и хлопковое (35%) масла, в животных жирах на ее долю приходится 36-45% от общего количества жирных кислот [99]. 10-Ундеценовая (ундециленовая) кислота является продуктом деструктивной дистилляции касторового масла [100] из семян клещевины обыкновенной *Ricinus communis* [101].

2.1.1. Превращения пероксидных продуктов озонолиза олеиновой кислоты под действием гидрохлоридов гидроксиламина и семикарбазида

Известные озонолитические трансформации олеиновой кислоты 1 можно разделить на 2 типа, направленные на получение:

• 1,9-нонандиовой и нонановой кислот окислением пероксидных продуктов озонолиза H₂O₂ [102], смесью H₂O₂-HCO₂H [103] либо кислородом в присутствии солей и оксидов переходных металлов, например, Mn(OAc)₂ [104];

• 9-оксононановой кислоты и нонаналя восстановительными превращениями под действием диметилсульфида [105, 106], йодида калия [107], водорода на палладиевой черни [104] или катализаторе Pd/CaCO₃ [108].

Нами установлено, что озонолиз олеиновой кислоты **1** в метаноле при 0°С и последующая обработка солянокислым гидроксиламином приводит к смеси, из

которой хроматографически были выделены метиловый эфир нонановой кислоты 2, нонаналь оксим 3, диметиловый эфир 1,9-нонандиовой кислоты 4 и метил 9-5. Под действием гидроксииминононаноат гидрохлорида семикарбазида образуется смесь тех же метиловых эфиров 2 и 4, а также 1,1-диметоксинонан 6 и метил-9,9-диметоксиноноат 7 (схема 2.1) [109]. Последний является полупродуктом в синтезе биологически и фармакологически активных 9-оксо- и 10-гидрокси-2Е-деценовых кислот – компонентов маточного вещества и маточного молочка медоносных пчел Apis mellifera L. [106].

Обработка пероксидных продуктов озонолиза олеиновой кислоты 1 в изопропаноле при 0°С солянокислым гидроксиламином привела к смеси изопропилового эфира нонановой кислоты 8, нитрила 9, моноизопропилового эфира 1,9-нонандиовой кислоты 10 и нитрилокислоты 11. Под действием гидрохлорида семикарбазида получена смесь изопропилового эфира нонановой 8 и моноизопропилового эфира 1,9-нонандиовой 10 кислот с выходами 76% и 77%, соответственно (схема 2.2) [109]. Образование моноизопропилового эфира 10 объясняется меньшей реакционной способностью изопропанола в реакции этерификации, в сравнении с метанолом. Эфир 10 входит в состав композиций, используемых в дерматологии [110].

Схема 2.2

Озонолиз олеиновой кислоты **1** в смеси (1:5) уксусной кислоты и хлористого метилена и последующая обработка солянокислым гидроксиламином приводят к смеси нонановой кислоты **12**, соответствующего ей оксима **3**, 1,9-нонандиовой кислоты **13** и оксимокислоты **14**, разделенной хроматографически. [109] В литературе описано получение 9-гидроксииминононановой кислоты **14** из олеата натрия при использовании солянокислого гидроксиламина в воде [111, 112].

Обработка тех же пероксидных продуктов озонолиза гидрохлоридом семикарбазида дает смесь нонановой 12 и азелаиновой 13 кислот (схема 2.3) [109]. Последняя является природным антиоксидантом, обладает антибактериальными и противовоспалительными свойствами, широко используется в косметологии 3 нашел [113]. Нонаналь оксим применение В синтезе аналога N_{-} ацилгомосеринлактона PAI-1 _ активатора транскрипционного фактора синегнойной палочки Pseudomonas aeruginosa [114].

51

Образование карбоксильных производных 12 и 13 в присутствии солянокислого семикарбазида может быть объяснено дегидратацией под действием HCl промежуточно образующихся ацетоксигидропероксидов 15 до легко гидролизующихся смешанных ангидридов 16 либо восстановлением их до альдегидов 17, которые далее окисляются в соответствующие кислоты 12 и 13 нитрозооксидом 19 – продуктом окисления гидрохлорида семикарбазида вначале пероксидом 15, а затем кислородом через промежуточную стадию образования нитрена 18 [115]. Соединения 12, 13 и 3 при использовании гидрохлорида гидроксиламина, очевидно, образуются по ранее предложенному [90] маршруту: альдегид 17 \rightarrow альдоксимы 3, 14 \rightarrow нитрилы 9, 11 \rightarrow кислоты 12, 13 (схема 2.4).

Схема 2.4

Озонолиз олеиновой кислоты **1** в тетрагидрофуране при обработке солянокислым гидроксиламином приводит к аналогичной смеси продуктов, однако выходы соединений **12-14** и **3** несколько снижены (схема 2.5) [109].

Схема 2.5

Вероятно, пероксидным продуктом озонолиза олеиновой кислоты **1** в тетрагидрофуране является озонид **20**, а солянокислые гидроксиламин и семикарбазид выполняют роль как восстанавливающих до альдегидов **17**, так и изомеризующих до кислот **12** и **13** реагентов (схема 2.6) [109]. В свою очередь, образующиеся альдегиды **17** могут превращаться в кислоты **12** и **13** в результате превращений, приведенных в схеме 2.4.

Схема 2.6

2.1.2. Однореакторный озонолитический синтез ациклических α,ωбифункциональных соединений из метилового эфира 10-ундеценовой кислоты и 10-ундецен-1-ола

Производные 10-ундеценовой кислоты – её метиловый эфир **21** и 10ундецен-1-ол **22**, содержащие в своих молекулах две реакционноспособные функциональные группы, уже неоднократно использовались в направленном органическом синтезе низкомолекулярных биорегуляторов, в том числе и феромонов насекомых [116]. Наличие в их структуре терминальной двойной связи обуславливает их высокий синтетический потенциал, например, в озонолитических превращениях.

В литературе представлено несколько примеров озонолиза метилового эфира 10-ундеценовой кислоты **21**, приводящих к гидрокси- или оксопроизводным. Так, например, озонирование непредельного эфира **21** приводит к метил 10-гидроксидеканоату после обработки NaBH₄ с выходом 91% [117], BH₃-Me₂S – 98% [118] либо к метил 9-формилнонаноату после гидрирования на Pd/C с выходом 93% [53], обработки Me₂S – 80-85% [119, 120], триэтиламином – 60% [121] или Zn/AcOH – 83% [122]. Озонолитические превращения непредельного спирта **22** не изучались.

Озонолиз метилового эфира 10-ундеценовой кислоты **21** в метаноле и последующая обработка как солянокислыми гидроксиламином, так и семикарбазидом привели с высокими выходами к диметиловому эфиру себациновой кислоты **23**, что подтверждается данными ЯМР спектроскопии (схема 2.7) [123].

Полученный диэфир **23** находит широкое применение в производстве биоразлагаемых полимеров [124]; используется в создании косметических [125], гербицидных [126], антимикробных [127], бактерицидных [128] композиций; плавких красок, используемых для электростатических регистраторов [129], в качестве присадок к смазочным маслам [130, 131], морозостойким резинам [132], высокостабильным отверждаемым композициям [133].

При замене метанола на изопропанол селективность реакции с гидрохлоридом гидроксиламина снижается: получена смесь метилизопропилового эфира себациновой кислоты 24, ее монометилового эфира 25 и метил 9-цианононаноата 26, разделенная хроматографически. Озонолитические превращения сложного эфира 21 в изопропаноле при участии солянокислого семикарбазида привели с хорошим выходом к смешанному эфиру 24 (схема 2.8) [123]. Наличие двух различных сложноэфирных групп в соединении 24 доказано методами спектроскопии ИК (1741 и 1737 см⁻¹) и ЯМР 13 С (172.88 м.д. для CO₂Me и 173.76 м.д. для CO₂Pr^{*i*}).

Озонолиз метилового эфира ундециленовой кислоты **21** в тетрагидрофуране и последующая обработка солянокислым гидроксиламином дали смесь монометилового эфира 1,10-дикарбоновой кислоты **25** и соответствующего альдоксима **28**, разделенную хроматографически. Взаимодействием пероксидов с солянокислым семикарбазидом получен с высоким выходом только первый из них (схема 2.9) [123].

Снижение выходов продуктов реакции и селективности процесса наблюдается при использовании в качестве растворителя смеси (1:5) AcOH-CH₂Cl₂. При обработке гидрохлоридом гидроксиламина получена смесь эфирокислоты **25** с нитрилоэфиром **26** и альдоксимоэфиром **28**. При восстановлении солянокислым семикарбазидом получена только кислота **25**, но с меньшим выходом, чем в ТГФ (схема 2.10) [123].

Полученный в различных вариантах озонолиза-восстановления монометиловый эфир себациновой кислоты **25** находит применение при составлении антимикробных композиций [127], а также входит в состав смазочных материалов с низкой вязкостью [134].

Бифункциональные 10-гидроксипроизводные были получены В 22. озонолитических превращениях ундециленового спирта Так, ωгидроксиметиловый эфир 29, применяемый для создания фуллереновых пленок с гидрофильными и гидрофобными фрагментами [135], был получен с высокими выходами при обработке пероксидов из 10-ундеценола 22 гидрохлоридами семикарбазида и гидроксиламина в метаноле (схема 2.11) [123].

Схема 2.11

Изопропиловый аналог 30 гидроксиэфира 29 синтезирован взаимодействием пероксидов из непредельного спирта 22 с гидрохлоридом семикарбазида при замене метилового спирта на изопропиловый. При обработке 30 наряду c эфиром образуется солянокислым гидроксиламином его предшественник – гидроксинитрил **31** (схема 12.2) [123].

10-Гидроксидекановая кислота **32** и ее ацетат **33** с преобладанием в реакционной смеси последнего получены в результате проведения реакции в смеси (1:5) AcOH-CH₂Cl₂ как при действии солянокислого семикарбазида, так и при обработке гидрохлоридом гидроксиламина. Отмечаем, что каждая из полученных кислот практически нацело может быть превращена в другую при ацетилировании системой Ac₂O-Py либо щелочным гидролизом (схема 2.13) [123].

Гидроксикислота **32** проявляет антибактериальные и противовоспалительные свойства и применяется при составлении композиций, используемых в косметике и дерматологии [136-141], являясь ингибитором альдозоредуктазы, входит в состав противодиабетических препаратов [142], кроме того, она является исходным соединением в синтезе компонента полового феромона восточной плодожорки *Grapholitha molesta* [143].

Таким образом, исходя из олеиновой кислоты, метилового эфира 10ундеценовой кислоты и 10-ундецен-1-ола разработаны синтезы, в том числе препаративные, ряда ациклических α,ω-бифункциональных соединений, находящих широкое применение в медицине, парфюмерии и косметологии, технике и химической промышленности и являющихся ценными блок-синтонами в направленном органическом синтезе, в том числе и низкомолекулярных биорегуляторов насекомых.

2.2. превращения пероксидных продуктов озонолиза циклооктена под действием гидрохлоридов гидроксиламина и семикарбазида

Многие известные озонолитические трансформации циклооктена **34** направлены на получение пробковой (1,8-октандиовой) кислоты **35** окислением пероксидных продуктов озонолиза кислородом в присутствии солей Со или Си [144] либо азотной кислотой в присутствии NaNO₂ [145], применяется также изомеризация пероксидов с повышенным содержанием активного кислорода в присутствии катализатора Линдлара [146]. Альтернативным методом получения пробковой кислоты **35** является «металлоорганический озонолиз» оксоном в присутствии OsO₄ [147].

В данной работе изучены превращения пероксидных продуктов озонолиза циклооктена **34** в протонодонорных и апротонных растворителях (MeOH, Pr^{*i*}OH, TГФ, AcOH-CH₂Cl₂), в том числе в присутствии воды, под действием солянокислых гидроксиламина и семикарбазида.

При постановке задачи руководствовались ранее выявленными на примерах олефинами закономерностями. Во-первых, было обнаружено с другими необычное превращение пероксидных продуктов под действием гидрохлорида семикарбазида в спиртовых растворителях до соответствующих сложных эфиров через стадию образования полуацеталей [92]. Во-вторых, при действии солянокислого гидроксиламина, в зависимости от природы субстрата и условий обработки, образующиеся альдегиды по маршруту альдоксим — нитрил сложный метиловый (или изопропиловый) эфир превращались в индивидуальные соединения или их смеси [85, 90]. В-третьих, введение воды в качестве сорастворителя В реакциях озонолиза-восстановления гидрохлоридами гидроксиламина или семикарбазида ведет к снижению выходов карбоксильных

производных при увеличении доли азотсодержащих органических соединений (кето-либо альдоксимов или нитрилов) [86].

Установлено [90], что озонолиз циклооктена **34** в метаноле с последующей обработкой солянокислым гидроксиламином дает смесь диэфира **36** и нитрилэфира **37** (схема 2.14).

При использовании солянокислого семикарбазида наряду с полным ацеталем **38** и эфирополуацеталем **39** обнаружен неожиданный продукт – диэфир **36** (схема 2.15).

Образование соединений 36, 38 и 39 объясняется следующими вероятными превращениями. В качестве ключевого синтона в данном случае выступает первичный продукт восстановления гидропероксида 40 – альдегидополуацеталь 41, который обработкой MeOH в кислой среде превращается в полный ацеталь 38. Доокисление альдегидной функции нитрозооксидом 42 – продуктом окисления гидрохлорида семикарбазида вначале пероксидом 40, а затем кислородом через промежуточную стадию образования нитрена **43** [115] – приводит к эфирополуацеталю 39, который в свою очередь, может быть превращен в диэфир 36 при действии того же окислителя (схема 2.16). Не исключается также одновременное окисление альдегидной и полуацетальной функций.

Озонолиз олефина **34** в смеси метанол-вода (0°С) с последующим восстановлением пероксидных продуктов солянокислым гидроксиламином приводит к эфироксиму **44**, диэфиру **36** и ацеталеэфиру **45**. Обработкой пероксидных продуктов озонолиза **34** в смеси MeOH-H₂O солянокислым семикарбазидом получены соединения **36** и **45** (схема 2.17) [148].

Восстановление пероксидных продуктов озонолиза циклооктена **34** в изопропаноле солянокислым гидроксиламином приводит к смеси продуктов, в которой идентифицированы нитрилоэфир **46**, диэфир **47** и динитрил **48**. Действием гидрохлорида семикарбазида на продукты озонолиза циклооктена **34** в изопропиловом спирте выделен только диизопропиловый эфир **47** (схема 2.18) [148].

Схема 2.18

Вероятные пути образования соединений **46-48** при обработке пероксидных продуктов озонолиза алкена **34** солянокислым гидроксиламином приведены на схеме (схема 2.19).

Схема 2.19

Продуктами восстановления пероксидов из циклооктена **34** в смеси Pr^{*i*}OH-H₂O солянокислым гидроксиламином являются диэфир **47**, динитрил **48** и диоксим **49**. Обработкой пероксидных продуктов озонолиза циклооктена **34** солянокислым семикарбазидом получены диэфир **47** и дикислота **35** (схема2. 20) [148].

Схема 2.20

Образование дикислоты **35** из пероксида с повышенным содержанием активного кислорода **50**, образующего при озонировании в ТГФ [3], вероятно, является результатом его перегруппировки под действием гидрохлоридов гидроксиламина или семикарбазида [87] (схема 2.21).

Схема 2.21

Озонолиз циклооктена **34** в системе тетрагидрофуран-вода с последующей обработкой перекисных продуктов солянокислым гидроксиламином приводит к смеси продуктов – динитрилу **48**, мононитрилу **51** и дикислоте **35** с невысокими выходами. В тех же условиях обработкой продуктов озонолиза солянокислым семикарбазидом получена с низким выходом только пробковая кислота **35** (схема 22.2) [148].

Известно, что озонолиз олефинов в низших карбоновых кислотах с последующим окислительным разложением пероксидных продуктов озонолиза приводит к карбксильным соединениям с хорошими выходами [3]. Однако озонирование циклооктена **34** в хлористом метилене в присутствии уксусной

кислоты (0°С) и последующая обработка гидрохлоридом гидроксиламина ведут к смеси продуктов – дикислоте **35**, динитрилу **48** и диоксиму **49**. При использовании в тех же условиях солянокислого семикарбазида получена с незначительным выходом пробковая кислота **35** (схема 2.23) [148].

$$34 \xrightarrow{1. \text{ O}_{3}/\text{ CH}_{2}\text{Cl}_{2}\text{-AcOH, 0 °C}} 35, 16\% + 48, 9\% + 49, 6\%$$

$$34 \xrightarrow{1. \text{ O}_{3}/\text{ CH}_{2}\text{OH} \cdot \text{HCl}} 35, 16\% + 48, 9\% + 49, 6\%$$

$$1. \text{ O}_{3}/\text{ CH}_{2}\text{Cl}_{2}\text{-AcOH, 0 °C}$$

$$2. \text{ NH}_{2}\text{C(O)}\text{NHNH}_{2} \cdot \text{HCl}} 35, 10\%$$

$$Cxema 2.23$$

Превращения пероксидов из циклооктена **34** в смеси CH₂Cl₂-AcOH-H₂O под действием солянокислого гидроксиламина ведут к смеси продуктов – дикислоте **35**, динитрилу **48** и диоксиму **49**. При применении гидрохлорида семикарбазида получена с малым выходом дикислота **35** (схема 2.24) [148].

$$34 \xrightarrow{1. O_3/ CH_2Cl_2-AcOH-H_2O, 0 °C} 35, 14\% + 48, 9\% + 49, 7\%$$

$$2. NH_2OH \cdot HCl$$

$$1. O_3/ CH_2Cl_2-AcOH-H_2O, 0 °C$$

$$2. NH_2C(O)NHNH_2 \cdot HCl$$

$$35, 9\%$$

схема 2.24

Таким образом, изучены озонолитические превращения циклооктена в растворителях различной природы (PrⁱOH, TГФ, AcOH-CH₂Cl₂), в том числе в присутствии воды как сорастворителя, с применением на стадии превращения промежуточных пероксидов солянокислых семикарбазида и гидроксиламина. Предложен однореакторный метод превращения циклооктена в 1,8-октандиовую кислоту обработкой пероксидов в ТГФ гидрохлоридами семикарбазида или гидроксиламина.

Установлено, что введение воды в реакционную среду приводит к снижению карбоксильных производных, выходов а при применении солянокислого гидоксиламина к увеличению доли азотсодержащих соединений (оксимов либо нитрилов). Предложены вероятные схемы образования продуктов реакций в растворителях различной природы. Отмечено, что в отличие от тризамещенных циклоолефинов (α-пинена и 3-карена) [91], дизамещенный циклооктен в вышеописанных озонолитических превращениях, особенно с участием солянокислого семикарбазида, ведет себя необычно, образуя непероксидные продукты озонолиза с относительно низкими выходами во всех растворителях, кроме метанола. Предполагается, что это связано со вторичными взаимодействия промежуточно процессами образующихся α.ωальдегидопероксидов с нитренами.

2.3. Превращения пероксидных продуктов озонолиза (-)-α-пинена при действии солянокислого и сернокислого гидразинов

Убедившись на большом количестве примеров, что солянокислые производные гидразинов эффективно превращают пероксидные продукты озонолиза алкенов в *О*-функционализированные производные, была поставлена задача выяснить влияние кислотной составляющей реагента. Для этого была изучена реакционная способность солянокислого и сернокислого гидразинов по отношению к пероксидным продуктам озонолиза (–)-α-пинена **52**.

Установлено, что при использовании гидрохлорида гидразина промежуточно образующиеся из циклоолефина 52 пероксиды в зависимости от используемого растворителя превращаются в метиловый 55 или изопропиловый 57 кетоэфиры, либо кетокислоту 58. Отмечена пониженная реакционная способность и селективность солянокислого гидразина по сравнению С гидрохлоридом семикарбазида [149]: полное восстановление пероксидов в спиртовых растворителях проходит за 1÷3 недели, для превращения пероксидов в кетокислоту 58 в смеси AcOH-CH $_2$ Cl $_2$ потребовалось 4 суток. Кроме того, при

64

проведении реакции в метаноле кетоэфир **55** образуется в смеси с кетоацеталем **56** (схема 2.25) [150].

При использовании гидразин сульфата в зависимости от используемого растворителя в качестве основных продуктов были выделены эфиры **55**, **57** либо карбоксильное производное **58**. Кроме того, при обработке пероксидных продуктов озонолиза субстрата **52** в изопропаноле были получены кетокислота **58** и кетополуацеталь **59** (схема 2.26) [150, 151].

Схема 2.26

Полученная с высоким выходом *цис*-пиноновая кетокислота **58** является ключевым соединением в синтезе феромона виноградного мучнистого червеца *Planococcus citri* (Risso) – опасного вредителя цитрусовых [152].

Образование как карбонильных, так и карбоксильных производных можно объяснить конкурентными превращениями образующихся гидропероксидов **60**: восстановлением до кетоальдегида **62**, выделяемого в виде ацеталей **56** и **59** либо дегидратацией до сложных эфиров **61**, которые в свою очередь, могут гидролизоваться до кетокислоты **58** (схема 2.27) [150].

Схема 2.27

Таким образом, на примере природного монотерпена (–)-α-пинена выявлены пониженная реакционная способность и хемоселективность солянокислого и сернокислого гидразинов в сравнении с гидрохлоридом семикарбазида в превращениях пероксидных продуктов озонолиза. Обнаружено, что наиболее селективно субстрат превращается в соответствующую кетокислоту под действием этих реагентов в системе AcOH-CH₂Cl₂, тогда как соответствующий ей метиловый эфир хемоселективно образуется в присутствии сульфата гидразина, а изопропиловый – под действием его гидрохлорида.

2.4. Разработка однореакторного метода синтеза соединений с C=Nгруппой

Широкие синтетические возможности и ценные свойства продуктов конденсации карбонильных соединений с различными замещенными гидразинами привлекают внимание исследователей. Будучи весьма доступными, гидразоны нашли широкое применение в синтетической и аналитической химии [153]. Арилгидразоны альдегидов и кетонов применяются в качестве аналитических реагентов и биологически активных субстратов, а потенциальная возможность *син/анти*-изомеризации по двойной связи углерод–азот в арилгидразонах определяет перспективы создания на их основе новых сенсорных материалов и молекулярных устройств, кроме того, они являются ценными интермедиатами в синтезах различных азотсодержащих гетероциклических систем [154].

В качестве исходных соединений использовали монозамещенные алкены: нонен-1 **63**, 10-ундеценовую кислоту **64**, ее метиловый эфир **21** и 10-ундеценол **22**. Нонен-1 **63** был выбран в качестве модельного соединения, на котором отрабатывалась методика получения гидразонов. Для изучения влияния функциональных групп на процесс формирования C=N- связи были применены субстраты **64**, **21** и **22**, содержащие кислотную, сложноэфирную и гидроксильную группы, соответственно.

Одним из важных и перспективных направлений органической химии является применение хиральных строительных блоков в направленном синтезе биологически активных веществ. Доступным их источником, благодаря наличию нативной оптической активности, являются природные монотерпены. В связи с этим были использованы (–)- α -пинен 52 (*ee* 86%) и (+)-3-карен 65 (*ee* 100%), выделяемые из смолы и скипидаров различных видов *Pinus*, и (*S*)-(–)-лимонен 66 (*ee* 50%), содержащийся в маслах цитрусовых.

2.4.1. Превращения пероксидных продуктов озонолиза алкенов при действии тозилгидразида

Тозилгидразоны, как синтетические аналоги алифатических диазосоединений, применяют для генерирования карбенов в мягких условиях *in situ* через стадию азинов [155]. Исходя из тозилгидразонов описано получение простых стерически затрудненных эфиров [155], полициклических алканов [156], кроме того, эти соединения используют для алкилирования азолов [157]. С целью разработки однореакторного метода получения тозилгидразонов изучено восстановление тозилгидразидом пероксидов, полученных озонолизом алкенов.

Общая схема синтеза включает в себя озонолиз алкенов при 0°С в протонодонорных растворителях (метиловый и изопропиловый спирты, а также уксусная кислота в смеси с метиленхлоридом) и восстановление образующихся пероксидов тозилгидразидом (схема 2.28).

Схема 2.28

В зависимости от исходного алкена и используемого растворителя тозилгидразоны получаются с выходами от 40 до 86%. Следует отметить, что при проведении реакции в смеси AcOH-CH₂Cl₂ наряду с тозилгидразонами образуются, в зависимости от субстрата, соответствующие карбоновые кислоты **68**, **73**, **73** и **75** (таблица 2.1) [158-160].

Таблица 2.1 – Условия и результаты исследований реакций озонолиза и последующего восстановления тозилгидразидом пероксидных продуктов озонолиза алкенов

_	Субстрат	Растворитель	Продукты реакции, выходы
			(%)
1a		МеОН	
	63		67 (76)
16	63	Pr ⁱ OH	67 (70)
1в	63	AcOH-CH ₂ Cl ₂	67 (42)
			68 (19)
2a	но	MeOH	
	64		69 (68)
б	64	Pr ⁱ OH	69 (82)
2в	64	AcOH-CH ₂ Cl ₂	НО ОН
			70 (80)
3a			
	21	МеОН	71 (70)
36	21	Pr ⁱ OH	71 (74)
3в	21	AcOH-CH ₂ Cl ₂	71 (86)
4 a		МеОН	NNHTs NNHTs NNHTs
	52		72 (85)

4б	52	Pr ⁱ OH	72 (77)
4в	52	AcOH-CH ₂ Cl ₂	73 (80)
5a	65	МеОН	74 (75)
56	65	Pr ⁱ OH	75 (72)
5в	65	AcOH-CH ₂ Cl ₂	74 (70) 75 (10)
6a	66	MeOH- <i>ų</i> -C ₆ H ₁₂	76 (69)
6в	66	AcOH-CH ₂ Cl ₂	76 (82)

Таблица 2.1 (продолжение)

Обобщение полученных экспериментальных данных позволяет утверждать, что разработан однореакторный озонолитический метод превращения алкенов в соответствующие тозил- 67, 69, 71 [159] и α,ω -дитозилгидразоны 72, 74, 76 [158, 160], заключающийся в последовательном окислении эквивалентным количеством озона в MeOH и PrⁱOH при 0°C и последующей обработке 3.5 экв. тозилгидразида. Образование двух C=N связей в соединениях 72, 74 и 76 подтверждается наличием дублетных сигналов при 156-157 м.д. (для фрагмента CH=N) и синглетных сигналов при 161-162 м.д. (для фрагмента C=N) в спектрах ЯМР ¹³С. Кроме того, подтверждением служит отсутствие в спектрах ЯМР ¹³С сигналов в области 200-210 м.д., характерных для атома C карбонильной группы. В то же время в системе AcOH-CH₂Cl₂ наряду с тозилгидразонами происходит образование соответствующих карбоновых кислот в смеси (опыты 1в, 5в) или в виде единственного продукта (опыты 2в, 4в), что, вероятно, обусловлено природой самого субстрата. Только для (*S*)-лимонена **66** в качестве единственного продукта зафиксирован дигидразон **76**.

Образование тозилгидразонов общей формулы 79 объясняется тозилгидразида с альдегидами 78 – продуктами конденсацией гидридного восстановления первоначально образующихся гидропероксидов 77. В системе растворителей AcOH-CH₂Cl₂, вероятно, наряду с восстановлением пероксидов 77 дегидратация с образованием смешанных проходит ИХ ангидридов **80**. гидролизующихся до соответствующих карбоновых кислот 81 (схема 2.29) [158-160].

Образование из диенового монотерпена (*S*)-лимонена **66** в системе AcOH-CH₂Cl₂ только α, ω -дитозилгидразона **76** можно объяснить нестандартным образованием в протонодонорных растворителях в качестве пероксидного продукта 1,2,4-триокосолана **82**, что было обнаружено ранее [161, 162]. Вероятно, в системе AcOH-CH₂Cl₂ образуется озонид **82**, который под действием тозилгидразида восстанавливается до кетоальдегида **83**, превращающегося далее в дитозилгидразон **76** (схема 2.30).

Схема 2.30

Таким образом, тозилгидразид эффективно восстанавливает пероксидные продукты озонолиза алкенов в протонодонорных растворителях в зависимости от природы тризамещенного циклоолефина и растворителя до моно- и дитозилгидразонов либо соответствующих кислот.

2.4.2. Однореакторный синтез фенилгидразонов из алкенов

Фенилгидразоны применяются в синтезе пиразолов [161, 162], индолов [165-167], пиранохинолинов [161]. К тому же, авторами [162] отмечается, что введение в биоактивные молекулы фенилгидразонного фрагмента приводит к появлению у них фармацевтической и пестицидной активности [168-171].

Ранее [92] было показано, что в метаноле при применении гидрохлорида 63 фенилгидразина пероксидных продуктов озонолиза нонена-1 для соответствующий ему фенилгидразон 84 образуется с выходом 26% в смеси с метилоктаноатом и диметоксиацеталем октаналя. В то же время на примере семикарбазида было показано, что соединения, содержащие C=N-N- группу, получаются при действии на пероксидные продукты озонолиза самого семикарбазида, а гидрохлорида [172]. Поэтому солянокислый не его фенилгидразин был применен в смеси (1:2) с AcONa.

Предлагаемый метод предполагает озонолиз алкеновых субстратов в метаноле (0 °C) и восстановление при комнатной температуре образующихся пероксидов 2÷3.5 экв. фенилгидразина, генерированного *in situ* из его гидрохлорида при действии избытка ацетата натрия. Дальнейшая конденсация

72
образующихся карбонильных групп с реагентом приводит к целевым фенилгидразонам (схема 2.31). Результаты экспериментов приведены в таблице (таблица 2.2) [173].

Схема 2.31

Таблица 2.2. – Условия и результаты исследований реакций озонолиза и последующего восстановления фенилгидразином пероксидных продуктов озонолиза алкенов

N⁰	Исходный алкен	Продукт	Выход, %
1*	63	NNH-Ph 84	80
2*	64	HO ₂ C N _{NH-Ph} 85	76
3*	21	MeO ₂ C N NH-Ph 86	74
4*	22	HOH ₂ C N _{NH-Ph} 87	73

Таблица 2.2. (продолжение)

Условия: 1. О₃, MeOH, 0°C; 2. NH₂NHPh · HCl/AcONa (1:2), 20°C;

* 2 экв. смеси (1:2) NH₂NHPh · HCl/AcONa по отношению к исходному алкену;

** 3.5 экв. смеси (1:2) NH₂NHPh \cdot HCl/AcONa по отношению к исходному алкену.

Таким образом, нами разработан однореакторный озонолитический метод получения моно- **84-87** и ди- **88-90** фенилгидразонов из алкенов, предполагающий озонолиз олефина в метаноле при 0 °C и последующую обработку *in situ* образующихся пероксидных продуктов избытком смеси (1:2) солянокислого фенилгидразина с ацетатом натрия.

2.4.3. Гидроксиламин в превращениях пероксидных продуктов озонолиза алкенов

Как уже было показано, применение NH₂OH·HCl в реакциях озонолизавосстановления в зависимости от используемого растворителя приводит к карбоновым кислотам [86, 87] или сложным эфирам [85, 90], образующимся как в индивидуальном виде, так и в смеси с оксимами либо нитрилами в результате превращений: альдегид \rightarrow альдоксим \rightarrow нитрил \rightarrow карбоновая кислота/сложный эфир. Целью нашего исследования стало изучение действия на пероксидные продукты озонолиза алкенов самого гидроксиламина, полученного *in situ* из его гидрохлорида.

Нами установлено, что обработка продуктов озонолиза нон-1-ена **63** в метаноле (0°C) 3.5-хкратным мольным избытком смеси (1:1.5) NH₂OH·HCl/AcONa приводит к образованию смеси (1.5:1) оксима **91** и эфира **92** (схема 2.32) [174].

Известно [1, 3], что стабилизация цвиттер-ионов в метаноле идет обычно за счет образования метоксигидропероксидов. Формирование в этих условиях оксима 91 логично объясняется восстановлением промежуточного пероксида 93 до альдегида 94, конденсация которого с гидроксиламином приводит к альдоксиму 91. Образование эфира 92, вероятно, можно объяснить чувствительностью гидроксипероксида 93 к рН среды и его дегидратацией в условиях образования ацетатного буфера (схема 2.33).

Схема 2.33

Наличие в молекуле субстрата заместителей несколько меняет процессы превращений пероксидных продуктов. Так, при действии NH₂OH на продукты озонолиза ундециленовой кислоты **64**, ее метилового эфира **21** и 10-ундеценола **22** проходит восстановление до соответствующих альдегидов, выделенных в виде смеси продуктов конденсации (оксимов **95-97**) и ацеталей **98-100** с преобладанием последних (схема 2.34) [174].

Схема 2.34

Известно, что наличие функциональных групп оказывает существенное влияние на строение промежуточных пероксидных и, как следствие, конечных продуктов реакции. Так, отмечается [175], что если в молекуле алкена присутствует протонодонорная группа, то она участвует в стабилизации цвиттериона. По-видимому, формирующиеся из алкенов **21, 22, 64** пероксиды менее подвержены дегидратации, поэтому в условиях реакционной среды они восстанавливаются до альдегидов, переводимых в последующих превращениях в оксимы **95-97** и ацетали **98-100**[174].

Ранее при использовании гидрохлорида гидроксиламина для обработки пероксидов, полученных озонолизом (–)-α-пинена 52 и (+)-3-карена 65 в метаноле, были выделены с хорошими выходами бифункциональные производные, содержащие сложноэфирную и кетоксимную группы [176]. При восстановлении пероксидов, полученных из монотерпенов 52, 65, 66 в тех же гидроксиламином были выделены оптически условиях, самим активные диоксимы 101-103 (схема 2.35) [174]. Структура соединений 101-103, имеющих одинаковую брутто-формулу, установлена методами спектроскопии ИК, ЯМР и масс-спектрометрии. Кето- и альдоксимные группы хорошо различимы в

спектрах ЯМР ¹³С, зарегистрированных в режиме JMOD: сигналы с химическим сдвигом 150-151 м.д. соответствуют атому углерода альдоксимной группы, тогда как сигналы кетоксимной группы смещены в слабое поле (157-158 м.д.).

Схема 2.35

Альдо- и кетоксимы являются ценными промежуточными продуктами синтетической органической химии, широко используются в химической промышленности [177], а традиционным способом их получения является оксимирование альдегидов и кетонов минеральными солями гидроксиламина (например, NH₂OH·HCl или NH₂OH·H₂SO₄) [178, 179]. В данном случае при действии на продукты озонирования гидроксиламином, генерируемым *in situ* из гидрохлорида, осуществляется однореакторная последовательность (окисление алкена озоном \rightarrow восстановление до карбонильного соединения гидроксиламином), что дает возможность прямого превращения алкенов в кето- и альдоксимы, исключая стадию получения и выделения карбонильного соединения.

Таким образом, показано, что при действии гидроксиламина на пероксидные продукты озонолиза линейных и циклических алкенов преимущественно происходит их восстановление до альдегидов/кетонов, выделенных, в зависимости от субстрата, в виде кето- и альдоксимов либо ацеталей.

ГЛАВА 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовалось оборудование ЦКП «Химия» УфИХ УфИЦ РАН. ИК спектры веществ снимали на приборе «Shimadzu IR Prestige-21» в КВг в диапазоне 400-4000 см⁻¹. Спектры ЯМР ¹Н и ¹³С регистрировали на спектрометре «Bruker AM-300» с рабочей частотой 300.13МГц (¹Н) и 75.47 МГц (¹³С) и «Bruker Avance III 500 MHz» с рабочей частотой 500.13 МГц (¹Н), 125.73 МГц (¹³С). Растворитель – CDCl₃, внутренний стандарт – сигнал растворителя. Химические сдвиги сигналов приведены в шкале δ, в миллионных долях (м.д.). Спектры ЯМР ¹³С регистрировали в режимах с широкополосной развязкой от протонов и JMOD. Отнесение сигналов спектров ЯМР и определение величин КССВ проводили, используя методы двойного резонанса и двумерной корреляционной спектроскопии COSY (H-H), COSY (C-H), HSQC, HMBC И NOESY-2D (H-H). Масс-спектры ионизации электрораспылением (ИЭР, ESI) и химической ионизации при атмосферном давлении (ХИАД, APCI) были получены на квадрупольном жидкостном хроматомасс-спектрометре LCMS-2010 EV (Shimadzu, шприцевой ввод образца, элюент ацетонитрил/вода в соотношении 95/5, скорость потока 0.1 мл/мин) в режиме регистрации положительных и отрицательных ионов при потенциале капилляра 4.5 и -3.5 кВ. Температура интерфейса ХИАД 250 °С. Температура нагревателя 200 °С, температура испарителя 230 °С. Скорость потока небулизирующего (распыляющего) газа (азот) 1.5 и 2.5 л/мин соответственно для ИЭР и ХИАД. ГЖХ выполняли на приборах «Chrom-5» [длина колонки 1.2 м, неподвижная фаза - силикон SE-30 (5%) на Chromaton N-AW-DMCS (0.16-0.20 мм), рабочая температура 50-300°С], «Сhrom-41» [длина колонки 2.4 м, неподвижная фаза – PEG-6000, рабочая температура 50-200°С], «Shimadzu GC-2014» [на HP-Innowax (30m x 0.25mm x 0.25µm) (Agilent Technologies, США, температурный режим 50-240°C], [Ha DB-5 MS (30m x 0.25mm x 0.25µm) (Agilent Technologies, CIIIA, температурный режим 80-280°С], газ-носитель – гелий. Контроль ТСХ – на SiO₂ марки Sorbfil (Россия). Для колоночной хроматографии применяли SiO₂ (70-230) марки «Lancaster» (Великобритания). Оптическое вращение измерено на поляриметре «Perkin-Elmer-241-MC». Данные элементного анализа всех соединений соответствовали вычисленным. Производительность озонатора – 40 ммоль O₃/ч.

3.1.1. Превращения пероксидных продуктов озонолиза олеиновой кислоты при действии гидрохлоридов гидроксиламина и семикарбазида

Через раствор 1.41 г (5.0 ммоль) олеиновой кислоты **1** в 25 мл абс. спирта или 20 мл абс. ТГФ или в 25 мл смеси (1:5) АсОН и CH₂Cl₂ при 0°C барботировали озоно-кислородную смесь до поглощения 5.5 ммоль озона. Реакционную смесь продували аргоном. Далее обрабатывали двумя способами.

а) Добавляли (0°С) при перемешивании 1.20 г (17.3 ммоль) NH₂OH·HCl, перемешивали при комнатной температуре до исчезновения пероксидов (контроль – йодкрахмальная проба). Отгоняли растворитель, остаток растворяли в CHCl₃ (50 мл), промывали H₂O (2 × 15 мл), сушили Na₂SO₄ и упаривали.

б) Добавляли (0°С) при перемешивании 1.90 г (17.0 ммоль) NH₂C(O)NHNH₂·HCl, перемешивали при комнатной температуре до исчезновения пероксидов (контроль – йодкрахмальная проба). Отгоняли растворитель, остаток растворяли в CHCl₃ (50 мл), промывали H₂O (2 × 15 мл), сушили Na₂SO₄ и упаривали.

Озонолиз в метаноле. По методу а после хроматографирования остатка (1.89 г) (SiO₂, петролейный эфир – метил-*трет*-бутиловый эфир, 2:1) получили 0.46 г (53%) метилового эфира нонановой кислоты 2, 0.28 г (36%) нонаналь оксима 3, 0.77 г (71%) диметилового эфира 1,9-нонандиовой кислоты 4 и 0.18 г (18%) метил 9-гидроксииминононаноата 5.

По методу **б** получили после хроматографирования остатка (1.85 г) (SiO₂, петролейный эфир-метил-*трет*-бутиловый эфир, 2:1) получили 0.61 г (71%)

метилового эфира нонановой кислоты **2**, 0.13 г (14%) диметоксинонана **6**, 0.76 г (70%) диметилового эфира 1,9-нонандиовой кислоты **4** и 0.16 г (13%) метил 9,9-диметоксиноноата **7**.

Метиловый эфир нонановой кислоты 2.

 R_f 0.59 (петролейный эфир–метил-*трет*-бутиловый эфир, 2:1). ИК, ЯМР ¹Н и ¹³С спектры идентичны описанным ранее [90], [180].

Нонаналь оксим 3.

R_f 0.26 (петролейный эфир–метил-*трет*-бутиловый эфир, 2:1), т. пл. 63–64°С, ср. 63.5°С [116]. ИК спектр, v, см⁻¹: 3335 (NOH), 1660 (CH=N). Спектр ЯМР ¹Н, δ, м.д.: 0.87 т (3H, CH₃, *J* 5.7 Гц), 1.24–1.31 м (2H, C⁸H₂), 1.48–1.61 м

(10H, C³H₂-C⁷H₂), 2.20-2.35 м (2H, C²H₂),7.27 с (1H, CH), 7.40 уш.с (1H, OH). Спектр ЯМР ¹³С, δ, м.д.: 14.12 к (CH₃), 22.69 т (C⁸H₂), 24.89 т (C²H₂), 25.93, 26.46, 29.19, 29.47, 31.74 все т (C³H₂-C⁷H₂), 152.15 д (C¹H).

Диметиловый эфир 1,9-нонандиовой кислоты 4.

 R_f 0.45 (петролейный эфир-метил-*трет*-бутиловый эфир, 2:1). ИК, ЯМР ¹Н и ¹³С спектры идентичны описанным ранее [180].

Метил 9-гидроксииминононаноат 5.

R_f 0.24 (петролейный эфир–метил-*трет*-бутиловый эфир, 2:1). ИК спектр, ν, см⁻¹: 3335 (NOH), 1734 (CO₂Me), 1662 (CH=N). Спектр ЯМР ¹H, δ, м.д.: 1.48–1.61 м (10H, C³H₂–C⁷H₂),2.20–2.35 м (2H, C²H₂), 2.32 т (2H, C⁸H₂, *J* 7.4 Гц), 3.65 с (3H, OCH₃), 7.27 с (1H, CH), 7.40 с (1H, OH). Спектр ЯМР ¹³С, δ, м.д.: 24.99 т (C²H₂), 26.25, 26.58, 28.95, 29.30, 29.72 все т (C³H₂–C⁷H₂), 34.08 т (C⁸H₂), 51.52 к (OCH₃), 152.31 д (CNOH), 174.36 с (<u>C</u>O₂CH₃).

1,1-Диметоксинонан 6.

 R_f 0.62 (петролейный эфир-метил-*трет*-бутиловый эфир, 2:1). ЯМР ¹Н спектр идентичен описанному ранее [181].

Метил 9,9-диметоксиноноат 7.

 R_f 0.47 (петролейный эфир-метил-*трет*-бутиловый эфир, 2:1). ИК, ЯМР ¹Н и ¹³С спектры идентичны описанным ранее [182].

Озонолиз в изопропаноле. По методу **а** после хроматографирования остатка (1.88 г) (SiO₂, петролейный эфир–метил-*трет*-бутиловый эфир, 2:1) получили 0.52 г (52%) изопропилового эфира нонановой кислоты **8**, 0.24 г (35%) нонаннитрила **9**, 0.79 г (69%) моноизопропилового эфира 1,9-нонандиовой кислоты **10** и 0.14 г (17%) нитрилокислоты **11**.

По методу **б** после хроматографирования остатка (2.17 г) (SiO₂, петролейный эфир–метил-*трет*-бутиловый эфир, 2:1) получили 0.76 г (76%) изопропилового эфира нонановой кислоты **8** и 0.87 г (77%) моноизопропилового эфира 1,9-нонандиовой кислоты **10**.

Изопропиловый эфир нонановой кислоты 8.

R_f 0.60 (петролейный эфир–метил-*трет*-бутиловый эфир, 2:1). ИК спектр, v, см⁻¹: 1729 (С=О), 1181-1250 (С–О–С). Спектры ЯМР ¹Н и ¹³С идентичны описанным ранее [113].

Нонаннитрил 9.

 R_f 0.25 (петролейный эфир-метил-*трет*-бутиловый эфир, 2:1). Спектры ИК, ЯМР ¹Н и ¹³С идентичны описанным ранее [90].

Моноизопропиловый эфир 1,9-нонандиовой кислоты 10.

R_f 0.19 (петролейный эфир-метил-*трет*-бутиловый эфир,
2:1). ИК спектр, ν, см⁻¹: 3200 (ОН), 1730 (С=О для эфира),
1709 (С=О для кислоты), 1082-1216 (С-О-С). Спектр ЯМР
¹H, δ, м.д.: 1.22 д (6H, CH(CH₃)₂, *J* 6.2 Гц), 1.26–1.66 м (10H,

 $C^{3}H_{2}-C^{7}H_{2}$), 2.24 т (2H, $C^{2}H_{2}$, *J* 7.3 Гц), 2.32 т (2H, $C^{8}H_{2}$, *J* 6.6 Гц), 4.99 септ (1H, C<u>H</u>(CH₃)₂, *J* 6.4 Гц), 9.80 с (1H, OH). Спектр ЯМР ¹³С, δ , м.д.: 21.78 к (CH(<u>C</u>H₃)₂), 24.67, 24.88, 28.85, 29.06, 29.63 все т ($C^{3}H_{2}-C^{7}H_{2}$), 34.07 и 34.58 оба т ($C^{2}H_{2}$, $C^{8}H_{2}$), 67.33 д (<u>C</u>H(CH₃)₂), 173.38 с (C^{1}), 178.60 с (C^{9}).

8-Цианооктановая кислота 11.

 R_f 0.19 (петролейный эфир-метил-*трет*-бутиловый эфир, 2:1). ИК и ЯМР ¹Н спектры идентичны описанным ранее [183].

Озонолиз в смеси AcOH-CH₂Cl₂. По методу **а** после хроматографирования остатка (1.62 г) (петролейный эфир–метил-*трет*-бутиловый эфир, 2:1) получили 0.36 г (46%) нонановой кислоты **12**, 0.36 г (45%) нонаналь оксима **3**, 0.61 г (65%) азелаиновой кислоты **13** и 0.25 г (26%) оксимокислоты **14**.

По методу **б** после хроматографирования остатка (1.86 г) (SiO₂, петролейный эфир–метил-*трет*-бутиловый эфир, 2:1) получили 0.60 г (75%) нонановой кислоты **12** и 0.64 г (74%) 1,9-нонандиовой кислоты **13**.

Нонановая кислота 12.

ИК, ЯМР ¹H и ¹³C спектры идентичны описанным ранее [180].

1,9-Нонандиовая кислота 13.

ИК, ЯМР ¹H и ¹³C спектры идентичны описанным ранее [180].

Озонолиз в тетрагидрофуране. По методу а после хроматографирования остатка (1.48 г) (SiO₂, петролейный эфир–метил-*трет*-бутиловый эфир, 2:1) получили 0.26 г (33%) нонановой кислоты **12**, 0.26 г (33%) нонаналь оксима **3**, 0.32 г (34%) 1,9-нонандиовой кислоты **13** и 0.31 г (33%) оксимокислоты **14**.

По методу **б** после хроматографирования остатка (1.92 г) (SiO₂, петролейный эфир-метил-*трет*-бутиловый эфир, 2:1) получили 0.57 г (73%) нонановой кислоты **12** и 0.66 г (70%) 1,9-нонандиовой кислоты **13**.

(9Е)-9-(Гидроксиимино)нонановая кислота 14.

ИК, ЯМР ¹Н и ¹³С спектры идентичны описанным ранее [111, 112].

3.1.2. Однореакторный озонолитический синтез ациклический α,ωбифункциональных соединений из метилового эфира 10-ундеценовой кислоты и 10-ундецен-1-ола

Через раствор 0.99 г (5.0 ммоль) метилового эфира 10-ундеценовой кислоты 21 или 0.85 г (5.0 ммоль) ундец-10-ен-1-ола 22 в 20 мл абс. спирта (МеОН или PrⁱOH) или 20 мл абс. ТГФ или смеси 20 мл CH₂Cl₂ и 3 мл AcOH при 0°C барботировали озоно-кислородную смесь до поглощения 6 ммоль озона. Реакционную смесь продували аргоном. Далее обрабатывали двумя способами.

а) Добавляли (0°С) при перемешивании 1.21 г (17.5 ммоль) NH₂OH·HCl перемешивали при комнатной температуре до исчезновения пероксидов (контроль йод-крахмальная проба), отгоняли растворитель, остаток растворяли в CHCl₃ (50 мл), промывали насыщенным раствором NaCl (4 × 25 мл), сушили Na₂SO₄ и упаривали.

б) Добавляли (0°С) при перемешивании 1.95 г (17.5 ммоль) NH₂C(O)NHNH₂·HCl перемешивали при комнатной температуре до исчезновения пероксидов (контроль йод-крахмальная проба), отгоняли растворитель, остаток растворяли в CHCl₃ (50 мл), промывали насыщенным раствором NaCl (4 × 25 мл), сушили Na₂SO₄ и упаривали.

Озонолиз метилового эфира 10-ундеценовой кислоты 21 в метаноле. Получили диметиловый эфир 1,10-декандиовой кислоты 23: 1.05 г (91%) (по методу а) и 1.09 г (95%) (по методу б).

Диметиловый эфир 1,10-декандиовой кислоты 23.

 $R_f 0.41$ [петролейный эфир–метил-*трет*-бутиловый эфир, 2:1]. ИК спектр идентичен полученному ранее [184]. Спектры ЯМР ¹Н и ¹³С идентичны описанным ранее [185].

Озонолиз метилового эфира 10-ундеценовой кислоты 21 в изопропаноле. По методу а после хроматографирования остатка (1.20 г) [SiO₂, петролейный эфир–метил-*трет*-бутиловый эфир, 2:1] получили 0.26 г (20%) диэфира 24, 0.44 г (40%) моноэфира 25 и 0.30 г (30%) нитрилоэфира 26.

По методу б получили 0.97 г (75%) диэфира 24.

Метилизопропиловый эфир 1,10-декандиовой кислоты 24.

R_f 0.43 [петролейный эфир-метил-*трет*-бутиловый эфир, 2:1]. ИК (см⁻¹): 1741 и 1737 (С=О для сложных эфиров), 1174–1234 (С-О-С). ЯМР ¹Н, δ, м.д.: 1.10–1.40 м (8Н, 4СН₂), 1.22 д (6Н, 2СН₃), 1.45–1.70 м

(4H, C<u>H</u>₂CH₂COO), 2.15–2.45 м (4H, CH₂COO), 3.65 с (3H, COOCH₃), 4.85–5.01 м (1H, COOC<u>H</u>(CH₃)₂). ЯМР ¹³С, δ, м.д.: 21.40 (COOCH(<u>C</u>H₃)₂), 21.64, 22.87, 24.50, 25.21, 26.53, 28.66 (C³–C⁸), 34.23 и 33.60 (<u>C</u>H₂COO), 50.92 (COO<u>C</u>H₃), 67.47 (COO<u>C</u>H(CH₃)₂), 172.88 (<u>C</u>O₂Me), 173.76 (<u>C</u>O₂Pr^{*i*}).

9-Метоксикарбонилнонановая кислота 25.

 R_f 0.17 [петролейный эфир-метил-*трет*-бутиловый эфир, 2:1]. Спектры ЯМР ¹Н и ¹³С идентичны описанным ранее [186].

Метил 9-цианононаноат 26.

 R_f 0.28 [петролейный эфир-метил-*трет*-бутиловый эфир, 2:1]. Спектры ИК, ЯМР ¹Н и ¹³С идентичны описанным ранее [186].

Озонолиз метилового эфира 10-ундеценовой кислоты 21 в тетрагидрофуране. По методу а после хроматографирования остатка (1.29 г) (SiO₂, петролейный эфир-метил-*трет*-бутиловый эфир, 2:1) получили 0.83 г (82%) моноэфира кислоты 25 и 0.12 г (12%) оксимоэфира 28.

По методу **б** получили 0.90 г (84%) 9-метоксикарбонилнонановой кислоты **25**.

CO₂Me

ИК спектр (КВг, v, см⁻¹): 1737 (CO₂Me), 1647 (C=N). Спектр ЯМР ¹Н, δ, м.д.: 1.09–1.28 м (10Н, С⁴Н₂– С⁷Н₂),

1.50–1.62 м (4H, C³H₂, C⁸H₂), 12.20–2.35 м (4H, 2C^{2,9}H₂), 3.64 с (3H, CH₃), 7.26 т (C¹⁰H), 9.80 уш.с. (1H, OH). ЯМР ¹³С, δ, м.д.: 24.45, 28.60, 28.74, 29.38, 33.53, 33.51 (C³–C⁸). 24.90 (<u>C</u>H₂C=N), 33.57 (<u>C</u>H₂CO₂H), 50.99 (CH₃O), 151.13 (C=N), 173.96 (<u>C</u>O₂CH₃).

Озонолиз метилового эфира 10-ундеценовой кислоты 21 в смеси AcOH-CH₂Cl₂. По методу а после хроматографирования остатка (0.69 г) (SiO₂, петролейный эфир–метил-*трет*-бутиловый эфир, 2:1) получили 0.20 г (18%) моноэфира кислоты 25, 0.16 г (16%) оксимоэфира 28 и 0.13 г (13%) нитрилоэфира 26.

По методу б получили 0.71 г (67%) эфирокислоты 25.

Озонолиз ундец-10-ен-1-ола 22 в метаноле. Получили 0.91 г (91%) (по методу **a**) и 0.94 г (94%) (по методу **б**) гидроксиметилового эфира **29**.

Метил 10-гидроксидеканоат 29.

 R_f 0.30 [петролейный эфир–метил-*трет*-бутиловый эфир, 2:1]. Спектры ЯМР ¹Н и ¹³С идентичны описанным ранее [185].

Озонолиз ундец-10-ен-1-ола 22 в изопропаноле. По методу а после хроматографирования остатка (1.03 г) [SiO₂, петролейный эфир–метил-*трет*-бутиловый эфир, 2:1] получили 0.54 г (47%) гидроксиизопропилового эфира **30** и 0.34 г (40%) гидроксинитрила **31**.

По методу б получили 1.08 г (94%) гидроксиизопропилового эфира 30.

R_f 0.36 [петролейный эфир–метил-*трет*-бутиловый эфир,
2:1]. ИК спектр (КВг, v, см⁻¹): 3300 (ОН), 1741 и 1737 (С=О

H для сложных эфиров), 1174–1234 (С–О–С). ЯМР ¹Н, δ, м.д.:

1.22 д (6H, 2CH₃), 1.22–1.61 м (14H,7CH₂), 2.25–2.40 м (2H, C<u>H</u>₂COO), 3.40–3.58 м (2H, C<u>H</u>₂OH), 4.82–5.08 м (1H, C<u>H</u>(CH₃)₂), 5.41 уш.с (1H, OH). ЯМР ¹³С, δ, м.д.: 21.80 (CH(<u>C</u>H₃)₂), 22.34, 23.81, 24.59, 25.66, 26.73, 29.64 (C³–C⁸), 32.51 (<u>C</u>H₂CH₂OH), 33.68 (<u>C</u>H₂COO), 62.34 (<u>C</u>H₂OH), 68.47 (<u>C</u>H(CH₃)₂), 173.56 (<u>C</u>O₂Pr^{*i*}).

10-Гидроксидеканнитрил 31.

R_f 0.25 [петролейный эфир–метил-*трет*-бутиловый эфир,
2:1]. ИК спектр (КВг, ν, см⁻¹): 3300 (ОН), 2220 (СN).
Спектр ЯМР ¹H, δ, м.д.: 1.22–1.84 м (14H, C³H₂–C⁹H₂),
2.43 м (2H, C²H₂), 3.41 м (2H, C¹⁰H₂), 5.50 уш.с (1H, OH).

Спектр ЯМР ¹³С, δ, м.д.: 18.02 (С²), 25.26 (С³), 26.25 (С⁸), 28.41 (С⁷), 29.02 (С⁵), 29.42 (С⁶), 29.62 (С⁴), 34.40 (С⁹), 62.86 (С¹⁰), 119.12 (СN).

Озонолиз ундец-10-ен-1-ола 22 в смеси AcOH-CH₂Cl₂. По методу а после хроматографирования остатка (1.20 г) [SiO₂, петролейный эфир–метил-*трет*-бутиловый эфир, 2:1] получили 0.23 г (24%) гидроксикислоты **32** и 0.83 г (72%) ацетата гидроксидекановой кислоты **33**.

По методу **б** получили 0.20 г (21%) гидроксикислоты **32** и 0.87 г (76%) ацетата гидроксидекановой кислоты **33**.

10-Гидроксидекановая кислота 32.

 $R_f 0.10$ [петролейный эфир–метил-*трет*-бутиловый эфир, 3:1]. Спектры ЯМР ¹Н и ¹³С идентичны описанным ранее [187].

10-Ацетоксидекановая кислота 33.

 R_f 0.20 [петролейный эфир-метил-*трет*-бутиловый эфир, 3:1]. Спектры ЯМР ¹Н и ¹³С идентичны описанным ранее [143].

3.2.1. Превращения пероксидных продуктов озонолиза циклооктена под действием гидрохлоридов гидроксиламина и семикарбазида

Через раствор 1.10 г (10.0 ммоль) циклооктена **34** в 25 мл соответствующего спирта (либо смеси 30 мл спирта и 1.7 мл H₂O) или 25 мл ТГФ (либо смеси 34 мл ТГФ и 1.8 мл H₂O) или смеси 20 мл CH₂Cl₂ и 5.7 мл AcOH (либо смеси 20 мл CH₂Cl₂, 5.7 мл AcOH и 1.5 мл H₂O) при 0°C барботировали озоно-кислородную смесь до поглощения 10 ммоль O₃. Реакционную смесь продували аргоном. Далее обрабатывали двумя способами.

а) Добавляли (0°С) при перемешивании 2,43 г (35.0 ммоль) NH₂OH·HCl, перемешивали при комнатной температуре до исчезновения пероксидов (контроль йод-крахмальная проба), отгоняли растворитель, остаток растворяли в CHCl₃ (150 мл), промывали насыщенным раствором NaCl (4 × 15 мл), сушили Na₂SO₄ и упаривали.

б) Добавляли (0°С) при перемешивании 3.90 г (35.0 ммоль) NH₂C(O)NHNH₂·HCl, перемешивали при комнатной температуре до исчезновения пероксидов (контроль йод-крахмальная проба), отгоняли растворитель, остаток растворяли в CHCl₃ (150 мл), промывали насыщенным раствором NaCl (4 × 15 мл), сушили Na₂SO₄ и упаривали.

Озонолиз в метаноле. По методу а после хроматографирования остатка (1.20 г) (SiO₂, гексан-метил-*трет*-бутиловый эфир, 2:1) получили 0.5 г (24%) диметилового эфира октандиовой кислоты **36** и 0.5 г (30%) метилового эфира 8-циангептановой кислоты **37**.

По методу **б** после хроматографирования остатка (1.98 г) (SiO₂, гексанметил-*трет*-бутиловый эфир, 2:1) получили 1.03 г (44%) полного ацеталя **38**, 0.51 г (25%) диэфира **36** и 0.26 г (13%) эфирополуацеталя **39**.

Диметиловый эфир октандиовой кислоты 36.

R_f 0.47 (гексан–метил-*трет*-бутиловый эфир, 2:1). ИК и ЯМР спектры идентичны описанным ранее [188]

Метиловый эфир 7-циангептановой кислоты 37.

R_f 0.49 (гексан-метил-*трет*-бутиловый эфир, 2:1). Массспектр, m/z (I_{отн.}, %): 169 (0.4) [M]⁺, 138 (57), 110 31), 109 (24), 97 (18), 96 (57), 83 (58), 82 (24), 74 (100), 69 (951), 68 (13), 55 (48), 54 (19), 41 (48), 40 (7). Параметры ИК и ЯМР

спектров идентичны описанным ранее [189].

1,1,8,8-Тетраметоксиоктан 38.

СH(OMe)₂ R_f 0.27 (гексан-метил-*трет*-бутиловый эфир, 2:1). ИК спектр (KBr), v, см⁻¹: 1080 (С-О-С), 2858 (ОСH₃). Спектр ЯМР ¹H, δ , м.д.: 1.22-1.44 м (8H, C³H₂÷C⁶H₂), 1.52-1.70 м (4H, C⁷H₂, C²H₂), 3.48 с (12H, 4OCH₃), 4.24 т (2H, ³J 5.4 Гц,

C¹H, C⁸H). Спектр ЯМР ¹³C, δ, м.д.: 24.46 т (C³H₂, C⁶H₂), 28.47 т (C⁴H₂, C⁵H₂), 33.70 т (C²H₂, C⁷H₂), 52.04 к (40CH₃), 104.24 д (C¹H, C⁸H₂).

Метил 8-гидрокси-8-метоксиоктанат 39.

R_f 0.16 (гексан–метил-*трет*-бутиловый эфир, 2:1). ИК и ЯМР спектры идентичны описанным ранее [190].

Озонолиз в системе метанол-вода. По методу а после хроматографирования (SiO₂, гексан–метил-*трет*-бутиловый эфир, 2:1) остатка (1.25 г) получили 0.56 г (30%) оксимоэфира 44, 0.32 г (15%) диэфира (3) и 0.15 г (9%) метил 8,8-диметоксиоктаноата 45.

По методу **б** после хроматографирования остатка (1.34 г) (SiO₂, гексанметил-*трет*-бутиловый эфир, 2:1) получили 1.00 г (50%) диэфира **36** и 0.10 г (5%) метил 8,8-диметоксиоктаноата **45**.

Метил 8-(гидроксиимино)октаноат 44.

7.40 т (1H, C⁸H), 9.75 с (OH). Спектр ЯМР ¹³С, δ , м.д.: 24.70 т (C³H₂), 26.31 т (C⁶H₂), 28.20 т (C⁵H₂), 28.71 т (C⁴H₂), 28.95 т (C⁷H₂), 33.97 т (C²H₂), 51.50 к (COOCH₃), 151.97 д (C⁸H), 174.25 с (COOCH₃).

Метил 8,8-диметоксиоктаноат 45.

СО₂Ме $R_f 0.52$ (гексан-метил-*трет*-бутиловый эфир, 2:1). ИК спектр (КВг), v, см⁻¹: 1080 (С-О-С), 1735 (СО₂Ме). Спектр ЯМР ¹H, δ , м.д.: 1.22-1.44 м (8H, C³H₂÷C⁶H₂), 1.52-1.70 м (4H, C²H₂, C⁷H₂), 2.25 м (2H, C<u>H</u>₂COOCH₃),

3.3 с (6H, 2OCH₃,), 3.65 с (3H, COOCH₃), 4.24 т (1H, C⁸H). Спектр ЯМР ¹³С, δ, м.д.: 24.70 т (C³H₂, C⁶H₂), 28.73 т (C⁴H₂), 29.06 т (C⁵H₂), 32.40 т (C⁷H₂), 33.96 т (C²H₂), 51.49 к (COO<u>C</u>H₃), 52.60 к (4OCH₃), 104.46 д (C⁸H), 174.20 с (<u>C</u>OOCH₃).

Озонолиз в изопропаноле. По методу а получили 1.56 г смеси продуктов, после хроматографирования которой (SiO₂, гексан–метил-*трет*-бутиловый эфир, 20:1→1:1, затем CHCl₃) выделили 0.73 г (37%) нитрилоэфира 46, 0.41 г (16%) диэфира 47, 0.19 г (14%) динитрила 48.

По методу б получили 1.16 г (45%) диэфира 47.

Изопропил 7-цианогептаноат 46.

C⁷H₂, *J* 7.0 Гц), 4.92 септ (1H, C<u>H</u>(CH₃)₂, *J* 6.2 Гц). Спектр ЯМР ¹³C, δ, м.д.: 16.98 т (C⁷H₂), 21.77 к (2CH₃), 24.55 т (C³H₂), 25.11 т (C⁶H₂), 28.12 т (C⁴H₂), 28.23 (C⁵H₂), 34.37 т (C²H₂), 67.44 д (<u>C</u>H(CH₃)₂), 119.44 с (CN), 173.18 с (C=O).

Диизопропиловый эфир октандиовой кислоты 47.

R_f 0.75 (гексан–метил-*трет*-бутиловый эфир, 2:1). ИК спектр (КВг), ν, см⁻¹: 1734 (С=О). Спектр ЯМР ¹H, δ, м.д.: 1.19 д (12H, 4CH₃, *J* 6.3 Гц), 1.27-1.46 м (4H, C⁴H₂, C⁵H₂), 1.50-1.68 м (4H, C³H₂, C⁶H₂), 2.26 т (4H, C²H₂, C⁷H₂, *J* 7.4

Гц), 4.98 септ (2H, C<u>H</u>(CH₃)₂, *J* 6.3 Гц). Спектр ЯМР ¹³C, δ , м.д.: 21.76 к (4CH₃), 24.75 т (C³H₂, C⁶H₂), 28.65 т (C⁴H₂, C⁵H₂), 34.52 т (C²H₂, C⁷H₂), 67.29 д (2<u>C</u>H(CH₃)₂), 173.18 с (2C=O).

Октан динитрил 48.

 R_f 0.25 (гексан-метил-*трет*-бутиловый эфир, 2:1). ИК спектр (KBr), ν , см⁻¹: 2245 (CN). Спектры ЯМР ¹Н идентичны описанным ранее [191]. Спектр ЯМР ¹³С, δ , м.д.: 16.98 т (C²H₂, C⁷H₂), 25.02 т (C³H₂, C⁶H₂), 27.78 т

 $(C^{4}H_{2}, C^{5}H_{2}), 119.65 c (2CN).$

Озонолиз в системе изопропаноле-вода. По методу **а** после хроматографирования остатка (0.78 г) (SiO₂, гексан–метил-*трет*-бутиловый эфир,

20:1→1:1) и получили 0.18 г (13%) суберонитрила **48**, 0.26 г (10%) диизопропил суберата **47** и 0.15 г (9%) октандиаль диоксима **49**.

По методу **б** после хроматографирования остатка (0.75 г) (SiO₂, гексан– метил-*трет*-бутиловый эфир, 20:1→1:1) получили 0.52 г (20%) диизопропил суберата **47** и 0.05 г (3%) октандиовой кислоты **35**.

Октандиаль диоксим 49.

NOH R_f 0.56 (гексан-метил-*трет*-бутиловый эфир, 2:1). ИКNOHспектр (КВг), v, см⁻¹: 1629 (С=N), 3321 (ОН). Спектр ЯМР¹H, δ , м.д.: 1.23-1.33 м (4H, C⁴H₂, C⁵H₂), 1.47-1.49 м (4H,C³H₂, C⁶H₂), 2.28 дт (4H, C²H₂, C⁷H₂ J 6.7 Гц, 6.9 Гц), 6.80 т

(2H, C<u>H</u>=NOH, *J* 6.7 Гц), 9.80 с (2H, 2OH). Спектр ЯМР ¹³С, δ, м.д.: 25.07 т (С⁴H₂, С⁵H₂), 28.03 т (С³H₂, С⁶H₂), 29.22 т (С²H₂, С⁷H₂), 151.29 д (2С=NOH).

Октандиовая кислота 35.

R_f 0.21 (гексан–метил-*трет*-бутиловый эфир, 2:1). ИК спектр (КВг), ν, см⁻¹: 1712 (С=О), 3242 (ОН). Спектр ЯМР ¹H, δ, м.д.: 1.31-1.38 м (4H, C⁴H₂, C⁵H₂), 1.50-1.70 м (4H, C³H₂, C⁶H₂), 2.49 т (4H, C²H₂, C⁷H₂ *J* 6.3). Спектр ЯМР¹³С,

δ, м.д.: 24.56 т (C⁴H₂, C⁵H₂), 29.43 т (C³H₂, C⁶H₂), 33.82 т (C²H₂,C⁷H₂), 177.06 с (2COOH).

Озонолиз в тетрагидрофуране. По методу **а** получили 1.21 г (70%) октандиовой кислоты **35**.

По методу б получили 0.88 г (50%) пробковой кислоты 35.

Озонолиз в сиситеме ТГФ-вода. По методу а после хроматографирования остатка (0.86 г) (SiO₂, гексан–метил-*трет*-бутиловый эфир, 20:1 \rightarrow 1:1) получили 0.41 г (30%) суберонитрила **48**, 0.19 г (12%) нитрилокислоты **51** и 0.09 г (5%) дикислоты **35**.

По методу б получили 0.34 г (20%) пробковой кислоты 35.

7-Цианогептановая кислота 51.

 $C^{6}H_{2}$), 2.25 т (2H, $C^{2}H_{2}$), 2.35 т ($C^{7}H_{2}$). Спектр ЯМР ¹³С, δ , м.д.: 16.82 т ($C^{7}H_{2}$), 29.05 т ($C^{3}H_{2}$), 28.08 т ($C^{4}H_{2}$), 28.26 т ($C^{5}H_{2}$), 25.45 т ($C^{6}H_{2}$), 33.51 т ($C^{2}H_{2}$), 119.38 с (CN), 177.52 с (СООН).

Озонолиз в системе CH₂Cl₂-AcOH. По методу **а** после хроматографирования остатка (0.65 г) получили 0.28 г (16%) дикислоты **35**, 0.15 г (9%) диоксима **48** и 0.08 г (6%) динитрила **49**.

По методу б получили 0.17 г (10%) пробковой кислоты 35.

Озонолиз в системе CH₂Cl₂-AcOH-H₂O. По методу **а** после хроматографирования остатка (0.60 г) получили 0.24 г (14%) дикислоты **35**, 0.12 г (7%) диоксима **49** и 0.12 г (9%) динитрила **48**.

По методу б получили 0.16 г (9%) пробковой кислоты 35.

3.3.1. Превращения пероксидных продуктов озонолиза (–)-α-пинена при действии солянокислого и сернокислого гидразинов

Через раствор 1.00 г (7.35 ммоль) олефина **52** в 25 мл МеОН или Pr⁻ⁱOH или смеси 4.2 мл AcOH и 20 мл CH₂Cl₂ при 0°C барботировали озоно-кислородную смесь до поглощения 8 ммоль O₃. Реакционную массу продували аргоном, при перемешивании прибавляли при той же температуре 25.7 ммоль восстановителя (3.34 г NH₂NH₂·H₂SO₄ или 1.76 г NH₂NH₂·HCl), перемешивали при комнатной температуре до исчезновения пероксидов (контроль йод-крахмальная проба), отгоняли растворитель, остаток растворяли в CHCl₃ (150 мл), промывали водой (4 × 15 мл), сушили Na₂SO₄ и упаривали.

Обработка пероксидных продуктов озонолиза (–)-α-пинена 52 NH₂NH₂·HCl

Озонолиз в метаноле. После хроматографирования остатка (1.6 г) (SiO₂, гексан, гексан–МТБЭ, 10:1 \rightarrow 1:1) получили 0.72 г (50%) кетоэфира **55** и 0.57 г (36%) кетоацеталя **56**.

Метил [(1R,3R)-3-ацетил-2,2-диметилциклобутил]ацетат 55.

 $R_f 0.44$, $[\alpha]_D^{23}$ -24.8° (с 0.73; CH₂Cl₂). ИК и ЯМР спектры идентичны описанным ранее [149].

1-[(1R,3R)-3-(2,2-Диметоксиэтил)-2,2-диметилциклобутил]этанон 56.

 R_f 0.40. ИК и ЯМР спектры идентичны описанным ранее [172].

Озонолиз в изопропаноле. После хроматографирования остатка (1.3 г) (SiO₂, гексан–МТБЭ, 10:1→1:1) получили 1.20 г (73%) кетоизопропилового эфира 57.

Изопропил[(15,35)-3-ацетил-2,2-диметилциклобутил]ацетат 57.

R_f 0.62, ИК и ЯМР спектры идентичны описанным ранее [85]

Озонолиз в смеси AcOH-CH₂Cl₂. После хроматографирования остатка (1.30 г) (SiO₂, гексан–МТБЭ, 10:1 \rightarrow 1:1) получили 1.19 г (88%) кетокислоты **58**.

[(1*R*,3*R*)-3-Ацетил-2,2-диметилциклобутил]уксусная кислота 58.

 R_f 0.21 (гексан–МТБЭ, 4:1). [α]_D²⁰ -40.0° (CH₂Cl₂, 0.8164). ИК и ЯМР спектры идентичны описанным ранее [86].

Обработка пероксидных продуктов озонолиза (-)-α-пинена 52 NH₂NH₂· H₂SO₄

Озонолиз в метаноле. После хроматографирования остатка (1.40 г) (SiO₂, гексан, гексан–МТБЭ, 10:1→1:1) получили 1.22 г (84%) кетоэфира **55**.

Озонолиз в изопропаноле. После хроматографирования остатка (1.70 г) (SiO₂, гексан–МТБЭ, 10:1→1:1) получили 0.90 г (56%) кетоизопропилового эфира 57, 0.13 г (20%) кетокислоты 58, 0.11 г (13%) полуацеталя 59.

1-[(1*R*,3*R*)-3-(2-Гидрокси-2-изопропоксиэтил)-2,2-диметилциклобутил]-этанон 59.

R_f 0.37, ИК спектр (КВг, ν, см⁻¹): 3392 (ОН), 1110 (С−О−С). Спектр ЯМР ¹Н 500 МГц, CDCl₃, δ, м.д.,:
0.82 с, (3H, С^{цис}Н₃), 1.23 д (6H, 2CH₃), 1.32 с (3H, С^{транс}Н₃), 1.83–2.05 м (1H, С⁴H), 2.08 с (3H,

СН₃С=О), 2.15 м (2H, С<u>Н</u>₂СНОН), 2.25–2.35 м, (1H, С¹H), 2.90 м (1H, С³H), 4.02 м (1H, С<u>Н</u>(СН₃)₂), 4.9 м, (1H, С<u>Н</u>ОН), 5.70 уш.с, (1H, OH). Спектр ЯМР ¹³С, δ, м.д.: 22.12 к (<u>С^{4µuc}H₃</u>), 23.23 к (2CH₃), 24.77 к (<u>С^{mpaнc}H₃</u>), 29.98 т (С⁴), 30.16 к,(<u>С</u>H₃C=O), 38.09 т ((<u>С</u>H₂CHOH), 38.37 д (С³), 43.16 с (CH₃<u>C</u>²CH₃), 53.79 д (С¹), 67.54 д (<u>С</u>H(CH₃)₂), 103.45 д (<u>С</u>HOH), 208.03 с (С=O).

Озонолиз в смеси AcOH-CH₂Cl₂. После хроматографирования остатка (1.35 г) (SiO₂, гексан–МТБЭ, 10:1→1:1) получили 1.13 г (84%) кетокислоты **58**.

3.4.1. Превращения пероксидных продуктов озонолиза алкенов при действии тозилгидразида

Через раствор 10.0 ммоль алкена **21, 52, 63-66** в 25 мл абс. спирта (MeOH или *i*-PrOH) или смеси 25 мл CH₂Cl₂ и 5.7 мл AcOH при 0°C барботировали озонокислородную смесь до поглощения 10 ммоль озона. Реакционную смесь продували аргоном. Добавляли (0°C) 6.51 г (35.0 ммоль) TsNHNH₂, перемешивали при комнатной температуре до исчезновения пероксидов (контроль йодкрахмальная проба), отгоняли растворитель, остаток растворяли в CHCl₃ (150 мл), промывали насыщенным раствором NaCl (4 × 35 мл), сушили Na₂SO₄ и упаривали.

Озонолиз нон-1-ена 63 в метаноле. После хроматографирования на SiO₂ 2.60 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1→1:1, MeOH) получили 2.25 г (76%) гидразона 67.

4-Метил-*N*'-октилиденбензенсульфоногидразид 67.

R_f 0.60 (петролейный эфир–метил-*трет*-бутиловый эфир,
1:2). ИК спектр, ν, KBr, см⁻¹: 3215 (NH). ЯМР ¹H, δ, м.д.:
1.00–1.80 м(13H: 5CH₂, CH₃, C³H₂–C⁸H₃), 2.40 с (3H, CH₃),
2.75–2.95 м (2H, C²H₂), 7.10 м (CH=N), 7.45 д (2H, C_{аром}H)

, 7.70 д (2H, C_{аром}H), 7.95 уш.с (NH). ЯМР ¹³С, δ, м.д.: 13.75 к (C⁸H₃), 21.06 к (CH₃), 22.26 т (C⁷H₂), 25.35 т (C³H₂), 28.57 т (C⁴H₂), 28.74 т (C⁵H₂), 29.31 т (C⁶H₂), 33.75 т (C²H₂), 128.51 д (2C_{аром}H), 129.41 д (2C_{аром}H), 136.11 с (C–S), 144.62 с (<u>C</u>_{аром}CH₃), 165.28 д (C¹H=N).

Озонолиз нон-1-ена 34 в изопропаноле. После хроматографирования на SiO₂ 2.40 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1→1:1, МеОН) получили 2.01 г (70%) гидразона 67.

Озонолиз в нон-1-ена 34 в смеси AcOH-CH₂Cl₂. После хроматографирования на SiO₂ 1.7 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1 \rightarrow 1:1, MeOH) получили 1.26 г (42%) гидразона 67 и 0.27 г (19%) кислоты 68.

Октановая кислота 48.

 R_f 0.25 (гексан-метил-*трет*-бутиловый эфир, 2:1). ИК и ЯМР ¹³С и ¹Н спектры идентичны описанным ранее [86, 192]

Озонолиз 10-ундеценовой кислоты 64 в метаноле. После хроматографирования на SiO₂ 2.75 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1 \rightarrow 1:1, MeOH) получили 2.40 г (68%) гидразона 69.

10{[(4-Метилфенил)сульфонил]гидразоно}декановая кислота 69.

R_f 0.25 (петролейный эфир–метил-*трет*-бутиловый эфир, 1:2). ИК спектр, ν, КВг, см⁻¹: 3250 (NH, COOH), 1709 (C=O). ЯМР ¹Н, δ, м.д.: 1.10–1.40 м (12H, 6CH₂), 1.45–1.60 м (2H, C<u>H₂</u>CH=N), 2.15–2.40 м (2H,

С<u>H</u>₂CO₂H), 2.40 с (3H, CH₃), 7.10 м (CH=N), 7.20 д (2H, 2C_{аром}H), 7.70 д (2H, C_{аром}H), 9.70–10.25 уш.с (NH,OH). ЯМР ¹³С, δ, м.д.: 21.28 к (CH₃), 23.63, 24.64, 24.90, 28.92, 28.97, 29.14 т (6CH₂), 33.98 т (<u>C</u>H₂CH=N), 34.62 т (<u>C</u>H₂CO₂), 128.62 д (2C_{аром}H), 129.54 д (2C_{аром}H), 136.39 д (CH=N), 142.07 с (C–S), 143.91 с (<u>C</u>_{аром}CH₃), 179.11 с (<u>C</u>O₂H).

Озонолиз 10-ундеценовой кислоты 64 в изопропаноле. После хроматографирования на SiO₂ 3.22 г реакционной смеси (петролейный эфир –

метил-*трет*-бутиловый эфир, 10:1→1:1, MeOH) получили 2.87 г (82%) гидразона **69**.

Озонолиз 10-ундеценовой кислоты 64 в смеси AcOH-CH₂Cl₂. После хроматографирования на SiO₂ 1.88 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1→1:1, MeOH) получили 1.62 г (80%) дикислоты **70**.

1,10-Декандиовая кислота 70.

*R*_f 0.35 (гексан-метил-*трет*-бутиловый эфир, 1:1), т. пл. 130-132°С. ИК спектр, v, см⁻¹: 3180, 1703 (СО₂Н). Спектры ЯМР ¹H и ¹³C идентичны описанным ранее [193].

Озонолиз метилового эфира 10-ундеценовой кислоты 21 в метаноле. После хроматографирования на SiO₂ 6.30 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1→1:1, МеОН) получили 2.57 г (70%) гидразона 71.

Метил-10-{[(4-метилфенил)сульфонил]гидразоно}деканоат 71.

(петролейный $R_f = 0.41$ эфир-метил-трет-бутиловый О-С), 3226 (NH). ЯМР ¹Н, б, м.д.: 1.10-1.40 м (12Н, 6CH₂), 1.45–1.60 м (2H, CH₂CH=N), 2.18–2.30 м, 2.35 с

(3H, CH₃), 3.50 с (3H, CO₂CH₃), 7.05 м (CH=N), 7.25 д (2H, C_{аром}H), 7.65 д (2H, С_{аром}Н), 9.05 уш.с (NH). ЯМР ¹³С, δ, м.д.: 21.17 к (CH₃), 25.33, 28.69, 28.74, 28.92, 29.07, 29.23 т (6СН₂), 33.66 т (СН₂СН=N), 33.77 т (СН₂СО₂), 51.21 к (СН₃О), 128.62 д (2С_{аром}Н), 129.28 д (2С_{аром}Н), 136.17 д (СН=N), 141.86 с (С-S), 144.47 с (С_{аром}СН₃), 174.15 с (СО₂Ме).

Озонолиз метилового эфира 10-ундеценовой кислоты 21 в изопропаноле. После хроматографирования на SiO₂ 3.10 г реакционной смеси (петролейный эфир, петролейный эфир – метил-*трет*-бутиловый эфир, $10:1\rightarrow 1:1$) получили 2.71 г (74%) гидразона 71.

Озонолиз метилового эфира 10-ундеценовой кислоты 21 в смеси AcOH-CH₂Cl₂. После хроматографирования на SiO₂ 3.60 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1 \rightarrow 1:1, MeOH) получили 3.20 г (86%) гидразона 71.

Озонолиз (–)-α-пинена 52 в метаноле. Получили 4.55 г реакционной смеси, после хроматографирования которой на SiO₂ (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1→1:1, MeOH) выделили 4.27 г (73%) дигидразона 72.

N'-[(1)-2-(2,2-Диметил-3-{(1)-*N*-[(4-метилфенил)сульфонил]-этангидразоноил}циклобутил)эти-лиден]-4-метилбензенсульфоногидразид 72.

R_f 0.15 (гексан–метил-*трет*-бутиловый эфир, 1:2), [α]_D²⁰ –10° (с 0.05; CH₂Cl₂). Спектр ЯМР ¹H, δ, м.д.: 0.95 с, (3H, С^{*чис*}H₃), 1.35 с (3H, С^{*транс*}H₃), 1.70–2.05 м (2H, C⁴H₂), 2.15 с (3H, CH₃CO), 2.25–2.40 м (3H: 1H, C¹H, 2H, CH₂,), 2.50 с (6H, 2CH₃), 2.85 м (1H,

С³H), 7.20 д (4H, С_{аром}H), 7.45 м (1H, CH=N), 7.65 д (4H, С_{аром}H), 8.55 уш.с (2H, 2NH). Спектр ЯМР ¹³C, δ, м.д.: 16.84 к (CH₃), 21.45 к (2С_{аром} H₃), 21.57 к (С^{*цис*}H₃), 24.35 т (С⁴H₂), 28.45 к (С^{*транс*}H₃), 37.89 д (С¹H), 39.45 т (CH₂), 42.13 с (С²), 49.32 д (С³H), 128.19, 128.26 д (4С_{аром}H), 129.19, 129.83 д (4С_{аром}H), 134.26, 135.02 с (2C–S), 143.54, 144.12 с, (2С_{аром}CH₃), 157.54 д (CH=N), 162.23 с (C=N).

Озонолиз (–)-α-пинена 52 в изопропаноле. Получили 4.35 г реакционной смеси, после хроматографирования которой на SiO₂ (петролейный эфир – метил*трет*-бутиловый эфир, 10:1→1:1, MeOH) выделили 3.88 г (77%) дигидразона 72.

Озонолиз (–)- α -пинена 52 в смеси AcOH-CH₂Cl₂. После хроматографирования на SiO₂ 3.15 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1 \rightarrow 1:1, MeOH) получили 2.80 г (80%) гидразонокислоты 73.

(2,2-Диметил-3{*N*-[(4-метилфенил)сульфонил]этангидразоноил}цикло-бутил) уксусная кислота 73.

R_f 0.20 (гексан–метил-*трет*-бутиловый эфир, 1:2).
ИК-спектр, ν, КВг, см⁻¹: 3215 (ОН). Спектр ЯМР ¹H₁δ,
м.д.,: 0.85 с, (3H, С^{цис}H₃), 1.30 с, (3H, С^{транс}H₃), 1.80–
1.98 м (2H, С⁴H₂), 2.10 с (3H, CH₃C=N), 2.15–2.36 м
(3H, С<u>H</u>CH₂COOH, С<u>H</u>₂COOH), 2.40 с (3H, С_{аром}С<u>H</u>₃),

2.83 (1H, м, C^{3} <u>H</u>), 7.20 д (2H, $2C_{apom}^{3',5'}$ H, *J* 7.8 Гц), 7.85 д (2H, $2C_{apom}^{2',6'}$ H, *J* 8.0 Гц), 8.50 уш.с (H, NH), 9.80 уш.с (1H, ,OH). Спектр ЯМР ¹³С δ, м.д.: 16.42 к ($C^{\mu\nu c}$ H₃), 21.35 ($C_{apom}CH_{3}$), 21.50 к ($CH_{3}C=N$), 24.01 т (C^{4} H₂), 29.92 к (C^{mpahc} H₃), 37.34 т ($CH_{2}COOH$), 40.75 д ($CHCH_{2}COOH$), 42.63 с ($CH_{3}C^{2}CH_{3}$), 49.72 д (C^{3} H), 128.22 д ($2C_{apom}^{2',6'}$ H), 129.19 д ($2C_{apom}^{3',5'}$ H), 135.17 с (C-S), 143.77 с ($C_{apom}CH_{3}$), 156.95 с ($CH_{3}C=N$), 176.99 с (COOH).

Озонолиз Δ^3 -карена 65 в метаноле. Получили 4.15 г реакционной смеси, после хроматографирования которой на SiO₂ (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1 \rightarrow 1:1, MeOH) выделили 3.77 г (75%) дигидразона 74.

Озонолиз Δ^3 -карена 65 в изопропаноле. Получили 4.15 г реакционной смеси, после хроматографирования которой на SiO₂ (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1 \rightarrow 1:1, MeOH) выделили 3.62 г (72%) дигидразона 74.

N'-{2-[2,2-Диметил-3-(2{[(4-метилфенил)сульфонил]гидразоно}этил)циклопропил]-1-метилэти-лиден}-4-метилбензенсульфоногидразид 74.

 R_f 0.2 (гексан-метил-*трет*-бутиловый эфир, 1:2). [α]_D²⁰ -83.7° (с 0.42; CH₂Cl₂). Т. пл. 118–120 °С. Спектр ЯМР ¹H, δ, м.д.: 0.90 м (1H, C¹H), 1.05 с (3H, C^{4µc}H₃) 1.15 м (1H, C³H), 1.18 с (3H, C^{*mpahc*}H₃), 2.10 с (3H, CH₃C=N), 2.31–2.40 м (2H, CH₃C(N)CH₂), 2.45 с (6H,

2CH₃), 2.32–2.55 м (2H, C<u>H</u>₂CH=N), 7.20 д (4H, C_{аром}H), 7.45 м (1H, CH=N), 7.85 д (4H, C_{аром}H), 8.42 уш.с (2H, 2NH). Спектр ЯМР ¹³С, δ, м.д.: 14.65 к (<u>C</u>H₃C=N), 17.11 к (С^{*чис*}H₃), 19.44 с (C²), 21.59 к (2<u>C</u>H₃), 25.28 д (C¹H), 25.60 д (C³H), 29.75 к (C^{*mpaнс*}H₃), 33.39 т (<u>C</u>H₂CH=N), 35.89 т (<u>C</u>H₂C(N)), 128.37, 128.88 д (4C_{аром}H), 129.24, 129.50 д, (4C_{аром}H), 135.47 с (2C–S), 143.88, 143.97 с (2C_{аром}CH₃), 156.89 д (CH=NOH), 161.19 с (C=N).

Озонолиз Δ^3 -карена 65 в смеси AcOH-CH₂Cl₂. Получили 4.29 г смеси, после хроматографирования на SiO₂ (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1 \rightarrow 1:1, MeOH) выделили 3.52 г (70%) дигидразона 74 и 0.35 г (10%) гидразонокислоты 75.

[(1*R*,3*S*)-2,2-Диметил-3-((2*E*)-2{[(4-метилфенил)сульфонил]гидразоно}пропил) циклопропил] уксусная кислота 75.

R_f 0.21 (гексан–метил-*трет*-бутиловый эфир, 1:2). Спектр ЯМР ¹Н 500.13 МГц, CDCl₃, δ, м.д.: 0.88 м (1H, C¹<u>H</u>), 1.15 с (3H, C^{*mpahc*}<u>H</u>₃) 1.10–1.22 м (1H, C³<u>H</u>), 1.24 с (3H, C^{*µuc*}<u>H</u>₃) ,2.15 с (3H, C<u>H</u>₃C=N), 2.20–2.40 м, (2H C<u>H</u>₂COOH), 2.35–2.42 м (2H, C<u>H</u>₂C=N), 2.43 с

(3H, C<u>H</u>₃C_{аром}), 7.20 д (2H, 2C_{аром}^{3,5} H, *J*=8.0 Гц), 7.85 д (2H, J=8.0, 2C^{2,6} _{аром}H), 8.40 уш.с,(1H, N<u>H</u>), 9.77 уш.с (1H, C<u>H</u>=N). Спектр ЯМР ¹³С, δ, м.д.: 14.48 к (С^{4µс}H₃), 16.88 к (<u>C</u>H₃C=N), 19.27 с (C²), 21.41к (С_{аром}<u>C</u>H₃), 25.14 д (C¹H), 26.25 д (C³H),

29.58 к (С^{*транс*}H₃), 33.42 т (<u>C</u>H₂COOH), 35.22 т (<u>C</u>H₂C=N), 128.21 д (2C_{аром}H), 129.34 д (2C_{аром}H), 135.39 с (C–S), 143.83 с (<u>C</u>_{аром}CH₃), 161.09 с (<u>C</u>=N), 178.15 с (<u>C</u>OOH).

Озонолиз (S)-(–)-лимонена 66. Через раствор 1.10 г (8.08 ммоль) (S)-(–)лимонена **66** в смеси 20 мл перегнанного циклогексана и 0.6 мл абс. МеОН либо смеси 4.2 мл AcOH и 25 мл CH₂Cl₂ при 2–4°C барботировали озоно-кислородную смесь до поглощения 7.4 ммоль озона. Реакционную смесь продували аргоном. В первом случае циклогексановый слой декантировали к остатку озонида добавляли 30 мл MeOH. Далее при перемешивании (0°C) прибавляли 4.78 г (25.75 ммоль) TsNHNH₂, перемешивали при комнатной температуре до исчезновения пероксидов (контроль – йод-крахмальная проба), отгоняли растворитель, остаток растворяли в CHCl₃ (150 мл), промывали последовательно насыщенным раствором NaCl (4 × 35 мл) и водой, сушили Na₂SO₄ и упаривали. После хроматографирования на SiO₂ реакционной смеси (3.0 или 3.4 г) (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1 \rightarrow 1:1, MeOH) получили 2.56 г (3.03 г) дигидразона **76** с выходами 69 и 82%, соответственно.

N'-[(1*E*,4*S*)-(1,5-Диметил-4-((2*E*)-2-{[(4-метилфенил)сульфонил]гидразоно}этил)гекс-5-ен-1-илиден]-4-метилбензенсульфоногидразид 76.

 $R_f \ 0.30$ (гексан-метил-*трет*-бутиловый эфир, 1:2). $[\alpha]_D^{20}$ -18° (с 0.38; CH₂Cl₂). Спектр ЯМР ¹, δ , м.д.,: 1.65 с (3H, CH₃C=N), 1.75 с (3H, CH₃C=CH₂), 1.85–2.75 м (7H, C²H₂C=N, C³H₂, CHC=CH₂, CH₂CH=N), 2.40 с (6H, 2C_{аром}CH₃), 4.48 д (2H, CH₃C=CH₂ J 1.7 Гц), 6.45–6.65 м

(1H, C<u>H</u>=N),7.20 д (4H, 4C_{аром}^{3,3',5,5'}<u>H</u>, J 8.0 Гц), 7.85 д (4H, , 4C_{аром}^{2,2',6,6'}<u>H</u>, J 8.2 Гц), 8.40 уш.с (2H, 2NH). Спектр ЯМР ¹³C, δ , м.д.: 14.67 к (<u>C</u>H₃C=N), 21.10 к (<u>C</u>H₃C=CH₂,), 21.61 к (2C_{аром}<u>C</u>H₃), 34.81 т (<u>C</u>H₂CH=N), 39.73 т (C³H₂), 43.83 т (<u>C</u>²H₂C=N), 47.22 д (<u>C</u>⁴HC=CH2), 110.06 т (CH₃C=<u>C</u>H₂), 128.09, 128.28 д (4С_{аром}^{2,2',6,6'}Н), 129.49, 129.93 д (4С_{аром}^{3,3',5,5'}Н), 133.16 с (2<u>С</u>-S), 144.54 с (2<u>Саром</u>СН₃), 145.24 с (СН₂<u>С</u>⁵=СН₂), 157.24 д (СН=N), 161.88 с (СН₃С=N).

3.4.2. Однореакторный синтез фенилгидразонов из алкенов

Через раствор 10.0 ммоль соответствующего олефина 21, 22, 52, 63-66 в 25 мл MeOH при 0 °C барботировали O₃/O₂ смесь до поглощения 10 ммоль O₃. Реакционную массу продували аргоном. При перемешивании прибавляли при той же температуре смесь PhNHNH₂·HCl (2.89 г (20.0 ммоль) или 5.06 г (35.0 ммоль)) и CH₃COONa (3.28 г (40.0 ммоль) или 5.74 г (70.0 ммоль)). Перемешивали при комнатной температуре до исчезновения пероксидов (контроль – йодкрахмальная проба), отгоняли MeOH, остаток растворяли в CHCl₃ (150 мл), промывали 5%ным раствором HCl (3×15 мл) и водой (4×15 мл), сушили Na₂SO₄ и упаривали.

Озонолиз нон-1-ена 63. После хроматографирования остатка (2.25 г) получили 1.74 г (80%) фенилгидразона 84.

Фенилгидразон октаналя 84.

R_f 0.37 (гексан-метил-*трет*-бутиловый эфир, 2:1). ИК и ЯМР спектры идентичны описанным ранее [116].

Озонолиз 10-ундеценовой кислоты 63. После хроматографирования остатка (2.7 г) получили 2.09 г (76%) кислоты 85.

10-(Фенилгидразоно)декановая кислота 85.

R_f 0.20 (гексан-метил-*трет*-бутиловый эфир, 2:1). ИК CO_2H (Iсксан-метил-*трет*-бутиловый эфир, 2.1). ИК спектр, v, см⁻¹: 3330 (OH), 1715 (C=O), 1602 (C=N). ЯМР N_N Ph ¹H, δ, м.д.: 1.20 –1.50 м (12H, C³H₂–C⁸H₂,), 2.12 – 2.35 м (4H, C²H₂, C⁹H₂), 7.13 д (2C_{аром} H, 2H, ³J 7.7 Гц), 7.20 т (1H, С_{аром.}Н,), 7.25 т (2Н, 2С_{аром.}Н), 7.65 д (1Н, С¹⁰Н, J 7,2 Гц), 8.05 уш.с. (1Н, NН), 9.15 уш.с (СООН). ЯМР ¹³С, δ, м.д.: 22.65, 24.81, 24.89, 29.04, 29.12, 32.11, 34.08, 34.38 т (С²Н₂-С⁹Н₂), 126.11 д (С_{аром}Н), 128.56 д (2С_{аром}Н), 129.19 д (2С_{аром}.Н), 141.86 д $(C^{10}H)$, 144.81 c $(C_{apom.})$, 179.47c (C^{1}) .

Озонолиз метилового эфира 10-ундеценовой кислоты 21. После хроматографирования остатка (2.96 г) получили 2.14 г (74%) метил-10-(фенилгидразоно)деканоата 86.

Метил-10-(фенилгидразоно)деканоат 86.

R_f 0.23 (гексан-метил-*трет*-бутиловый эфир, 2:1). ИК CO_2Me $CO_$ C²H₂, C⁹H₂), 3.62 с (3H, OCH₃), 7.10 д (2H, 2C_{аром.}H, ³J

7.8 Гц),7.15 т (1Н, С_{аром.}Н), 7.18 т (2Н, 2С_{аром.}Н), 7.40 д (1Н, С¹⁰Н, *J* 8,3 Гц), 7.90 уш.с. (1H, NH). ЯМР ¹³С, δ, м.д.: 24.89, 25.18, 28.52, 28.66, 28.88, 33.91, 33.95, 34.60 т (С²Н₂–С⁹Н₂), 51.27 к (ОСН₃), 124.82 д (С_{аром.}Н), 128.43 д (2С_{аром.}Н), 129.31 д (2С_{аром.}Н), 139.57 д (С¹⁰Н), 174.31с (С¹), 140.47 с (С_{аром.}). Найдено, %: С 70.25; Н 9.12; N 9.55. С₁₇Н₂₆N₂O₂. Вычислено, %: С 70.31; Н 9.02; N 9.65.

Озонолиз ундец-10-ен-1-ола 22. После хроматографирования остатка (2.55 г) получили 1.91 г (73%) метил-10-(фенилгидразоно)декан-1-ола 87.

Метил-10-(фенилгидразоно)декан-1-ол 87.

R_f 0.25 (гексан-метил-*трет*-бутиловый эфир, 2:1). ИК спектр, v, см⁻¹: 3317 (ОН), 1602 (С=N). ЯМР ¹Н, б, м.д.: 1.20 – 1.60 м (14H, C²H₂–C⁸H₂), 2.05 с (OH), 2.30 т (2H, С⁹H₂, *J* 7.6 Гц), 3.60–3.70 м (2H, С¹H₂), 7.15 д

(2H, 2С_{аром} H, ³J 7.6 Гц), 7.22 -7.30 м (3H, 3С_{аром} H), 7.65 д (1H, CH=N, J 7,5 Гц), 7.80 уш.с. (1H, NH). ЯМР ¹³С, δ, м.д.: 24.89, 25.68, 27.45, 29.13, 29.24, 29.30, 32.67, 34.06 т (С²Н₂-С⁹Н₂), 62.84 т (С¹Н₂), 144.74 д (СН=N), 126.10 д (С_{аром.}Н), 128.53 д (2С_{аром.}Н), 129.21 д (2С_{аром.}Н), 137.17 с (С_{аром.}). Найдено, %: С 73.12; Н 10.07; N 10.50. С₁₆Н₂₆N₂O. Вычислено, %: С 73.24; Н 9.99; N 10.68.

Озонолиз (–)-α-пинена 52. После хроматографирования остатка (3.38 г) получили 2.51 г (72%) фенилгидразона 88.

Фенилгидразон {(1*R*,3*R*)-2,2-диметил-3-[*N*-фенилэтангидразоноил] циклобутил}ацетальдегида 88.

 R_f 0.61 (петролейный эфир – этилацетат, 1:1). $[\alpha]_D^{20}$ -Рh $\overset{H}{\overset{N}}$ $\overset{Ph}{\overset{N}}$ $\overset{NH}{\overset{N}}$ 56° (c 0.8470; CHCl₃). ИК спектр, v, см : 1001 (с-1.7. ЯМР ¹H, δ, м.д.: 0.82 с (3H, CH₃), 1.00 с (3H, CH₃), $\overset{MH}{\overset{M}}$ $\overset{MH}{\overset{MH}}$ $\overset{MH}{\overset{MH}$ $\overset{MH}{\overset{MH}}$ $\overset{MH}{\overset{MH}$ $\overset{MH}{\overset{MH}}$ $\overset{MH}{\overset{MH}}$ $\overset{MH}{\overset{MH}}$ $\overset{MH}{\overset{MH}}$ $\overset{MH}{\overset{MH}}$ $\overset{MH}{\overset{MH}$ $\overset{MH}{\overset{MH}}$ $\overset{MH}{\overset{MH}$ $\overset{MH}{\overset{MH}}$ $\overset{MH$ 1.30 с (3Н, СН₃), 1.55–2.45 м 4Н, (2СН₂), 2.50–

3.15 м (2H, 2CH), 6.75–6.95 м (2H, 2С^{аром} H), 7.00–7.60 м (8H, 8С_{аром} H), 7.90-8.00 м (1H, CH=N), 8.32 уш. с (2H, 2NH). ЯМР ¹³С, δ, м.д.: 17.61 к (<u>C</u>H₃C=N), 22.70 к (CH₃), 30.14 к (CH₃), 32.90 к (C⁴H₂), 34.83 т (CH₂CH=N), 37.92 д (C³H), 51.50 д (C¹H), 40.20 с (C²), 112.89 д (4С_{аром.}H), 119.75 д (С⁴_{аром.}H), 120.01 д (С⁴_{аром.}H), 129.80 д (4С_{аром} H), 133.05 д (CH=N), 152.48 с (2С_{аром}=N), 152.60 с (C=N). Массспектр, *m/z* (*I*_{отн}, %): 349 (40.1) [М+Н]⁺.

Озонолиз (+)-3-карена 65. После хроматографирования остатка (3.12 г) получили 2.43 г (70%) фенилгидразона 89.

{(1S,3R)-2,2-диметил-3-[2-(фенилэтангидразоно)пропил] Фенилгидразон циклопропил}ацетальдегида 89.

 R_f 0.38 (петролейный эфир – этилацетат, 1:1). $[\alpha]_D^{20}$ +11° (*c* 1.1942; CHCl₃). ИК спектр, v, см⁻¹: 1600 (C=N). ЯМР ¹Н, δ, м.д.: 0.70 с (3H, CH₃),

0.80–1.00 м (2H, 2CH), 1.20 с (3H, CH₃), 1.35 с (3H, CH₃), 1.75–2.40 м (4H, 2CH₂), 6.75-6.70 м (H, CH=N) 7.05-7.80 м (10H, $10C_{apom}$ H), 8.60 уш. с (2H, 2NH). ЯМР ¹³С, δ , м.д.: 14.48 к (CH₃), 18.56 к (<u>C</u>H₃C=N), 19.07 к (CH₃), 23.89 д (C¹H), 23.99 д (C³H), 26.50 т (<u>C</u>H₂CH=N), 26.64 с (C²), 33.19 т (<u>C</u>H₂C=N), 112.63 д (4C_{apom}H), 122.20 д (C^{4'}_{apom}H), 122.72 д (C⁴_{apom}H), 128.80 д (4C_{apom}H), 140.74 д (<u>C</u>H=N), 144.67 с (2C_{apom}N), 156.42 с (C=N). Масс-спектр, *m/z* (*I*_{отн}, %): 349 (27.3) [M+H]⁺.

Озонолиз *S***-**(–)**-***лимонена***66.** Через раствор 1.49 г (11.0 ммоль) (*S*)-(–)лимонена **66** в смеси 20 мл перегнанного циклогексана и 0.6 мл абс. МеОН при 2÷4°С барботировали озоно-кислородную смесь до поглощения 10 ммоль озона. Реакционную смесь продували аргоном. Циклогексановый слой декантировали, к остатку озонида [86] добавляли 30 мл МеОН, при перемешивании (0°С) прибавляли смесь 5.06 г (35.0 ммоль) PhNHNH₂·HCl и 5.74 г (70 ммоль) CH₃COONa. Далее обрабатывали, как описано ранее для соединений (1-6). После хроматографирования остатка (2.60 г) получили 1.77 г (51%) фенилгидразона **90**.

Фенилгидразон (3R)-4-метил-3-[3-(фенилгидразоно)бутил]пент-4-еналя 90.

 R_f 0.55 (петролейный эфир – этилацетат, 1:1). $[\alpha]_D^{20}$ -9° (*c* 0.800; CHCl₃). ИК спектр, v, см⁻¹: 1601 (C=N). ЯМР ¹H, δ, м.д.: 1.40-1.60 м (2H, C¹H₂), 1.85 с (3H, CH₃), 1.98 с (3H, CH₃), 2.05–2.30 м (H, C³H), 2.30-2.45 м (2H, C²H₂), 2.65–2.85 м (2H, C²H₂), 4.70–5.00 м (2H, C⁵H₂), 5.90–6.00 м (H,

CH=N) 6.68–7.05 м (2H, 2C_{аром.}H), 7.05–7.85 м (8H, 8C_{аром.}H), 8.55 с (2H, 2NH). ЯМР ¹³C, δ , м.д.: 14.50 к (C⁴'H₃), 19.40 к (<u>C</u>H₃C⁴), 29.50 т (C¹'H₂), 36.41 т (C²H₂), 38.05 т (C²'H₂), 44.97 д (C³H), 109.65 т (C⁵H₂), 113.06 д (4C_{аром.}H), 122.31 д (2C_{аром.}H), 129.19 д (4C_{аром}H), 137.36 д (C¹H=N), 145.41 с (2C_{аром.}N), 146.41 с (C⁴), 156.40 с (C³'=N). Масс-спектр, *m*/*z* (*I*_{отн.}, %): 347 (79.3) [M-H]⁻.

3.4.3. Гидроксиламин впревращениях пероксидных продуктов озонолиза алкенов

Через раствор 10.0 ммоль алкена **21, 22, 52, 63-66** в 25 мл абс. метанола при 0°С барботировали озоно-кислородную смесь до поглощения 10 ммоль озона. Реакционную смесь продували аргоном. Добавляли (0°С) смесь 2.44 г (35.0 ммоль) NH₂OH•HCl и 4.10 г (50 ммоль) АсONа, перемешивали при комнатной температуре до исчезновения пероксидов (контроль йод-крахмальная проба), отгоняли растворитель, остаток растворяли в CHCl₃ (150 мл), промывали насыщенным раствором NaCl (4 × 35 мл), сушили Na₂SO₄ и упаривали.

Озонолиз нонена-1 63. После хроматографирования 0.96 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1→1:2) получили 0.37 г (23%) эфира 92 [92] и 0.56 г (39%) оксима 91 [85].

Озонолиз 10-ундеценовой кислоты 64. После хроматографирования 1.91 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1→1:1, МеОН) получили смесь 0.71 г (35 %) оксимокислоты 95 и 1.2 г (58 %) 10,10диметоксидекановой кислоты 98.

(10Е)-10-(Гидроксиимино)декановая кислота 95.

 $R_f 0.22$ (петролейный эфир – этилацетат, 1:2), массспектр, *m/z* ($I_{\text{отн}}$, %): [*M*+*H*]⁺ 202 (28.5). ИК и ЯМР спектры идентичны описанным ранее [184].

10,10-Диметоксидекановая кислота 98.

 $R_f 0.27$ (петролейный эфир – этилацетат, 1:2). ИК спектр, KBr, v, см⁻¹: 2853 (О–СН₃). ЯМР ¹H, δ , м.д.: 1.20–1.70 м (14H, $C^3H_2-C^9H_2$), 2.25–2.32 м(2H, C^2H_2),
3.45 с (6H, 2OCH₃) , 3.95 т (1H, C¹⁰H,J 6.6Гц), 9.75 уш.с (H, CO₂H). ЯМР ¹³C, δ, м.д.: 24.58 т (C⁸H₂), 24.80 т (C⁷H₂), 25.70 т (C⁶H₂), 26.22 т (C⁵H₂), 27.45 т (C⁴H₂), 29.34 т (C³H₂), 31.24 т (C⁹H₂), 34.01 т (C²H₂), 55.84 к (2OCH₃), 108.83 д (C¹⁰H), 179.70 с (CO₂H).

Озонолиз метилового эфира 10-ундеценовой кислоты 21. После хроматографирования 2.10 г реакционной смеси (петролейный эфир – метил*трет*-бутиловый эфир, $10:1 \rightarrow 1:1$, MeOH) получили 0.82 г (38%) метилового эфира (10*E*)-10-(гидроксиимино)декановой кислоты 96 и 1.23 г (55%) метилового эфира 10,10-диметоксидекановой кислоты 99.

Метиловый эфир (10Е)-10-(гидроксиимино)декановой кислоты 96.

 R_f 0.33 (петролейный эфир–этилацетат, 1:2), массспектр, *m/z* ($I_{\text{отн}}$, %): [*M*+*H*]⁺ 216 (100.0). ИК и ЯМР спектры идентичны описанным ранее [123].

Метиловый эфир 10,10-диметоксидекановой кислоты 99.

R_f 0.39 (петролейный эфир–этилацетат, 1:2). ИК спектр, KBr, ν, см⁻¹: 2856 (O–CH₃), 1730 (СООСН₃). ЯМР ¹H, δ,
² м.д.: 1.20–1.60 м (14H, C³H₂–C⁹H₂), 2.24 т (2H, C²H₂, *J* 7.5 Гц;), 3.61 с(6H, 2OCH₃), 3.82 с (3H, СООСН₃) 3.93 т, (1H,

С¹⁰Н, *J* 6.5 Гц). ЯМР ¹³С, δ, м.д.: 24.78 т (С³Н₂), 27.49 т (С⁴Н₂), 28.80 т (С⁵Н₂), 28.90 т (С⁶Н₂), 29.26 т (С⁷Н₂), 29.44 т (С⁸Н₂), 32.50 т (С⁹Н₂), 33.80 т (С²Н₂), 51.18 к (СО₂<u>С</u>H₃), 51.38 к (2ОСН₃), 108.67 д (С¹⁰Н), 174.33 с (<u>С</u>О₂СН₃).

Озонолиз 10-ундеценола 22. После хроматографирования 1.92 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1→1:1, МеОН) получили 0.63 г (34 %) оксима (10*E*)-10-гидроксидеканаля 97 и 1.2 г (55%) 10,10-диметоксидекан-1-ола 100.

Оксим (10Е)-10-гидроксидеканаля 97.

 $R_f 0.17$ (петролейный эфир–этилацетат, 1:2). ИК спектр, KBr, v, см⁻¹: 1600 (C=N). ЯМР ¹H, δ, м.д.: 1.20-1.43 м (12H, C³H₂–C⁸H₂), 1.52-1.56 м (2H, C⁹H₂), 2.13–2.20 м (2H, C²H₂), 3.60–3.65 м (2H, C¹⁰H₂), 5.25 уш.с (1H, OH),

6.65 уш.с (1H, NOH), 7.35 т (1H, C^{*I*}H, *J* 6.2 Гц,). ЯМР ¹³С, δ , м.д.: 25.80 т (C⁸H₂), 26.46 т (C⁷H₂), 27.53 т (C⁶H₂), 28.98 т (C⁵H₂), 29.03 т (C⁴H₂), 29.21 т (C²H₂), 29.34 т (C³H₂), 31.53 т (C⁹H₂), 62.89 т (C¹⁰H₂), 152.22 д (C¹H). Масс-спектр, *m*/*z* (*I*_{отн}, %): [*M*+*H*]⁺ 188 (100.0).

10,10-Диметоксидекан-1-ол 100.

R_f 0.23 (петролейный эфир–этилацетат, 1:2). ИК спектр, KBr, v, см⁻¹: 3500 (OH), 2855 (O–CH₃). ЯМР ¹H, δ, м.д.:
1.20-1.43 м (14H, C²H₂–C⁸H₂), 1.49–1.53 м (2H, C⁹H₂), 3.15 уш.с (1H, OH), 3.43 с (6H, 2CH₃), 3.50–3.55 м (2H,

C¹H₂), 4.65 т (1H, C¹⁰H, *J* 6.6 Гц). ЯМР ¹³C, δ, м.д.: 25.60 т (C⁸H₂), 26.00 т (C⁷H₂), 28.89 т (C⁵H₂), 29.14 т (C⁶H₂), 29.21 т (C³H₂), 29.26 т (C⁴H₂), 32.53 т (C²H₂), 34.04 т (C⁹H₂), 55.85 к (2CH₃), 62.84 т (C¹H₂), 108.74 д (C¹⁰H).

Озонолиз (–)-α-пинена 52. После хроматографирования 1.97 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1→1:1, МеОН) получили 1.58 г (80%) оксима 101.

Оксим 1(*E*)-{(1*R*,3*R*)-3-[(1*E*)-*N*-гидроксиэтанимидоил]-2,2-диметилциклобутил} ацетальдегида 101 [86].

R_f 0.61 (петролейный эфир – этилацетат, 1:1). [α]_D²⁰ -8° (*c* 1.6432; CHCl₃). ИК спектр, ν, см⁻¹: 1601 (C=N). ЯМР ¹H, δ, м.д.: 0.89–1.22 с (6H, 2CH₃), 1.82 м (3H, CH₃C=N), 1.90–2.04 м (2H, CH₂), 2.08 м (1H, СН), 2.13–2.25 м (2H, C<u>H</u>₂CH=N), 2.61 м (1H, CHC=N), 7.35 м (1H, CH₂C<u>H</u>=N), 8.70–9.30 уш.с (2H, 2NOH). ЯМР ¹³С, δ , м.д.: 14.50 к (<u>C</u>H₃C=N), 17.02 к (<u>C</u>H₃C), 24.60 т (CH<u>C</u>H₂CH), 30.27 т (<u>C</u>H₂CH=N), 30.39 к (<u>C</u>H₃C), 39.67 с (С), 42.81 д (CH), 47.97 д (<u>C</u>HC=N), 151.33 д (<u>C</u>H=N), 157.98 с (<u>C</u>=N). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): [*M*+*H*]⁺ 199 (100.0).

Озонолиз ∆-3-карена 65. После хроматографирования 1.57 г реакционной смеси (петролейный эфир – метил-*трет*-бутиловый эфир, 10:1→1:1, МеОН) получили 1.49 г (75 %) оксима 102.

Оксим 1(*E*)-{(1*R*,3*S*)-3-[(2*E*)-2-гидроксиимино)пропил]-2,2-диметилциклопропил} ацетальдегида 102 [90]

R_f 0.44 (петролейный эфир – этилацетат, 1:1). [α]_D²⁰ -20° (*c* 0.08; CHCl₃). ИК спектр, ν, см⁻¹: 1598 (C=N). ЯМР ¹Н, δ, м.д.: 0.76–0,94 м (2H, 2CH), 0.94–0.99 м (6H, 2CH₃C), 1.94 м (3H, CH₃C=N),

2.13–2.25 м (8H, 4CH₂), 7.43 т (H, CH₂C<u>H</u>=N). ЯМР ¹³C, δ, м.д.: 13.64 к (<u>C</u>H₃C=N), 14.82 к (<u>C</u>H₃C), 14.94 к (<u>C</u>H₃C), 17.22 т (C), 21.12 т (<u>C</u>HCH₂C), 22.76 с (<u>C</u>HCH₂CH), 25.29 д (<u>C</u>H₂CH=N), 30.74 д (<u>C</u>H₂C=N), 151.16 д (CH=N), 158.46 с (C=N). Массспектр, *m/z* (*I*_{отн}, %): [*M*+*H*]⁺ 199 (91.0).

Озонолиз S-(–)-лимонена 66. Через раствор 1.1 г (8.09 ммоль) (S)-(–)лимонена в смеси 20 мл циклогексана и 0.6 мл абс. метанола при 2°C барботировали озоно-кислородную смесь до поглощения 7.4 ммоль озона. Реакционную смесь продували аргоном. Циклогексановый слой декантировали. Добавляли (0°C) 20 мл абс. метанола и смесь 1.79 г (25.72 ммоль) NH₂OH•HCl и 3.01 г (36.75 ммоль) AcONa, перемешивали при комнатной температуре до исчезновения пероксидов (контроль йод-крахмальная проба), отгоняли растворитель, остаток растворяли в CHCl₃ (150 мл), промывали насыщенным раствором NaCl (4 × 35 мл), сушили Na₂SO₄ и упаривали. После хроматографирования 1.21 г реакционной смеси (петролейный эфир – метил*трет*-бутиловый эфир, 10:1 \rightarrow 1:1, MeOH) получили 0.77 г (53 %) оксима **103**.

Оксим 3-[(3Е)-3-(гидроксиимино)бутил]-4-метилпент-4-еналя 103.

R_f 0.51 (петролейный эфир – этилацетат, 1:1). ИК спектр, ν, см⁻¹: 1610 (C=N). ЯМР ¹H, δ, м.д.: 1.13– 1.30 м (2H, CH₂), 1.65 с (3H, CH₃), 1.82 с (3H, CH₃), 2.00–2.18 м (4H, 2CH₂), 2.20– 2.30 м (1H, CH), 4.60

–4.90 м (2H, CH₂=C), 6.25–6.30 м (1H, C<u>H</u>=NOH), 8.20–8.90 уш.с (2H, 2NOH). ЯМР ¹³С, δ , м.д.: 13.68 к (<u>C</u>H₃C=N), 18.20 к (<u>C</u>H₃CCH₂), 28.41 т (<u>C</u>H₂CHC), 33.00 т (<u>C</u>H₂CH=N), 33.41 т (<u>C</u>H₂C=N), 43.94 д (CH₃C<u>C</u>H), 113.20 т (C=<u>C</u>H₂), 145.26 с (<u>C</u>=CH₂), 150.62 д (CH=N), 158.59 с (C=N). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): [*M*+*H*]⁺ 199 (55.4).

ЗАКЛЮЧЕНИЕ

C=N Разработана соединений группой, стратегия получения С представляющая собой однореакторную последовательность превращений: окисление алкена озоном — восстановление до карбонильного соединения гидразина/гидроксиламина \rightarrow конденсация карбонильного производным соединения с избытком производного гидразина/гидроксиламина — выделение целевого гидразона/оксима, исключающая стадию получения и выделения карбонильного соединения. что имеет важное значение в синтетической и органической химии.

Расширен ассортимент и выявлены особенности субстратов и азотсодержащих органических восстанавливающих реагентов – производных гидразина и гидроксиламина – в озонолитических превращениях алкенов.

выводы

- Изучены превращения пероксидных продуктов озонолиза линейных и циклических алкенов под действием гидроксиламина, полученного *in situ* из NH₂OH·HCl нейтрализацией хлороводорода ацетатом натрия. Показано, что при действии гидроксиламина на пероксидные продукты озонолиза преимущественно происходит их восстановление до альдегидов/кетонов, выделенных, в зависимости от природы субстрата, в виде кето- и альдоксимов либо ацеталей.
- 2. Предложен однореакторный озонолитический метод получения моно- и дифенилгидразонов из алкенов, предполагающий озонолиз в метаноле при 0 °C и последующую обработку *in situ* образующихся пероксидных продуктов смесью (1:2) солянокислого фенилгидразина с ацетатом натрия.
- 3. Впервые выявлена эффективность тозилгидразида как восстановителя пероксидных продуктов озонолиза в MeOH (MeOH-c-C₆H₁₂), PrⁱOH и системе AcOH-CH₂Cl₂. Разработан однореакторный озонолитический метод превращения терминальных алкенов в нор-аналоговые тозилгидразоны, тризамещенных циклоолефинов в α,ω-дитозилгидразоны с использованием тозилгидразида на стадии восстановления промежуточно образующихся пероксидов в метаноле или изопропаноле. Показано, что при использовании в качестве растворителя смеси AcOH-CH₂Cl₂, в зависимости от строения алкена, возможно образование тозилгидразонов либо соответствующих кислот.
- Показано, что гидрохлориды гидроксиламина и семикарбазида эффективно и хемоселективно восстанавливают пероксидные продукты озонолиза олеиновой кислоты и производных ундециленовой кислоты (ее метилового эфира и 10-ундецен-1-ола) в протонных (MeOH, PrⁱOH, AcOH-CH₂Cl₂) и апротонных (ТГФ) растворителях, что позволило разработать препаративные однореакторные синтезы практически важных ациклических α,ω-бифункциональных соединений.

- 5. Изучены превращения пероксидных продуктов озонолиза циклооктена в протонных и апротонных растворителях (MeOH, PrⁱOH, TГФ, AcOH-CH₂Cl₂), в том числе в присутствии воды, под действием солянокислых семикарбазида. гидроксиламина И Отмечено, ЧТО В отличие ОТ тризамещенных циклоолефинов (α-пинена и 3-карена), дизамещенный циклооктен в вышеописанных озонолитических превращениях, особенно с участием солянокислого семикарбазида, ведет себя необычно, образуя непероксидные продукты озонолиза с относительно низкими выходами во всех растворителях, кроме метанола.
- 6. На примере природного монотерпена (–)-α-пинена выявлены пониженная реакционная способность и хемоселективность солянокислого и сернокислого гидразинов в сравнении с гидрохлоридом семикарбазида в превращениях пероксидных продуктов озонолиза.

СПИСОК СОКРАЩЕНИЙ

Ac	ацетил
Bn	бензил
Bu	бутил
Et	ЭТИЛ
<i>i</i> -Pr	изопропил
HLPC	высокоэффективная жидкостная хроматография
Me	метил
MOM	метоксиметил (CH ₃ OCH ₂ O)
Ph	фенил
PMB	<i>п</i> -метоксибензил (4-МеОС ₆ H ₄ CH ₂)
PMP	1,2,2,6,6-пентаметилпиперидин
PMOC	поли(5-метил-5-оксоэтилоксикарбонил-1,3-диоксан-2-он)
PS-PPh ₂	полистирол связанный дифенилфосфин
Ру	пиридин
TBAF	тетра(н-бутил)аммонийфторид
TBS	<i>трет</i> -бутилдиметилсилан
t-Bu	<i>трет-</i> бутил
THF	тетрагидрофуран
TIPS	триизопропилсилил
TMS	триметилсилил
TMSCl	триметилсилилхлорид
Ts	<i>п</i> -толуолсульфонил (тозил)

СПИСОК ЛИТЕРАТУРЫ

- Одиноков, В. Н. Озонолиз современный метод химии олефинов / В. Н. Одиноков, Г. А. Толстиков // Успехи химии. – 1981. – Т. 50. – № 7. – С. 1207-1251.
- Zvereva, T. I. Ozonolisys of unsaturated carbonyl compounds and alcohols / T. I. Zvereva, O. S. Kukovinets, V. G. Kasradze, O. B. Kazakova // Russ. J. Org. Chem. 2010. V. 46. No. 10. P. 1431-1451.
- Ишмуратов, Г. Ю. Превращения перекисных продуктов озонолиза олефинов
 / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. П. Боцман, Г. А. Толстиков // Журн. орг. химии. – 2010. – Т. 46. – № 11. – С. 1591-1617.
- 4. Van Ornum, S. G. Ozonolysis applications in drug synthesis / S. G. Van Ornum R.
 M. Champeau, R. Pariza // Chem. Rev. 2006. V.106. P. 2990-3001.
- Kukovinets, O. S. Ozonolysis of verbenone in aprotic solvents / O. S. Kukovinets, T. I. Zvereva, N. N. Kabalnova, V. G. Kasradze, E. V. Salimova, L. R. Khalitova, M. I. Abdullin, L. V. Spirikhin // Mendeleev Commun. – 2009. – No.19. – P. 106-107.
- Schiaffo, C. E. Ozonolysis in solvent/water mixtures: direct convertion of alkenes to aldehydes and ketones / C. E. Schiaffo, P. H. Dussault // J. Org. Chem. 2008. V.73. P. 4688-4690.
- 7. Suwancharoen, S. Synthesis of ent-ambrox® from (–)-nidorelol / S. Suwancharoen, S. Pornpakakul, N. Muangsin // Tetrahedron Lett. 2012. V.53. P. 5418-5421.
- Ишмуратов, Г. Ю. Исследование озонолитических превращений (S)-(-)лимонена / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. П. Боцман, Г. В. Насибуллина, Р. Р. Муслухов, Д. В. Казаков, Г. А. Толстиков // Журн. орг. химии. – 2012. – Т. 48. – № 1. – С. 26-32.
- Ишмуратов, Г. Ю. Превращение перекисных продуктов озонолиза (S)-(–)лимонена в системе HCl-метанол / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. Р. Гарифуллина, Л. П. Боцман, Р. Р. Муслухов, Г. А. Толстиков // Журн. орг. химии. – 2014. – Т. 50. – № 12. – С. 1765-1767.

- Ишмуратов, Г. Ю. Исследование озонолитического превращения (S)-(-)лимонена в системе HCl-изопропанол / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. Р. Гарифуллина, Р. Р. Муслухов, Л. П. Боцман, Г. Г. Козлова // Химия природ. соедин. – 2015. – № 1. – С. 71-73.
- Marchall, J. The direct conversion of olefins into esters through ozonolysis / J. Marchall, A. Garofolo, R. Sedrani // Synlett. – 1992. – No. 8. – P. 643-645.
- Раскильдина, Г. З. Новый метод получения алкоксиуксусных кислот / Г. З. Раскильдина, Ю. В. Легостаева, Л. Р. Гарифуллина, Р. М. Султанова, Г. Ю. Ишмуратов, С. С. Злотский // Докл. АН. – 2015. – Т. 462. – № 3. – С. 307-309.
- Yadav, J. S. Stereoselective total synthesis of leiocarpine C and (+)-goniodiol / J.
 S. Yadav, V. H. Krishna, A. Srilatha, R. Somaiah, B. V. Subba Reddy // Synthesis. – 2010. – No. 17. – P. 3004-3012.
- Fisher, T. J. Fragmentation of chloroperoxides: hypochlorite-mediated dehydration of hydroperoxiacetals to esters / T. J. Fisher, P. H. Dussault // Tetrahedron Lett. – 2010. – V.51. – P. 5615-5617.
- Amarante, G. W. Ozone: a versatile oxidizing agent in academic syntheses and industrial processes / G. W. Amarante // Synlett. – 2009. – № 1. – P. 155–156.
- Cheng, P. A General route to 1,3'-bipyrroles / P. Cheng, W. Shao, D. L. J. Clive
 // J. Org. Chem. 2013. V. 78. No. 23. P. 11860-11873.
- Schneider, M.-A. Diastereoselective synthesis of a lilac aldehyde isomer and its electrophisiological detection by a moth / M.-A. Schneider, S. Dötterl, K. Siefert // Chemistry and Biodiversity. 2013. V.10. P. 1252-1259.
- Hoegenauer, E. K. An approach to aliphatic 1,8-stereocontrol: diastereoselective sintheses of (±)-patulolide C and (±)-epipatulolide C / E. K. Hoegenauer, E. J. Thomas // Org. Biomol. Chem. 2012. V.10. P. 6995-7014.
- 19. Pearson, A. J. A synthetic pathway to diquinan and angular triquinane systems via an iron carbonyl promoted tandem [6+2] ene type reaction / A. J. Pearson, E. H. Kim, H. Sun // Tetrahedron. 2010. V.66. P. 4943-4946.
- Kulkarni, M. G. Total Synthesis of (±)-phisovenine / M. G. Kulkarni, A. P. Dhondge, A. S. Borhade, D. D. Gaikwad, S. W. Chavhan, Y. B. Shaikh, V. B.

Nigdale, M. P. Desai, D. R. Birhade, M. P. Shinde // Eur. J. Org. Chem. – 2009. – P. 3875- 3877.

- 21. Tian, W.-S. Total synthesis and establishment of the stereochemistry of sponiferin-1, a rare planar chiral marine natural product with a 1,6-methano[10]annulene skeleton / W.-S. Tian, K. Dung, Y.-S. Sun, L. Chen, Z. Lei // Synthesis. 2013. No.45. P. 438-447.
- Yadav, J. S. A concise stereosolective formal total synthesis of the cytotoxic macrolide (+)-neopeltolide via Prins cyclisation / J. S. Yadav, G. C. Krishana S. N. Kumar // Tetrahedron. 2010. No.66. P. 480-487.
- Perlikowska, W. A concise approach to both enantiomers of phytoprostane B₁ type II / W. Perlikowska, M. Mikołajczyk // Tetrahedron: Asymmetry. 2011. No.22. P. 1767-1771.
- Strikrishna, A. An enantiospecific approach to tetraquinane diterpene crinipellins: synthesis of norcrinipellines / A. Strikrishna, V. Gowri // Synlett. – 2011. – No. 18. – P. 2652-2656.
- 25. Chavan, S. P. A novel and enantioselective synthesis of *D*-(+)-biotin via a Sharpless asymmetric dihydroxilation sntrategy / S. P. Chavan, P. B. Lasonkar, P. N. Chavan // Tetrahedron: Asymmetry. 2013. No.24. P. 1473-1479.
- 26. Ren, L. First total synthesis of (+)-pentandranoic acid A / L. Ren, E. Piers // Tetrahedron Lett. – 2012. – V.53. – P. 3329-3332.
- 27. Giesbrecht, H. E. Thieme Chemistry Journal Awards where are they now? Stereoselective synthesis of Z-configured α,β-unsaturated macrocyclic lactones and diolides by intramolecular Julia-Kocienski olefination / H. E. Giesbrecht, B. J. Knight, N. R. Tanguileg, C. R. Emerson, P. R. Blakemore // Synlett. – 2010. – No. 3. – P. 0374-0378.
- 28. Ishmuratov, G. Yu. Synthetic approaches to optically active macrolides containing hydrazide fragments of *L*-(+)-tartaric acid from (+)-3-carene, and (S)-(-)-limonene / G. Yu. Ishmuratov, M. P. Yakovleva, M. A. Shutova, R. R. Muslukhov, N. M. Ishmuratova, G. A. Tolstikov // Chem. Nat. Compd. 2014. V. 50. № 4. P. 658 660.

- Paioti, P. H. S. Diastereoselective synthesis of substituted 2-amino-1,3propanediols from Morita-Baylis-Hillman adducts / P. H. S. Paioti, P. Rezende, F. Coelho // J. Braz. Chem. Soc. – 2012. – V. 23. – No. 2. – P. 285-293.
- 30. Hilt, G. Cobalt-catalyzed generation of 1,4-dienes as synthons for 1,3-dicarbonyl compounds and their application in natural product syntheses / G. Hilt, M. Arndt, D. F. Weske // Synthesis. 2010. № 8. P. 1321-1324.
- Hilt, G. Cobalt(I)-catalysed reactions for the synthesis of acyclic 1,4-dienes genesis of two synthetic methods / G. Hilt // Synlett. – 2011. – No. 12. – P. 1654-1659.
- 32. Heo, G. S. Aldehyde-functional polycarbonates as reactive platforms / G. S. Heo,
 S. Cho, K. L. Wooley // Polym. Chem. 2014. V.5. P. 3555-3558.
- 33. Reynaud, S. Unusual reactivity of bicycle[2.2.1]heptene derivatives during the ozonolysis Part 2 / S. Reynaud, M. Giorgi, H. Doucet, M. Santelli // Tetrahedron. 2010. V.66. P. 4101-4108.
- Reynaud, S. Neighbouring effect in the course of the ozonolysis of a hindered bornen derivative / S. Reynaud, M. Giorgi, H. Doucet, M. Santelli // Tetrahedron Lett. – 2009. – V.50. – P. 3385-3387.
- Zhylitskaya, H. Sinthesis of sidisterone, a phitoecdisteroid from Silene dioica (L.) Clairv / H. Zhylitskaya, R. litvinovskaya, S. Drach, V. Khripach // Tetrahedron Lett. – 2011. – V.52. – P. 5267-5269.
- Budaev, A. S. Ozonolysis of methyl 3β-hydroxyolean-9(11),12(13)-dien-30-oate /
 A. S. Budaev, R. L. Mikhailova, L. V. Spirikhin, L. A. Baltina // Chem. Nat.
 Compd. 2016. V. 52. No. 3. P. 448-451.
- Budaev, A. S. Synthesis and NMR spectra of new C-modified glicyrretic acid derivatives / A. S. Budaev, L. R. Michailova, L. V. Spirikhin, L. A. Baltina // Chem. Nat. Compd. – 2014. – V. 50. – No. 2. – P. 302-304.
- 38. Gupta, D. Thiourea, a convenient reagent for the reductive cleavage of olefin in ozonolysis products / D. Gupta, R. Soman, S. Dev // Tetrahedron. 1982. V. 38. No. 20. P. 3013-3018.

- Laventin, D. M. Stereoselective synthesis by double reductive amination ring closure of novel aza-heteroannulated sugars / D. M. Laventin, M. Davies, E. L. Evinson, P. R. Jenkins, P. M. Cullins, M. D. García // Tetrahedron. 2009. V.65. P. 4766-4774.
- Dalby, S. M. Total synthesis of (-)-rhizopodin Stephen / S. M. Dalby, J. Goodwin-Tindall, I. Paterson // Angew. Chem. Int. Ed. 2013. V.52. P. 6517-6521.
- 41. Ho, S. A highly step-economical synthesis of dictiostatin / S. Ho, C. Bucher, J. L. Leighton // Angew. Chem. Int. Ed. 2013. V.52. P. 6757-6761.
- 42. Florence, G. J. Total synthesis, stereochemical assignment and bioligical activity of chamuvarinin and structural analogues / G. J. Florence, J. C. Morris, R. G. Murrey, R. R. Vanga, J. D. Osler, T. K. Smith // Chem. Eur. J. 2013. V.19. P. 8309-8320.
- Aldrich, L. N. Towards the total synthesis of marineosin A: construction of the macrocyclic pyrrole and an advanced, functionalized spiroaminal model / L. N. Aldrich, C. B. Berry, B. S. Bates, L. C. Koncol, Mi. So, C. W. Lindsley // Eur. J. Org. Chem. 2013. P.4215-4218.
- Zhan, W. Consequence of installing a conformational lock at the edge of the macrocycle C6–C8 bridged epothilones / W. Zhan, Y. Jiang, S. Sharma, P. J. Brodie, S. Bane, D. G. I. Kingston, D. C. Liotta, J. P. Snyder // Chem. Eur. J. 2011. V.17. P. 14792-14804.
- 45. Holmes, M. T. Total synthesis and structural revision of laurefurenynes A and B / M. T. Holmes, R. Britton // Chem. Eur. J. 2013. V.19. P. 12649-12652.
- 46. Miege, F. Gold(I)-catalized cycloisomerisation of 1,6-cyclopropene-enes / F. Miege, C. Meyer, J. Cossy // Chem. Eur. J. 2012. V.18. P. 7810-7822.
- 47. Tietze, L. F. First enantioselective total synthesis of the reported structure of (*R*)-(+)-orizaterpenyl benzoate using an asymmetric allylation of a prochiral ketone in a domino process / L. F. Tietze, S. Biller, T. Wolfram // Synlett. 2010. No. 14. P. 2130-2132.

- 48. Bielitza, M. Synthesis of 8-dismethoxy psymberin: a putative biosynthetic intermediate towards the marine poliketide psymberin / M. Bielitza, J. Pietruszka // Chem. Eur. J. 2013. V.19. P. 8300-8308.
- 49. Kosaki, Y. Total synthesis of resolving E2 / Y. Kosaki, N. Ogawa, Y. Kobayashi
 // Tetrahedron Lett. 2010. V.51. P. 1856-1859.
- LaPorte, M. G. Construction of a spirooxindole amide library through nitrile hydrozirconation-acylation-cyclisation cascade / M. G. LaPorte, S. Tsegay, K. B. Hong, C. Lu, C. Fang, Li. Wang, X.-Q. Xie, P. E. Floreancig // ACS Comb. Sci. – 2013. –No. 15. – P. 344-349.
- 51. Kumar, K. S. A. Divergent synthesis of 4-*epi*-fagomine, 3,4-dihydroxypipeclic acid, and a dihydroxyindilizidine and their β-galactosidase inhibitory and immunomodulatory activities / K. S. A. Kumar, J. S. Rathee, M. Subramanian, S. Chattopadhayay // J. Org. Chem. 2013. V. 78. No. 15. P. 7406-7413.
- Laventin, D. M. Stereoselective synthesis by double reductive amination ring closure of novel *aza*-heteroannulated sugars / D. M. Laventin, M. Davies, E. L. Evinson, P. R. Jenkins, P. M. Cullins, M. D. García // Tetrahedron. 2009. V.65. P. 4766-4774.
- 53. Lewis, K. Sustainable route to methyl-9-hydroxononanoate (polymer precursor) by oxidative cleavage of fatty acid methyl ester from rapeseed oil / K. Lewis, L. Vivier, J.-M. Clacens, M. Brandhorst, J.-L. Dubois, K. De Oliveira Vigier, Y. Pouilloux // Green Chem. 2014. 16. P. 96-101.
- 54. Kersten, L. Regioselective Cobalt-catalized hydrovinylation for the synthesis of non-conjugated enones and 1,4-diketones / L. Kersten, G. Hilt // Adv. Sinth. Catal. 2012. 354. P. 863-86.
- Edvinsson, S. An Efficient procedure for the synthesis of formylacetic esters / S. Edvinsson, S. Johansson, A. Larsson // Tetrahedron Lett. 53. 2012. P. 6819-6821.
- 56. Smits, G. The exocyclic olefin geometry control via Ireland-Claisen rearrangement: stereoselective total synthesis of barmumycin and limazepine E. / G. Smits, R. Zemribo // Org. Lett. 2013. V.15. No. 17. P. 4406-4409.

- 57. Debnar, T. Stereoselective synthesis of the butyrolactone and the oxazoline/furan fragment of leupyrrin A₁ / T. Debnar, T. Wang, D. Menche // Org. Lett. 2013. V.15. No. 11. P. 2774–2777.
- Luna-Freire, K. R. An asymmetric substrate-controlled Morita-Baylis-Hillman reactions as approach for the synthesis of pyrrolizidinones and pyrrolizidines / K. R. Luna-Freire, J. P. S. Scaramal, J. A. L. C. Resende, C. F. Tormena, F. L. Oliveira, R. Aparicio, F. Coelho // Tetrahedron. – 2014. – 70. – P. 3319-3326.
- 59. Guduguntla, S. Synthesis of optically active β- or γ-alkyl-substituted alcohols through Copper-catalized asymmetric allylic alkylation with organolithium reagents / S. Guduguntla, M. Faňanás-Mastal, B. L. Feringa // J. Org. Chem. – 2013. – V. 78. – No. 17. – P. 8274–8280.
- Iskakova, M. M. Regioconrolled Dieckmann condensation of 3,4bis(methoxycarbonylmethyl) levoglucosenone derivative / M. M. Iskakova, I. M. Biktagirov, L. Kh. Faizullina, Sh. M. Salikhov, M. G. Safarov, F. A. Valeev // Russ. J. Org. Chem. – 2014. – V. 50. – No. 1. – P. 105-109.
- 61. Lentsch, C. Jartrophane diterpenes: preparation of the western fragment of PI-3. /
 C. Lentsch, R. Fürst, J. Muzler, U. Rinner // Eur. J. Org. Chem. 2014. P. 919-923.
- Reynaud, C. Synthesis of spherical polyols from itaconic acid / C. Reynaud, H. Doucet, M. Santelli // Synthesis. 2010. No. 11. P. 1787-1792.
- 64. Reunaud, C. Synthesis of *cis,cis,cis-1-alkylidene-2,3,4,5-*tetrakis(diphenylphosphinomethyl)cyclopentanes / C. Reunaud, Y. Fall, Marie Feuersten, H. Doucet, M. Santelli // Tetrahedron. 2009. 65. P. 7440-7448.
- 65. Kulciţki, V. Synthesis of a functionalozed furan via ozonolysis-further confirmation of the Cregee mechanism / V. Kulciţki, A. Bourdelais, T. Schuster, D. Baden // Tetrahedron Lett. 2010. V.51. P. 4079-4081.

- 66. Khalilova, Yu. A. Eleuthesides and their analogs: V. Medium- and large-ring lactonrs based on levoglucosenone / Yu. A. Khalilova, L. V. Spirikhin, Sh. M. Salikhov, F. A. Valeev // Russ. J. Org. Chem. – 2014. – V.50. – No. 1. – P. 117 – 127.
- Molander, G. A. Ozonolysis of unsaturated organotrifluoroborates / G. A. Molander, D. J. Cooper // J. Org. Chem. 2007. V.72. P. 3558-3560.
- Stallforth, P. De novo chemoenzimatic synthesis of static acid / P. Stallforth, S. Matthies, A. Adibekain, D. G. Gilligham, D. Hilvert, P. H. Seeberger // Chem. Commun. 2012. V.48. P. 11987 -11989.
- Xu, S. One-pot reductive cleavage of *exo*-olefin to methylene with mild ozonoisis-Clemmensen reduction sequence / S. Xu, T. Toyama, J. Nakamura, H. Arimito // Tetrahedron Lett. 2010. V.51. P. 4534-4537.
- Xu, S. Asymmetric total synthesis of pinnaic acid / S. Xu, H. Arimoto, D. Uemura // Angew. Chem. 2007. V.119. P. 5848-5851.
- Xu, S. Enantioselective total synthesis of pinniac acid and halichlorine / S. Xu, D.
 Unabara, D. Uemura, H. Arimoto // Chem. Asian. J. 2014. 9. P. 367-375.
- White, J. D. (*R*)-(+)-3,4-Dimethilcyclohex-2-en-1-on / J. D. White, U. M. Grether,
 C.-S. Lee // Org. Synthesis. 2005. V. 82. P. 108-114.
- 73. Schreiber, S. L. Fragmentation reactions of α-alkoxy hydroperoxides and application to the synthesis of the macrolide (±)-recifeiolide / S. L. Schreiber // J. Am. Chem. Soc. 1980. 102. P. 6163-6165.
- Garifullina, L. R. Decomposition of ozonolysis peroxide products of (+)-α-and (+)-β-pinenes in methanol by Fe (III) salts / L. R. Garifullina, E. V. Salimova, V. G. Kasradze, L. V. Spirikhin, O. S. Kukovinets // Chem. Nat. Compd. 2012. V. 48. No. 5. P. 791-793.
- Tyagi, V. Efficient and convenient method for workup of ozonolysis reactions using sodium hydrosulfite / V. Tyagi, A. K. Gupta // Synth. Commun. – 2012. – 42. – P. 843-838.
- 76. Savchenko, R. G. Ozonolysis of alkenes and study of reactions of polyfunctional compounds: LXVIII. Sinthesis of ω-carboxy derivatives of 20-hydroxyecdysone

diacetonide / R. G. Savchenko, Ya. R. Urazaeva, S. A. Kostyleva, V. N. Odinokov // Russ. J. Org. Chem. – 2013. – V. 49. – No. 4. – P. 610-613.

- 77. Ишмуратов, Г. Ю. Превращения перекисных продуктов озонолиза (*R*)-4-ментен-3-она в присутствии азотсодержащих органических соединений / Г. Ю. Ишмуратов, А. В. Баннова, Э. Р. Латыпова, В. С. Тухватшин, О. С. Куковинец, Р. Р. Муслухов, Г. А. Толстиков // Журн. орг. химии. 2013. Т. 49. № 1. С. 52-55.
- 78. Савченко, Р. Г. Регио- и стереонаправленное окисление экдистероидов и их 7,8-дигидроаналогов озоном в пиридине / Р. Г. Савченко, Я. Р. Уразаева, Р. В. Шафиков, В. Н. Одиноков // Журн. орг. химии. 2009. Т. 45. № 8. С. 1163-1166.
- 79. Kyasa, S. K. A Mild one-pot convertion of alkenes into amines through tandem ozonolysis and reductive amination / S. K. Kyasa, T. J. Fisher, P. H. Dussault // Synthesis. 2011. No. 21. P. 3475-3480.
- Wu, C.-Y. Synthesis of a new acetal aza-cage compounds via ozonolysis of *bis-endo*-diol- and diacylnorbornene derivatives / C.-Y. Wu, H.-C. Lin, H.-J. Wu // Tetrahedron. – 2012. – 68. – P. 2100-2106.
- Мустафин, А. Г. Озонолиз *орто*-алкениланилинов / А. Г. Мустафин, Д. И. Дьяченко, Р. Р. Гатауллин, Г. Ю. Ишмуратов, Р. Я. Харисов, И. Б. Абдрахманов, Г. А. Толстиков // Изв. АН. Сер. хим. 2003. № 4. С. 937-940.
- 82. Способ получения 2,6-дифторбензальдоксима: авторское свидетельство. № 1622366 СССР: / В. Н. Одиноков, Г. А. Толстиков, Г. Ю. Ишмуратов, Р. Я. Харисов, Р. М. Садрисламов, Р. Г. Давлетов, О. М. Нефедов, Н. В. Волчков, В. Ф. Заболотских, Л. Ю. Губайдуллин, Е. И. Логунов; заявл. 21.09.90; опубл. 23.01.91.
- Одиноков, В. Н. Озонолиз алкенов и изучение реакций полифукциональных соединений. LVIII. Озонолиз 2,6-дифторпроизводного β,β-диметилстирола как эффективный путь к 2,6-дифторбензамиду и синтез новых аналогов дифторбензурона / В. Н. Одиноков, Г. Ю. Ишмуратов, О. С. Куковинец, Р. Я.

Харисов, Е. А. Ложкина, А. Г. Мустафин, И. Б. Абдрахманов, Г. А. Толстиков // Журн. орг. химии. – 1998. – Т. 34. – № 2. – С. 229-231.

- 84. Гатауллин, Р. Р. Направленная внутримолекулярная циклизация ортоалкениланилинов: автореф. дис. ... д-ра хим. наук: 02.00.03 / Гатауллин Раил Рафкатович. – Уфа, 2004. – 48 с.
- 85. Ишмуратов, Г. Ю. Исследование превращений перекисных продуктов озонолиза олефинов под действием гидрохлоридов гидроксиламина и семикарбазида в изопропаноле / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. Р. Гарифуллина, Л. П. Боцман, З. И. Идрисова, Р. Р. Муслухов, Н. М. Ишмуратова, Г. А. Толстиков // Журн. орг. химии. 2013. Т. 49. № 10. С. 1433-1438.
- 86. Ишмуратов, Г. Ю. Исследование превращений перекисных продуктов озонолиза олефинов при действии гидрохлоридов гидроксиламина и семикарбазида в уксусной кислоте / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. Р. Гарифуллина, Л. П. Боцман, Р. Р. Муслухов, Г. А. Толстиков // Журн. орг. химии. 2014. Т. 50. № 8. С. 1095-1101.
- 87. Ишмуратов, Г. Ю. Исследование превращений перекисных продуктов озонолиза олефинов в тетрагидрофуране под действием гидрохлоридов гидроксиламина и семикарбазида / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. Р. Гарифуллина, Л. П. Боцман, Р. Р. Муслухов, Н. М. Ишмуратова, Г. А. Толстиков // Журн. орг. химии. 2014. Т. 50. № 7. С. 948-953.
- Ишмуратов, Г. Ю. Превращения перекисных продуктов озонолиза олефинов в системе метанол – вода / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. Р. Гарифуллина, Л. П. Боцман, Р. Р. Муслухов, Г. А. Толстиков // Журн. орг. химии. – 2013. – Т. 49. – № 10. – С. 1439-1442.
- Ишмуратов, Г. Ю. Превращения перекисных продуктов озонолиза олефинов в системе изопропанол – вода / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. Р. Гарифуллина, Л. П. Боцман, Р. Р. Муслухов, Г. А. Толстиков // Бутлеров. сооб. – 2014. – Т. 38. – № 6. – С. 129-134.

- 90. Ишмуратов, Г. Ю. Озонолиз алкенов и изучение реакций полифункциональных соединений. LXVIII. Исследование превращений перекисных продуктов озонолиза олефинов при действии солянокислого гидроксиламина / Г. Ю. Ишмуратов, А. Х. Шаяхметова, М. П. Яковлева, Ю. В. Легостаева, О. В. Шитикова, Е. Г. Галкин, Г. А. Толстиков // Журн. орг. химии. 2007. Т. 43. № 8. С. 1125-1129.
- 91. Ishmuratov, G. Yu. Transformations of peroxide ozonolysis products of natural olefins by *N*-containing organic compounds in methanol / G. Yu. Ishmuratov, Yu. V. Legostaeva, L. P. Botsman, M. P. Yakovleva, O. O. Shakhanova, R. R. Muslukhov, G. A. Tolstikov // Chem. Nat. Compd. 2009. V. 45. No. 3. P. 318-321.
- 92. Ишмуратов, Г. Ю. Производные гидразина в превращениях перекисных продуктов озонолиза олефинов в метаноле / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. П. Боцман, Р. Р. Муслухов, М. П. Яковлева, Р. Ф. Талипов // Вестн. Баш. ун-та. 2009. № 1. С. 27-32.
- 93. Pfordt, I. Carbonsauren im menschlichen blut / I. Pfordt, G. Spiteller // Liebigs Ann. Chem. – 1980. – No. 2. – S. 175 – 182.
- 94. Ишмуратов, Г. Ю. Синтез (3*R*)-гидроксинонановой кислоты и ее сложноэфирных производных из касторового масла / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. Р. Гарифуллина, Л. П. Боцман, Г. В. Насибуллина, Р. Р. Газетдинов // Вестн. Баш. ун-та. 2014. Т. 19. № 1. С. 29-33.
- 95. Газетдинов, Р. Р. (*R*)-4-ментенон и этил-(3*S*)-гидроксибутаноат в синтезе низкомолекулярных биорегуляторов насекомых: автореф. дис. ... канд. хим. наук: 02.00.03 / Газетдинов Ришат Ринатович. Уфа, 2004. 23 с.
- 96. Raskil'dina, G. Z. Reactions of peroxide products of ozonolysis of allyl ethers/esters in the AcOH-CH₂Cl₂ system on treatment with semicarbazide hydrochloride / G. Z. Raskil'dina, Y. V. Legostaeva, L. R. Garifullina, R. M. Sultanova, G. Yu. Ishmuratov, S. S. Zlotskii // Lett. Org. Chem. 2016. V. 13. № 9. P. 652-656.

- 97. Zabicky, J. The chemistry of the peroxide group, vol. 2 / J. Zabicky, Z. Rappoport (Ed) // Chichester: Wiley & Sons. 2006. P. 597-773.
- 98. Мясоедова Ю.В. Превращения пероксидных продуктов озонолиза алкенов (обзор) / Ю.В. Мясоедова И.С. Назаров Г.Ю. Ишмуратов // Журн. орган. химии. – 2019. – Т. 55. – Вып. 1 – С. 67-99.
- 99. Шикова, А. Н. Растительные масла и масляные экстракты: технология, стандартизация, свойства. / А. Н. Шикова, В. Г. Макаров, В. Е. Рыженков. – М.: Русский врач, 2004. – 264 с.
- 100. Биологический энциклопедический словарь / под ред. М. С. Гиляров. М.: Советская энциклопедия, 1986. – 831 с.
- 101. Мазнев, Н.И. Лекарственные растения. / Н.И. Мазнев. М.: ООО Изд-во
 «Дом. XXI век», 2006. 1056 с.
- 102. Kadhum, A. A. H. Preparation, characterization, and theoretical studies of azelaic acid derived from oleic acid by use of a novel ozonolysis method / A. A. H. Kadhum, B. A. Wasmi, A. B. Mohamad, A. A. Al-Amiery, M. S. Takriff. // Res. Chem. Intermed. – 2012. – No.38. – P. 659.
- 103. Ackman, R. G. Ozonolysis of unsaturated fatty acids: I. ozonolysis of oleic acid / R. G. Ackman, M. E. Retson, L. R. Gallay, F. A. Vandenheuvel // Can. J. Chem. - 1961. - No.39(10). - P.1956-1963.
- 104. Ozonolysis operations for generation of reduced and/or oxidized product streams: патент US20140031584 США: / Foley P. Yang Y; заявитель и патентообладатель P2 Science, Inc. № US 13/946767; заявл. 19.07.12; опубл. 30.01.14
- 105. Woodcock, S. R. Synthesis of nitrolipids: all four possible diastereomers of nitrooleic acids: (E)- and (Z)-, 9- and 10-nitro-octadec-9-enoic acids / S. R. Woodcock, A. J. V. Marwitz, P. Bruno, B. P Branchaud // Org. Lett. – 2006. – No.8. – P. 3931-3934;
- 106. Ишмуратов, Г. Ю. Синтез 10-гидрокси и 9-оксо-2Едеценовых кислот из олеиновой кислоты / Г. Ю. Ишмуратов, Р. Я.Харисов, О.В. Боцман, Л.П.

Боцман, Н.М. Ишмуратова, Г. А. Толстиков // Химия природ. соедин. – 2002. - №2. – С. 121.

- 107. Reynolds, J. C. Structural analysis of oligomeric molecules formed from the reaction products of oleic acid ozonolysis / J. C. Reynolds, D. J. Last, M. McGillen, A. Nijs, A. B. Horn, C. Percival, L. J. Carpenter, and , A. C. Lewis // Environ. Sci. Technol. – 2006. – No.40. – P. 6674-6681.
- 108. Improvements in and relating to the production of omega-amino nonanoic acid: патент GB743491 Великобритания: / Carpenter A. S., Reeder F.; заявитель и патентообладатель Courtaulds Ltd. – № GB496453; заявл. 23.02.53; опубл. 18.01.56.
- 109. Ишмуратов, Г.Ю. Превращения пероксидных продуктов озонолиза олеиновой кислоты при действии гидрохлоридов гидроксиламина и семикарбазида. / Г.Ю. Ишмуратов, М.П. Яковлева, Л.П. Боцман, Ю.В. Легостаева, И.С. Назаров, Д.В. Байдимиров. // Журн. орган. химии. – 2015. – Т. 51. – № 5. – С. 632-636.
- 110. Method for dermatological application: патент US4661519 США: / Shiga T., Nabeta K., Nakano H., Suzuki T.; заявитель и патентообладатель Pola Chemical Industries Inc. – № US 06/745832; заявл. 18.06.87; опубл. 28.01.87
- Process for the production of omegaamino acids: патент US 2862940 США: / Otsuki H., Funahashi H.; заявитель и патентообладатель Funahashi H., Otsuki H.; № US394204; заявл. 24.11.53; опубл. 02.12.58
- 112. Reaction products of ozonized fatty acids and alkylene polyamines: патент JP 29008417 Япония: / Otsuki H., Funabashi H.; заявитель и патентообладатель Skelly Oil Co.; № JP 29008417 заявл. 21.01.53; опубл. 24.10.54
- 113. Hill, K. Fats and oils as oleochemical raw materials / Hll K. // Pure Appl. Chem.
 2000. No.72. P. 1255.
- 114. Kline, T. Novel synthetic analogs of the Pseudomonas autoinducer / T. Kline, J. Bowman, B. H. Iglewski, T. de Kievit, Y. Kakai, L. Passador // Bioorg. Med. Chem. Lett. 1999. No.9 P. 3447-3452.

- 115. Brinen, J. B. Electron spin resonance and luminescence studies of the reaction of photochemically generated nitrenes with oxygen. Phosphorescence of nitrobenzenes / J. B. Brinen, B.Singh // J. Am. Chem. Soc. 1971. No. 93(24). P. 6623-6629.
- Ишмуратов, Г. Ю. 10-Ундеценовая кислота в синтезе феромонов насекомых
 // Г. Ю. Ишмуратов, М. П. Яковлева, Г. А. Толстиков // Химия природ. соедин. – 2000. – № 2. – С. 87-96.
- 117. Photoaffinity-labeled sphingomyelin analogs and processes thereof: патент US20050182265 США: / Katsumura S. Hakogi T. Shigenari T.; заявитель и патентообладатель Daiso Co., Ltd. № US 10/934,571; заявл. 07.09.04; опубл. 01.08.06.
- 118. Flippin, Lee A. A convenient method for the reduction of ozonides to alcohols with borane-dimethyl sulfide complex / Lee A. Flippin, David W. Gallagher, Keyvan J-A. J // Org. Chem. – 1989. – No.54(6). – P 1430-1432.
- 119. Толстиков, Г. А. Простаноиды. XII. Синтез ключевых синтонов и некоторых α-гомоаналогов 11-дезоксипростагландина E₁ / Γ. А. Толстиков, М. С. Мифтахов, Ф. А. Валеев, Р. Р. Ахметвалеев, Л. М. Халилов, А. А. Панасенко // Журнал орган. химии. – 1985. – Т. 21, № 1. – С. 72-82.
- 120. Gallagher, W. P. Stille reactions catalytic in tin: a «Sn-F» route for intermolecular and intramolecular couplings / W. P. Gallagher, R. E. Maleczka // J. Org. Chem. - 2005. – No.70(3). – P. 841-846.
- 121. Duffy, M. G. Conversion of (Z)-1,4-dihydroxyalk-2-enes into 2,5-dihydrofurans and of alkane-1,4-diols into tetrahydrofurans *via* acid-catalysed cyclisation of the monoisoureas formed by their copper(I)-mediated reactions with dicyclohexylcarbodiimide / M. G. Duffy, D. H. Grayson // J. Chem. Soc. Perkin Trans. 1. – 2002. – V. 13. – P. 1555-1563.
- 122. Gokhale, P. D. A new simple synthesis of a prostanoid synthon / P. D. Gokhale,
 V. S. Dalavoy, A. S. C. Prakash Rao, U. R. Nayak S. Dev // Synthesis. 1974. –
 P. 718.

- 123. Легостаева, Ю.В. Однореакторный озонолитический синтез ациклических α,ω-бифункциональных соединений из метилового эфира 10-ундеценовой кислоты и 10-ундецен-1-ола. / Ю.В. Легостаева, Л.П. Боцман, И.С. Назаров, М.П. Яковлева, Л.Р. Гарифуллина, Р.М. Халиков, Г.Ю. Ишмуратов. // Журн. прикл. химии. – 2015. – Т. 88. – № 6. – С. 106-111.
- 124. Biodegradable polyester compositions and their manufacture: патент JP 2004161802 Япония: / Katsumura S. Hakogi T. Shigenari T.; заявитель и патентообладатель Kanegafuchi Chem Ind Co Ltd – № 02/325983; заявл. 08.11.08; опубл. 10.06.10.
- 125. High color intensity and easily removable compositions: патент US20150079016 США: / Bolognini M. K., Patel K., Fonolla-Moreno A.; заявитель и патентообладатель L'Oreal SA – № US14/030288; заявл. 18.09.13; опубл. 19.03.15.
- 126. Compositions containing a dicarboxylic acid diester and a postemergent herbicideand a method of using the same: патент US20030236166 США: / Smiley R.; заявитель и патентообладатель FALCON LAB LLC – № US10/443909; заявл. 22.05.03; опубл. 25.12.03.
- 127. In situ mono- or diester dicarboxylate compositions: патент WO 2003005818 США: / Wei G.-J. J., Grab L. A., Hei R. D., Podtburg T. C.; заявитель и патентообладатель Ecolab Inc. – № US2002/021778; заявл. 10.07.02; опубл. 23.01.03.
- 128. Bactericide combinations in detergents: патент GB 2354771 Великобритания: / Elsmore R. R., Houghton M. P.; заявитель и патентообладатель ROBERT MCBRIDE LTD – № GB99/23253; заявл. 01.10.99; опубл. 04.04.01.
- 129. Dialkyl sebacates as dye carriers in inks: патент. DE 2039166 Германия: / Michael B. J., Paul C. G.; заявитель и патентообладатель AT&T Teletype Corp. № DE1970/2039166; заявл. 06.08.70; опубл. 04.03.71.
- Lubricating oil composition for metal working: патент JP 2007177167 Япония: / Shito S., Sugii H.; заявитель и патентообладатель AT&T Teletype Corp. – № JP2005/379850; заявл. 28.12.05; опубл. 12.07.07.

- Gryglewicz, S. Esters of dicarboxylic acids as additives for lubricating oils. / S. Gryglewicz, M. Stankiewicz, F. Oko, I. Surawska. // Tribol Int. 2006. No.39(6). P.560-564.
- 132. Oil resistant low temperature resistant rubber composition: патент CN101353451
 KHP: / Hou Z., Lin Z., Wang S.; заявитель и патентообладатель BYD Co., Ltd.
 № CN101353451; заявл. 25.07.07; опубл. 28.01.09.
- 133. Curable composition storage stability is improved: патент JP 4301821 Япония: / Nakagawa K., Shinobu Y., Yano N., Hasegawa F.; заявитель и патентообладатель DIC Co., Ltd. – № JP2003/013077; заявл. 22.01.03; опубл. 25.05.06.
- 134. Lubricant composition for can manufacture: патент JP 03237197 Япония: / Kobayashi K., Shinagawa Y; заявитель и патентообладатель Astellas Pharma.
 № JP 03237197; заявл. 02.02.90; опубл. 02.11.91.
- 135. Kawase, T. Synthesis and their monolaver formation of amphiphilic aziridino[60]fullerenes / T. Kawase, Y. Ishida, A. Imadzu, T. Oida, S.Minakata, R. Tsuroka // Material Technology. – 2013. – No.31(1). – P. 1-11.
- 136. Composition, useful e.g. for preparing dermatological/cosmetic composition, treating skin acne and combating e.g. Escherichia coli, comprises combination of lipoamino acid, hydroxylated fatty acid and glycerin alkyl ether: патент FR 2921558 Франция: / Leconte N.; заявитель и патентообладатель LABORATOIRE NUXE SA. № FR07/06835; заявл. 28.09.07; опубл. 03.04.09.
- 137. New compositions aiming at microbial protection and conservation of cosmetic products: патент FR 2921560 Франция: / Danielle C., Cazali V.; заявитель и патентообладатель Innovation Cosmetique Et Derma. – № FR0706748; заявл. 27.09.07; опубл. 03.04.09.
- 138. Cosmetic compositions for treating oily skin: патент DE 102005063063A1 Германия: / Frisoli C., Köppen A., Stadler I., Träger A., Waldmann-Laue M. Dr.; заявитель и патентообладатель Henkel AG and Co KgaA. – № DE200510063063; заявл. 29.12.05; опубл. 05.10.06.

- 139. Cosmetic and/or pharmaceutical composition of antimicrobial drug mixtures: патент FR2851161 Франция: / Dal. F. C.; заявитель и патентообладатель VINCIENCE. – № FR0302023; заявл. 19.03.03; опубл. 20.08.04.
- 140. Skin care preparation for external use: патент JP2004123614 Япония: / Ichiji Y.;
 заявитель и патентообладатель Arysta Lifescience Corp. № JP2002/290671;
 заявл. 03.10.02; опубл. 22.04.04.
- 141. Hydroxy fatty acids and their derivatives as inhibitors for secretion of sebum: патент JP 08048625 Япония: / Акіга Н.; заявитель и патентообладатель Акіга Н. № JP 08/048625; заявл. 11.08.94; опубл. 20.02.96.
- 142. Antidiabetics containing hydroxycarboxylic acids as aldose reductase inhibitor: патент JP 07069879 Япония: / Hirogawa S., Nagumo H.; заявитель и патентообладатель AT&T Teletype Corp.. – № JP 07/069879; заявл. 10.02.94; опубл. 05.08.95
- 143. Huang, G. Z. Novel convenient synthesis of (Z/E)-8-dodecenyl acetates, components of the *Grapholitha molesta* sex pheromone / G. Z. Huang, J. M. Li, J. L. Lu, H. A. Aisa // Chem. Nat. Comp.. 2006. No.2(6). P. 727-729.
- 144. Способ получения α,ω-дикарбоновых кислот-C₅-C₁₂: авторское свидетельство. № 390066 СССР: / А. Т. Меняйло, И. Е. Покровская, А. К. Рыжанкова; заявл. 22.12.70; опубл. 11.07.73.
- 145. Способ получения алифатических дикарбоновых кислот: авторское свидетельство № 592814 СССР: / Ю. Н. Юрьев, И. Б. Бланштейн, А. М. Гольдман; заявл. 13.05.76; опубл. 15.02.78
- 146. Одиноков, В. Н. Озонолиз алкенов и изучение реакций полифункциональных соединений. XII. О новом озонолитическом синтезе карбоновых кислот / В. Н. Одиноков, Л. П. Жемайдук, Г. А. Толстиков // Журнал. орган. химии. – 1978. – Т. 14. – № 1. – С. 54-59.
- 147. Travis B. R. Osmium tetroxide-promoted catalytic oxidative cleavage of olefins: an organometallic ozonolysis / B. R. Travis, R. S. Narayan, B. Borhan // J. Am. Chem. Soc. – 2002. – V.124. – No. 15. – P. 3824-3825.

- 148. Легостаева, Ю.В. Превращения пероксидных продуктов озонолиза циклооктена под действием гидрохлоридов гидроксиламина и семикарбазида. / Ю.В. Легостаева, Л.П. Боцман, И.С. Назаров, Г.Р. Талипова, А.В. Баннова, Г.Г. Козлова, Г.Ю. Ишмуратов. // Вестник Башкирского университета. – 2015. – № 1. – С. 43-49.
- 149. Ишмуратов, Г. Ю. Исследование превращений перекисных продуктов озонолиза природных олефинов под действием азотсодержащих органических соединений в метаноле / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. П. Боцман, М. П. Яковлева, О. О. Шаханова, Р.Р. Муслухов, Г.А. Толстиков // Химия природ. соедин. – 2009. – № 3. – С. 272-275.
- 150. Легостаева, Ю.В. Превращения пероксидных продуктов озонолиза (–)-αпинена при действии солянокислого и сернокислого гидразинов. / Ю.В. Легостаева, Л.Р. Гарифуллина, И.С. Назаров, А.А. Кравченко, Г.Ю. Ишмуратов. // Химия природ. соедин. – 2016. – № 6. – С. 877-879.
- 151. Легостаева, Ю.В. Превращения пероксидных продуктов озонолиза Δ³-карена и (–)-α-пинена при действии сернокислого гидразина в изопропаноле.
 / Ю.В. Легостаева, Л.Р. Гарифуллина, И.С. Назаров, Г.Ю. Ишмуратов. // Бутлеров. сооб. 2016. Т.45. №2. С.63-65.
- 152. Wolk, J. L. Short stereoselective synthesis of (+)-cisplanococcyl acetate, sex pheromone of the citrus mealybug *Planococcus citri* (Risso) / J. L. Wolk Z. Goldschmidt // J. Synth. Org. Chem. – 1986. – No.4. – P. 347-348.
- 153. Китаев Ю. П., Бузыкин Б. И. Гидразоны, М., Наука. 1974. 416 с.
- 154. Лебедев, В. С. Таутомерные формы арилгидразонов 4-гидрокси-3формилкумарина / В. С. Лебедев, Б. Г. Милевский, Н. П. Соловьёва, Т. А. Чибисова, О. Н. Кажева, О. А. Дьяченко, Г. Г. Александро, В. Ф. Травень // Химия гетероцикл. соединений. – 2014. –№8. – С. 1174-1182.
- 155. Garcia, M. A. Carbenoid etherifications catalyzed by "green" silver nanoparticles and iron-copper nanoparticles / M. A. Garcia, A. Garcia-Munoz, J. A. Pena, J. Trujillo-Reyes, R. A. Morales-Luckie, M. Avalos-Borja, A. R. Vilchis-Nestor, V.

Sanchez-Mendieta, D. Corona, E. Cuevas-Yanez // Lett. Org. Chem. – 2012. – V. 9. – 2-6.

- 156. Closs, G. L. Syntheses, NMR spectra and C-H acidities of hydrocarbons in the tricyclo[2.1.1.0^{5,6}]hexane and tricyclo[1.1.1.0^{4,5}]pentane series / G. L. Closs, R. B. Larrabee // Tetrahedron Lett. – 1965. – V.6. – P. 287-296.
- 157. Yao, T. Nickel-and cobalt-catalyzed direct alkylation of azoles with N-tosylhydrazones bearing unactivated alkyl groups / T. Yao, K. Hirano, T. Satoh, M. Miura // Angew. Chem. Int. Ed. – 2012. – V.51(3). – P. 775-779.
- Легостаева, Ю.В. Превращения пероксидных продуктов озонолиза Δ³карена и (–)-α-пинена при действии тозилгидразида в изопропаноле. / Ю.В. Легостаева, Л.Р. Гарифуллина, И.С. Назаров, А.А. Кравченко, З.З. Ильясова, Г.Ю. Ишмуратов. // Бутлеров. сооб. – 2016. – Т.47. – №9. – С.14-16.
- 159. Легостаева, Ю.В. Превращения пероксидных продуктов озонолиза терминальных олефинов при действии тозилгидразида. / Ю.В. Легостаева, Л.Р. Гарифуллина, И.С. Назаров, А.А. Кравченко, Л.В. Кравченко, Г.Ю. Ишмуратов. // Журн. орган. химии. – 2016. – Т. 52. – Вып. 11. – С. 1712-1714.
- 160. Легостаева, Ю.В. Превращения пероксидных продуктов озонолиза Δ³карена, (–)-α-пинена и (S)-лимонена при действии тозилгидразида. / Ю.В. Легостаева, Л.Р. Гарифуллина, И.С. Назаров, А.А. Кравченко, Н.М. Ишмуратова, Г.Ю. Ишмуратов // Химия природ. соедин. – 2017. – №5. – С.758-761.
- 161. Goswami, S. A novel one-pot two-component synthesis of tricyclic pyrano quinoxalines / S. Goswami, A. K. Adak // Tetrahedron Lett. – 2005. – No.46(2). – P. 221-224.
- 162. Hu, Y. Synthesis and antifungal activity of novel furan-2,4-dione derivatives containing substituted phenylhydrazine moiety / Y. Hu, L.-Z. Zhang, Zh.-J. Ren, Zh. Zhao, W.-Q. Xuc, Ch.-L.Yang // J. Chin. Chem. Soc. – 2015. – V. 62. –P. 495-500.

- 163. Дзвинчук, И. Б. Рециклизация при ацилировании фенилгидразона 1-метил-2-фенацил-1н-бензимидазола / И. Б. Дзвинчук, А. В. Гутов, А. Н. Чернега, М. О. Лозинский // Химия гетероцикл. соединений. – 2010. – №6. – С. 852-859.
- 164. Gar, M. M. Molecular and crystal structures of 3-(4-halopheny1)-1-pheny1-4,5,6,7-tetrahydro-(2H)-indazoles. Reaction of 6-arylidene-2,2dimethylcyclohexanones with phenylhydrazine / M. M. Gar, A.V. Eremeev, K. Yu. Suponitsky, S. V. Popkov // Rus. Chem. Bull. Int. Ed. – 2014. – V. 63. – P. 1142-1147.
- 165. Obydennov, D. L. Reactions of 2-mono- and 2,6-disubstituted 4-pyrones with phenylhydrazine as general method for the synthesis of 3-(*N*phenylpyrazolyl)indoles / D. L. Obydennov, B. I. Usachev, V. Ya. Sosnovskikh // Chem. Heterocyclic Compd. – 2015. – No.50. – 1388-1403.
- 166. Самсония, Ш. А. Производные индола. Некоторые аспекты реакции Э.Фишера. / Ш. А. Самсония, И. Ш. Чикваидзе, Д. О. Каджришвили, Н. Н. Барбакадзе, Н. О. Нариманидзе. // Химия гетероцикл. соединений. –2010. – №6. – С. 944-946.
- 167. Токмаков, Г. П. 2-Формилтетраметилсульфон в реакции Фишера. / Г. П. Токмаков, Н. Л. Нам / Химия гетероцикл. соединений 2014. №2. С. 309-334.
- 168. Yan, T. Design, synthesis and biological activities of novel benzoyl hydrazines containing pyrazole / T. Yan, S. J. Yu, P. F. Liu, Z. Liu, B. L. Wang, L. X. Xiong Z. M. Li // Chin. J. Chem. – 2012. – No.30(4). – P. 919-923.
- 169. Fungicidal phenoxyphenylhydrazine derivatives: патент WO 2005005376 Международный: / Chee G. L., Dekeyser M. A., Seebold K. W. J., Osika E. M., Brouwer W. G.; заявитель и патентообладатель Uniroyal Chemical Company, Inc.. – № US2004/016324; заявл. 25.05.04; опубл. 24.06.05.
- 170. Hamid, A. Synthesis and bioassay of novel phenylhydrazine and 2,4dinitrophenylhydrazine substituted carbazoles / A. Hamid, Z. Sadiq, G. Yaqub, N. Khan, S. Iqbal, K. Iqbal, Z. Ijaz, A. Bajwa // Asian J. Chem. – 2013. – No.25(10). – P. 5412-5414.

- 171. Zareef, M. Synthesis and Antimicrobial Activity of some derivatives of acylhydrazine including novel benzenediazasulfonamides / M. Zareef, R. Iqbal, B. Mirza, K. M. Khan, A. Manan, F. Asim, S. W. Khan // Arkivoc. – 2008. – P. 141-152.
- 172. Ишмуратов, Г. Ю. Превращения перекисных продуктов озонолиза олефинов при действии семикарбазида в метаноле / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. П. Боцман, Г. В. Насибуллина, Л. Р. Гарифуллина, Р. Р. Муслухов, Г. А. Толстиков // Журнал орган. химии. – 2012. – Т. 48. – №10. – С. 1278-1282.
- 173. Легостаева, Ю.В. Однореакторный синтез фенилгидразонов из алкенов. / Ю.В. Легостаева, Л.Р. Гарифуллина, И.С. Назаров, Г.Ю. Ишмуратов // Журн. орган. химии. 2018. Т. 54. Вып. 1. С. 56-59.
- 174. Легостаева, Ю.В. Превращения пероксидных продуктов озонолиза линейных терминальных алкенов под действием гидроксиламина. / Ю.В. Легостаева, Л.Р. Гарифуллина, И.С. Назаров, Э.Р. Нуриева, М. А. Колотова, Г.Ю. Ишмуратов. // Бутлеров. сооб. – 2017. – т 52. – № 11. – С. 18-21.
- 175. Rieche, A. Ozonisierung von olefinalkoholen. bildung von hydroperoxyden cyclischer \"ather / A. Rieche, M. Chulz, D. Becker / Chem. Ber. 1965. No. 98. 3627-3633.
- 176. Ишмуратов, Г. Ю. Исследование превращений перекисных продуктов озонолиза природных олефинов под действием азотсодержащих органических соединений в метаноле / Г. Ю. Ишмуратов, Ю. В. Легостаева, Л. П. Боцман, М. П. Яковлева, О. О. Шаханова, Р. Р. Муслухов, Г. А. Толстиков // Химия природ. соедин. – 2009. – № 3. – С. 272-275
- 177. Allen, C. L. Metal-catalysed approaches to amide bond formation / C. L. Allen, J. M. J. Williams // Chem. Soc. Rev. 2011. No.40. P. 3405-3410.
- Allen, C. L. Catalytic acylation of amines with aldehydes or aldoximes / C. L. Allen, S. Davulcuand, J. M. J. Williams // Org. Lett. 2010. No.12. P. 5096-5103.

- 179. Pohjakallio, A. Enantioselective Synthesis of 2-Isoxazolines by an One-Flask Conjugate Addition – Oxime Transfer Process / A. Pohjakallio, P. M. Pihko // Chem. Eur. J. – 2009. – No.15. – P. 3960-3964.
- Zimmermann, F. Ruthenium catalysed oxidation without CCl₄ of oleic acid, other monoenic fatty acids and alkenes / F., Zimmermann, E. Meux, J.-L. Mieloszynski, J.-M. Lecuire, N. Oget // Tetrahedron Lett. – 2005. – V.46. – P. 3201-3203.
- 181. Terent'ev, A.O. New Preparation of 1, 2, 4, 5-Tetraoxanes / A. O. Terent'ev, A. V. Kutkin, Z. A. Starikova., M. Yu. Antipin., Yu. N. Ogibin., G. I. Nikishina // Synthesis. 2004. P. 2356.
- 182. Adlof, R.O. Preparation and selective hydrolysis of acetal esters / R. O. Adlof,
 W. E. Neff., E. A. Emken., E. H. Pryde // J. Amer. Oil Chem. Soc. 1977. V.54. P. 414-416.
- 183. Burns, T.P. Highly reactive magnesium and its application to organic syntheses / T. P. Burns, R. D. Rieke // J. Org. Chem. 1987. V.52. P. 3674-3680.
- 184. Ишмуратов, Г. Ю. Озонолитические трансформации 10-ундеценовой кислоты в растворителях различной природы под действием гидрохлоридов гидроксиламина и семикарбазида / Г.Ю. Ишмуратов., Ю. В. Легостаева., Г. В. Насибуллина., Л.Р. Гарифуллина., Л. П. Боцман., Г. А. Толстиков // Химия природ. соединений. 2014. № 4. С.518-521.
- 185. Yamamoto, N. Iridium-catalyzed oxidative methyl esterification of primary alcohols and diols with methanol / N. Yamamoto, Ya. Obora, Ya. Ishii // J. Org. Chem. – 2011. – V. 76. – No. 8. – C. 2937-2941.
- 186. Blay, G. Reductive cleavage of 2,2,2-trichloroethyl esters with sodium telluride / G. Blay, L. Cardona, B. Garcia, C. L. Garcia, J. R. Pedro // Synth. Commun. 1998. No.28(8). P. 1405-1414.
- 187. Stephan, M. Simple Preparation of Highly Pure Monomeric ω-Hydroxycarboxylic Acids / M. Stephan, S. Massoud, B. Mohar // Journal of Organic Process Research & Development. – 2006. – V.10. – No. 3. – P. 481-483.

- 188. Гринберг, В.А. Электросинтез диэфиров насыщенных дикарбоновых кислот из щавелевой кислоты и этилена / В. А. Гринберг, Л. С. Герман, Л. С. Каневский, В. Р. Полищук, А. М. Скундин, Ю. Б. Васильев // Изв. АН СССР. Сер. хим. – 1980. – № 2. – С. 344-348.
- 189. Klein K.R., General synthesis of α-nitroso ketone acetal dimmers and α-oximino ketone acetals and mechanism of their fragmentation reactions. Nitrosation in organic chemistry / K. R. Klein, T. R. Demmin, B. C. Oxenrider, M. M. Rogic, M. T. Tetenbaum // J. Org. Chem. 1979. V.44. No.2. P. 275-285.
- 190. Schöllner R. Zur autoxydation ungesättigter fettsäure-ester in gegenwart von methanol und protonen. Die autoxydation einfach ungesättigter fettsäuremethylester / R. Schöllner, R. Herzschuh // Fette, Seifen, anstrichmittel. – 1966. – V. 68. – No. 6. – P. 469-475.
- 191. Camps F. Simple One-Pot Synthesis of Nitriles from Alcohols. / F. Camps, V. Gasol, A. A. Guerrero // Synth. commun. 1988. V.18. No. 4. P. 445-452.
- 192. Arivazhagan, G. Solute–solvent interactions of acid 1,4-dioxane mixtures by dielectric, FTIR, UV-vis and 13C NMR spectrometric methods / G. Arivazhagan, G. Parthipan, T. Thenappan // Spect. acta.– 2009. Part A. V. 74. P. 860-862.
- 193. Yang, X. The guest ordering and dynamics in urea inclusion compounds studied by solid-state 1 H and 13C MAS NMR spectroscopy / X. Yang, K. Müller // J. Mol. Struct. – 2011. – No.1006. – P. 113-118.